首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
江西大岗山杉木人工林生态系统土壤呼吸研究   总被引:1,自引:1,他引:1  
以江西大岗山杉木人工林为研究对象,采用LI-6400便携式光合测定系统及土壤呼吸叶室6400-09,在2005年4—10月和2006年4—10月,连续测定了2个生长季的土壤CO2释放速率,并对土壤呼吸规律进行了分析研究。结果表明,土壤呼吸的日动态和季节动态都呈单峰型;土壤呼吸速率与地表空气温度和0~10 cm土壤温度的指数回归关系良好,但单独用土壤含水率的变化解释土壤呼吸速率变异是不合适的。选择0~10 cm土壤温度和0~10 cm土壤含水率解释土壤呼吸速率的变异,双因子模型比单因子模型好。根据土壤呼吸速率与0~10 cm土壤温度的指数模型,结合试验地2006年1—12月的气象资料,计算出大岗山杉木人工林土壤呼吸年释放碳量为9.80 t.hm-2。  相似文献   

2.
利用LI-8100开路式土壤碳通量系统测定龙王山森林土壤呼吸速率,研究北亚热带落叶阔叶林土壤呼吸速率的日变化和季节性变化规律.结果表明:北亚热带落叶阔叶林土壤呼吸速率在12—14时达到最大,与土壤温度变化基本一致;森林土壤呼吸速率随土壤温度的季节性变化而变化,在夏季土壤呼吸速率较高,在冬季土壤呼吸速率较低;土壤呼吸速率与土壤温度间存在着明显的指数关系,土壤呼吸温度敏感系数Q10为2.81.  相似文献   

3.
采用LI-8100A型土壤碳通量仪对黄土高原半干旱区草地生长季(5—10月)的土壤呼吸速率、土壤温度及含水量进行连续观测,综合分析土壤呼吸的时间变化规律,并研究环境因子对呼吸速率的影响。结果表明:(1)不同天气条件下土壤呼吸速率的日动态变化差异明显,晴天的日均值(2.90μmol·m^(-2)·s^(-1))与变化范围(1.73~4.92μmol·m^(-2)·s^(-1))明显大于多云天和阴天。不同月份土壤呼吸速率的平均日变化均呈现“单峰型”结构,最高值(2.20~4.40μmol·m^(-2)·s^(-1))、最低值(0.71~1.70μmol·m^(-2)·s^(-1))分别出现在12:00或13:00、05:00或06:00,日均值接近于10:00或19:00的观测值。(2)白天和夜间土壤呼吸速率在5—6月处于较小值,从6月开始逐渐增大,8月达到峰值(白天3.31±0.98μmol·m^(-2)·s^(-1)、夜间1.80±0.39μmol·m^(-2)·s^(-1)),之后逐渐减小,10月出现最低值(白天1.55±0.55μmol·m^(-2)·s^(-1)、夜间0.81±0.12μmol·m^(-2)·s^(-1)),且白天通常高于夜间。整个生长季夜间土壤呼吸对全天总呼吸的贡献率为27.2%~32.4%。因此,在当前草地生态系统碳循环模型中应考虑夜间土壤呼吸的影响。(3)土壤温度是影响生长季土壤呼吸速率的主要环境因子,但土壤温度单变量模型不足以全面解释土壤呼吸的动态变化。结合土壤温度与含水量的双变量非线性模型能更好地拟合土壤呼吸速率,对其变异的解释程度达74.0%。(4)2020年生长季,全天、白天和夜间土壤呼吸的温度敏感性指数(Q;)变化范围分别为1.38~2.14、1.22~1.96和0.85~1.64,对应平均值分别为1.58±0.23、1.41±0.19和1.20±0.16。如果只用白天时段的Q;值代替日均值,将造成约10.8%的低估。  相似文献   

4.
利用2015年第三次青藏高原大气科学试验(TIPEX Ⅲ)五层(5,10,20,50和100 cm)土壤的温、湿度观测资料,通过计算全球陆面同化系统(GLDAS-NOAH)和中国气象局陆面同化系统的融合产品(CLDAS-V2. 0)与观测资料之间的相关性和偏差,以及分析降水事件发生后两种模式资料土壤温、湿度的响应,综合评估了融合土壤温、湿度产品在青藏高原的适用性。结果表明,CLDAS-V2. 0土壤温、湿度产品与观测资料的相关性均优于GLDAS-NOAH模式产品,且两模式产品与站点观测资料的相关性在湿季大于干季,相关性随土壤深度增加而减小; CLDAS-V2. 0土壤湿度产品相对站点观测的误差稍大于GLDAS-NOAH,且在浅层土壤两模式产品与站点观测的MRE整体上在干季大于湿季; CLDASV2. 0土壤温度产品与站点观测的RMSE在湿季大于干季,而GLDAS-NOAH产品则相反;两种模式产品均能描述出降水发生后浅层土壤温、湿度对降水的响应,但两种模式产品所描述的深层土壤温、湿度的波动幅度相对观测明显偏大;此外,两种模式产品无法重现观测到的深层土壤温、湿度相对表层土壤温、湿度变化明显"滞后"的特征以及降水后相对降水前土壤温度峰/谷值对应时间存在明显延迟的特征。  相似文献   

5.
利用简单的土壤热传导方程建立模型,并结合小波变换方法,分析了2004年6月22日~8月18日金塔绿洲附近观测的戈壁土壤温度序列,重点关注地下10 cm的土壤温度变化.结果表明,在观测时段土壤温度除了有明显的日变化外,还存在周期为准4天和准两周的波动.利用滑动相关分析后发现,太阳向下短波辐射强度与土壤温度日变化能量存在显著的正相关,这与利用土壤热传导模型分析土壤日变化振幅年变化的相关研究的结论一致.太阳向下短波辐射强度与准4天周期波动实部分量在降水前后存在负相关关系.比较观测时段土壤温度准4天波动能量与同时期的天空温度,发现准4天波动可能与持续增强的云逆辐射有关.通过分析降水前后土壤温度、土壤含水量的变化,发现二者的日变化在降水后与降水前相比,振幅增大,位相前移.这一结果可以用土壤热扩散率在一定范围内随土壤含水量增大而增大得到解释.最后利用回归分析发现T10的准两周波动可能与更大范围的大气环流场异常有关.  相似文献   

6.
夏季降水异常与前期环流、下垫面异常有密切的关系 ,文中重点研究了淮河流域前期下垫土壤温、湿度异常对夏季降水的影响。提出了一种动力与统计相结合寻找影响降水的因子的方法 ,通过将大气中的热量、水汽收支方程与一个简化的两层土壤温度、湿度方程相结合 ,并依据月尺度大气环流的演变特征 ,推导出月降水距平与 5 0 0hPa月平均高度距平场、土壤深浅两层温、湿度的关系 ;并利用台站观测资料 ,使用统计反演方法确定方程中各项的系数和量级 ,从而找出影响降水的主要土壤温、湿度因子 ;利用统计方法建立这些因子与淮河流域夏季降水异常之间的简单线性预报方程 ,并对 1982~ 2 0 0 0年淮河流域夏季降水趋势进行回报 ,结果表明 :对淮河流域夏季降水趋势的预测有很好的效果 ,且更加明确了土壤温、湿度因子与降水异常之间的动力学联系。  相似文献   

7.
利用2017~2018年黄河源地区野外观测站数据,对黄河源区两个积雪期内土壤温湿及冻融特征进行了分析,并与CLM4.5模式模拟的积雪期土壤温、湿度及辐射分量进行了对比,结果表明:CLM4.5能很好地模拟出整个积雪期土壤温度的变化趋势;对不同土壤层在不同冻结阶段土壤含水量的模拟有所差异:在完全冻结阶段,对5cm土壤层含水量模拟偏高,而80cm偏低,对10~40cm土壤层含水量的模拟偏差较小;由于降雪及土壤冻融过程主要发生在积雪期,积雪反照率使得净辐射模拟在降雪时段偏差较无降雪时段略大。   相似文献   

8.
以古尔班通古特沙漠为研究靶区,利用2020年全年克拉美丽陆-气相互作用观测试验站连续观测数据,分析了古尔班通古特沙漠土壤温湿度、土壤热通量、土壤盐分及导热率等主要土壤参数变化特征及影响因子。结果表明:(1)古尔班通古特沙漠土壤温度年日均值变化呈倒“U”型,季节变化特征明显,总体表现为夏季>春季>秋季>冬季,浅层土壤温度的变化幅度大于深层,湿度变化特征为春夏高,秋冬低,通常表现为随土壤深度增加土壤湿度逐渐升高;土壤热通量变化总体表现为春夏高,秋冬低,日变化幅度春夏秋冬依次递减。(2)古尔班通古特沙漠土壤导热率年均值为0.832 W·m-1·K-1,导热率与降水呈显著的正相关,土壤温湿度、土壤盐分是影响沙漠区土壤导热率的主要因子。在冻土条件下,土壤导热率平均为0.634 W·m-1·K-1,且其随土壤湿度增加而增加,冻土时导热随湿度增加的速率约为非冻土时的2.5倍;在降水条件下,土壤含水量小于0.06 m3·m-3时土壤导热率呈现缓慢增加趋势,大于0.06 m3·m-3时随湿度上升而迅速增加;在融雪时期,土壤含水量小于0.11 m3·m-3时土壤导热率随湿度上升缓慢增加,大于0.11 m3·m-3时土壤导热率迅速上升。  相似文献   

9.
本文以新疆巴里坤盐湖周边硫酸钠型盐渍土壤为研究对象,通过土柱异位培养的方法,使用开路式土壤碳通量测量系统Li-8100,研究了不同覆盐量(CK、1倍覆盐、2倍覆盐、3倍覆盐和4倍覆盐处理)对土壤呼吸特征的影响。结果表明:(1) 土壤呼吸日变化呈单峰曲线,其峰值表现出随覆盐量增加而增加的趋势;4倍覆盐处理下土壤呼吸速率的峰值出现时间(15: 00)比其他处理(17: 00)有所提前;凌晨0: 00-6: 00,部分土壤呼吸速率呈现负值。(2) 覆盐后土壤CO2日排放量随时间呈先增加后降低的趋势,与气温变化一致;培养期间土壤CO2日均排放量表现出随覆盐量增加而增加的趋势,4倍覆盐处理下土壤CO2日均排放量显著高于CK处理(P<0.05)。(3) 土壤温度敏感系数Q10表现出随覆盐量增加而增加的趋势。综上可见,覆盐处理显著影响了盐湖周边盐渍化土壤CO2排放通量、特征和土壤温度敏感性,因此,在研究气候变暖对盐渍化土壤呼吸影响时,不仅要考虑增温对土壤呼吸的直接影响,也要考虑土壤盐层厚度与土壤温度敏感性的变化。  相似文献   

10.
藏北高原土壤温、湿度变化在高原干湿季转换中的作用   总被引:15,自引:2,他引:15  
王澄海  尚大成 《高原气象》2007,26(4):677-685
通过1997年和1999年藏北高原沱沱河观测站土壤温、湿度变化和对应降水变化的分析,表明与高原冻融过程相联系的土壤湿度变化和高原干湿季转换及湿季降水存在联系。土壤融冻引起土壤增湿的时间比高原雨季降水开始的时间约早20天,春季高原土壤温、湿度的增加在高原地表感潜热的变化中有重要贡献。春末夏初高原土壤冻融过程引起的土壤湿度变化,在高原局地尺度的水分循环中为高原湿季开始提供了有利的水汽条件。因此,在青藏高原陆气相互作用过程中,与冻融过程相联系的土壤湿度变化在高原季节转换中是一个不可忽视的因子。  相似文献   

11.
Soil respiration is a key component of the global terrestrial ecosystem carbon cycle. The static opaque chamber method was used to measure the CO2 effluxes from soil of a semiarid Aneurolepidium chinense steppe and a Stipa krylovii steppe in the Xilin River Basin of Inner Mongolia, China from March 2002 to December 2004. The results indicated that the soil respiration rates of the semiarid Aneurolepidium chinense steppe and the Stipa krylovii steppe were both relatively high from mid-May to mid-September of each year and remained low during the rest of the year. The minimum value of soil respiration occurred in December or January and negative effluxes of CO2 appeared for several days during the non-growing season of individual years at the two sampling sites. A high annual variation was found in the two steppes with the coefficients of variance (CV) being over 94%, even high to 131%. The annual sums of soil CO2 efflux of the Aneurolepidium chinense steppe varied between 356.4 gC m?2 yr?1 and 408.8 gC m?2 yr?1, while those of the Stipa krylovii steppe in the three years were in the range of 110.6 gC m?2 yr?1 to 148.6 gC m?2 yr?1. The mean respiration rates of the Aneurolepidium chinense steppe were significantly higher than those of the Stipa krylovii steppe in different statistical periods with the exception of the non-growing season. About 59.9% and 80.6% of the soil respiration variations in both steppes for the whole sampling period were caused by the changes of temperature and soil water content. In the Aneurolepidium chinense steppe, the soil respiration rate has significant or extremely significant positive correlation (r = 0.58 ? 0.85, p < 0.05 or p < 0.01) with air temperature and ground temperature of the topsoil except in 2002; the unique contributions of temperature change to the soil respiration variation of the three years were 53.3%, 81.0% and 58.6%, respectively. But, for the Stipa krylovii steppe in the same time interval, the soil water content (especially that of the 10–20 cm layer) has a greater effect on the change of soil respiration, and the unique contributions of the change of the 10–20 cm soil water content to the variations of soil respiration in 2002 and 2003 were 60.0% and 54.3%, respectively. In 2004, in spite of the higher contribution of temperature than soil water content, the contribution of ground temperature at a depth of 10 cm was only 46.2%, much weaker than that of any single year in the Aneurolepidium chinense steppe.  相似文献   

12.
The seasonal dynamics of soil respiration in steppe (S. bungeana), desert shrub (A. ordosica), and shrub-perennial (A. ordosica + C. komarovii) communities were investigated during the growth season (May to October) in 2006; their environmental driving factors were also analyzed. In the three communities, soil respiration showed similar characteristics in their growth seasons, with peak respiration values in July and August owing to suitable temperature and soil moisture conditions during this period. Meanwhile, changes in soil respiration were greatly influenced by temperatures and surface soil moistures. Soil water content at a depth of 0 to 10 cm was identified as the key environmental factor affecting the variation in soil respiration in the steppe. In contrast, in desert shrub and shrub-perennial communities, the dynamics of soil respiration was significantly influenced by air temperature. Similarly, the various responses of soil respiration to environmental factors may be attributed to the different soil textures and distribution patterns of plant roots. In desert ecosystems, precipitation results in soil respiration pulses. Soil carbon dioxide (CO2) effluxes greatly increased after rainfall rewetting in all of the ecosystems under study. However, the precipitation pulse effect differed across the ecosystem. We propose that this may be a result of a reverse effect from the soil texture.  相似文献   

13.
采用LI-6400-09土壤呼吸室对盘锦湿地芦苇群落土壤呼吸作用,于2004年7月—2005年12月进行连续野外观测。结果表明:非淹水状态下,湿地芦苇群落土壤呼吸作用具有明显的日变化和季节变化特征;淹水状态下,湿地芦苇群落土壤呼吸作用接近于0。2005年潮汐造成的洪水减少了2/3的土壤呼吸作用。2004年和2005年芦苇群落土壤呼吸作用最大值都出现于洪水退去后。影响湿地芦苇群落土壤呼吸作用空间异质性的主导因子是生物因子,而在同一时间影响湿地芦苇群落土壤呼吸作用的主导因子是温度和水分。  相似文献   

14.
基于塔克拉玛干沙漠腹地面积最大的天然孤立绿洲达理雅博依2015年1月—2016年2月太阳总辐射观测资料,运用H.L.Penman经验公式模拟计算了该地区2015年逐日总辐射累计量,模拟值与实测值的误差分析显示:本气候学方法成功模拟了沙漠腹地总辐射的年内变化趋势。使用模拟值估算得到达理雅博依绿洲2015年太阳总辐射累计量约为5 332.23 MJ·m-2。又以相同方法模拟了塔中气象站2015年3—5月总辐射变化,结果较达理雅博依的模拟更接近实测值,说明本模拟在塔克拉玛干沙漠腹地不同地点结果有效。  相似文献   

15.
利用1959年10月至2018年4月沈阳地区7个气象站逐日冻土观测资料、逐日平均气温、逐日平均地温及5 cm、10 cm、15 cm、20 cm、40 cm地温观测资料,分析了近60 a沈阳地区最大冻土深度的时空变化特征,并探讨了其对气候变暖的响应。结果表明:近60 a来沈阳地区冻土一般在10月开始出现,翌年4月消融。1959-2018年沈阳地区年平均月最大冻土深度在2月和3月最大,10月最小;年最大冻土深度以-4.8 cm/10 a的速度显著变浅,年代平均最大冻土深度也呈变浅趋势。相关分析表明,近60 a沈阳地区日最大冻土深度与日平均气温、地温呈显著负相关关系,相关系数分别为-0.60和-0.72。Mann-Kendall检验表明,7个气象站年平均最大冻土深度均有突变发生,突变点大多出现在20世纪80年代。近60 a沈阳地区最大冻土深度开始日期和结束日期分别呈延后和提前趋势,趋势率分别为1.0 d/10 a和-3.2 d/10 a。1959-2018年沈阳地区平均冻土持续时间为164 d,年变化呈缩短趋势,趋势率为-4.4 d/10 a。  相似文献   

16.
利用耦合了陆面过程模式(CLM4.5)的区域气候模式(RegCM4)分别对青藏高原的一个多雪年和少雪年进行了数值模拟.通过对比模拟雪深与遥感雪深、土壤温湿度的模拟值与观测值、多雪年与少雪年的土壤温湿度模拟值,结果表明,RegCM4-CLM4.5可以有效模拟出高原的多雪年与少雪年特征,模拟雪深大值中心比遥感雪深高10~2...  相似文献   

17.
晁华  徐红  王当  王小桃  朱玲  顾正强 《气象科技》2017,45(1):116-121
利用辽宁省61个气象站1964—2013年的冻土观测资料,采用线性回归、相关性分析、不同气候期对比等方法,结合ArcGIS分析了辽宁省冻土的空间和时间变化特征。结果表明:辽宁省冻土随纬度呈带状分布;土壤冻结具有明显的季节变化特征,冻结期在10月至翌年5月,冬末春初冻结的面积和深度达到最大值;冻结日自北向南逐渐推迟,消融日则相反;在全球变暖背景下,冻土深度随温度的上升而减小;大部分地区年平均气温和地表温度与最大冻土深度呈显著负相关,是影响冻土深度的重要因素;从各气候期100cm等深度线也可以明显看出最大冻土深度呈逐渐减小趋势。  相似文献   

18.
利用1960-2018年塔城地区9个气象观测站冻土深度及同期气温观测资料,采用数理统计方法分析了其分布状况、变化特征及其与气象因子的关系,结果表明:近59a塔城地区最大冻土深度均在120cm以上,大值区主要分布在中部、南部及托里,冻结初日最早出现于9月上旬,最晚结束于5月中旬;年最大冻土深度除额敏以4.00cm/10a的速率显著增多外,其余各站均表现为减少趋势,其中克拉玛依减幅最大;月际变化中1月、2月、5月、9月、10月仅个别站表现为增多趋势,其余站表现为减少趋势,而3月、4月、11月、12月9站均表现为一致的减少趋势;塔城地区最大冻土深度年际变异系数均表现为中等变异性,表明其对气候变化的响应较敏感;平均冻土深度年代际变化呈现“浅-深-浅-浅-浅-浅”的变化趋势,从1980年代开始平均冻土深度逐渐变浅;影响最大冻土深度变化的因子主要有年(月)平均气温、平均最低气温及气温日较差。  相似文献   

19.
使用2014年5—9月塔克拉玛干沙漠腹地塔中大气环境观测实验站地表辐射观测资料,分析了塔中人工绿地与自然沙面在各种典型天气条件下的辐射分量特征差异。结果表明:人工绿地与自然沙面辐射平衡各分量最小值均出现在夜间,最大值出现在中午前后,总辐射和反射辐射日最大值出现在12:00;大气长波辐射日变化振幅较小,地面长波辐射日变化呈现不对称分布。晴天,人工绿地与自然沙面总辐射和净辐射变化幅度较小,自然沙面总辐射高于人工绿地;阴天,地面长波辐射略有减小,绿地大气长波辐射略有增加,总辐射和反射辐射减少,净辐射的变化受总辐射的影响,但减弱幅度小于总辐射;沙尘暴天气下,沙尘对辐射各分量影响明显,辐射各分量日变化不规则,人工绿地与自然沙面总辐射被明显削弱,日变化波动大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号