首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The theory of polar magnetic burial in accreting neutron stars predicts that a mountain of accreted material accumulates at the magnetic poles of the star, and that, as the mountain spreads equatorward, it is confined by, and compresses, the equatorial magnetic field. Here, we extend previous, axisymmetric, Grad–Shafranov calculations of the hydromagnetic structure of a magnetic mountain up to accreted masses as high as   M a= 6 × 10−4 M  , by importing the output from previous calculations (which were limited by numerical problems and the formation of closed bubbles to   M a < 10−4 M  ) into the time-dependent, ideal-magnetohydrodynamic code zeus-3d and loading additional mass on to the star dynamically. The rise of buoyant magnetic bubbles through the accreted layer is observed in these experiments. We also investigate the stability of the resulting hydromagnetic equilibria by perturbing them in zeus-3d . Surprisingly, it is observed that the equilibria are marginally stable for all   M a≤ 6 × 10−4 M  ; the mountain oscillates persistently when perturbed, in a combination of Alfvén and acoustic modes, without appreciable damping or growth, and is therefore not disrupted (apart from a transient Parker instability initially, which expels <1 per cent of the mass and magnetic flux).  相似文献   

2.
Three-dimensional numerical magnetohydrodynamic (MHD) simulations are performed to investigate how a magnetically confined mountain on an accreting neutron star relaxes resistively. No evidence is found for non-ideal MHD instabilities on a short time-scale, such as the resistive ballooning mode or the tearing mode. Instead, the mountain relaxes gradually as matter is transported across magnetic surfaces on the diffusion time-scale, which evaluates to  τI∼ 105–108 yr  (depending on the conductivity of the neutron star crust) for an accreted mass of   M a= 1.2 × 10−4 M  . The magnetic dipole moment simultaneously re-emerges as the screening currents dissipate over  τI  . For non-axisymmetric mountains, ohmic dissipation tends to restore axisymmetry by magnetic reconnection at a filamentary neutral sheet in the equatorial plane. Ideal-MHD oscillations on the Alfvén time-scale, which can be excited by external influences, such as variations in the accretion torque, compress the magnetic field and hence decrease  τI  by one order of magnitude relative to its standard value (as computed for the static configuration). The implications of long-lived mountains for gravitational wave emission from low-mass X-ray binaries are briefly explored.  相似文献   

3.
We compute the continuous part of the ideal-magnetohydrodynamic (ideal-MHD) frequency spectrum of a polar mountain produced by magnetic burial on an accreting neutron star. Applying the formalism developed by Hellsten & Spies, extended to include gravity, we solve the singular eigenvalue problem subject to line-tying boundary conditions. This spectrum divides into an Alfvén part and a cusp part. The eigenfunctions are chirped and anharmonic with an exponential envelope, and the eigenfrequencies cover the whole spectrum above a minimum ωlow. For equilibria with accreted mass  1.2 × 10−6≲ M a/M≲ 1.7 × 10−4  and surface magnetic fields  1011≲ B */G ≲ 1013, ωlow  is approximately independent of   B *  , and increases with M a. The results are consistent with the Alfvén spectrum excited in numerical simulations with the zeus-mp solver. The spectrum is modified substantially by the Coriolis force in neutron stars spinning faster than ∼100 Hz. The implications for gravitational-wave searches for low-mass X-ray binaries are considered briefly.  相似文献   

4.
We argue that the first stars may have spanned the conventional mass range rather than be identified with the very massive objects  (∼100–103 M)  favoured by numerical simulations. Specifically, we find that magnetic field generation processes acting in the first protostellar systems suffice to produce fields that exceed the threshold for magneto-rotational instability (MRI) to operate, and thereby allow the MRI dynamo to generate equipartition-amplitude magnetic fields on protostellar mass scales below  ∼50 M  . Such fields allow primordial star formation to occur at essentially any metallicity by regulating angular momentum transfer, fragmentation, accretion and feedback in much the same way as occurs in conventional molecular clouds.  相似文献   

5.
There is an apparent dichotomy between the metal-poor  ([Fe/H]≤−2)  yet carbon-normal giants and their carbon-rich counterparts. The former undergo significant depletion of carbon on the red giant branch after they have undergone first dredge-up, whereas the latter do not appear to experience significant depletion. We investigate this in the context that the extra mixing occurs via the thermohaline instability that arises due to the burning of  3He  . We present the evolution of [C/Fe], [N/Fe] and  12C/13C  for three models: a carbon-normal metal-poor star, and two stars that have accreted material from a  1.5 M  AGB companion, one having received  0.01 M  of material and the other having received  0.1 M  . We find the behaviour of the carbon-normal metal-poor stars is well reproduced by this mechanism. In addition, our models also show that the efficiency of carbon-depletion is significantly reduced in carbon-rich stars. This extra-mixing mechanism is able to reproduce the observed properties of both carbon-normal and carbon-rich stars.  相似文献   

6.
High-resolution spectroscopic observations around the Hα line and BVRI photometry of the eclipsing short-period RS CVn star UV Leo are presented. The simultaneous light-curve solution and radial velocity-curve solution led to the following values of the global parameters of the binary: temperatures   T 1= 6000 ± 100 K  and   T 2= 5970 ± 20 K  ; masses   M 1= 0.976 ± 0.067 M  and   M 2= 0.931 ± 0.052 M  ; separation   a = 3.716 ± 0.048 R  ; orbital inclination     ; radii   R 1= 1.115 ± 0.052 R  and   R 2= 1.078 ± 0.051 R  ; equatorial velocities   V 1= 98.8 ± 2.3 km s−1  and   V 2= 89.6 ± 2.7 km s−1  . These results lead to the conclusion that the two components of UV Leo are slightly oversized for their masses and lie within the main-sequence band on the mass–radius diagram, close to the isochrone 9 × 1010 yr.  相似文献   

7.
In an attempt to model the accretion on to a neutron star in low-mass X-ray binaries, we present 2D hydrodynamical models of the gas flow in close vicinity of the stellar surface. First, we consider a gas pressure-dominated case, assuming that the star is non-rotating. For the stellar mass we take   M star= 1.4 × 10−2 M  and for the gas temperature   T = 5 × 106 K  . Our results are qualitatively different in the case of a realistic neutron star mass and a realistic gas temperature of T ≃ 108 K, when the radiation pressure dominates. We show that to get the stationary solution in a latter case, the star most probably has to rotate with the considerable velocity.  相似文献   

8.
We investigate the properties of the first galaxies at   z ≳ 10  with highly resolved numerical simulations, starting from cosmological initial conditions and taking into account all relevant primordial chemistry and cooling. A first galaxy is characterized by the onset of atomic hydrogen cooling, once the virial temperature exceeds  ≃104 K  , and its ability to retain photoheated gas. We follow the complex accretion and star formation history of a  ≃5 × 107 M  system by means of a detailed merger tree and derive an upper limit on the number of Population III (Pop III) stars formed prior to its assembly. We investigate the thermal and chemical evolution of infalling gas and find that partial ionization at temperatures  ≳104 K  catalyses the formation of  H2  and hydrogen deuteride, allowing the gas to cool to the temperature of the cosmic microwave background. Depending on the strength of radiative and chemical feedback, primordial star formation might be dominated by intermediate-mass Pop III stars formed during the assembly of the first galaxies. Accretion on to the nascent galaxy begins with hot accretion, where gas is accreted directly from the intergalactic medium and shock heated to the virial temperature, but is quickly accompanied by a phase of cold accretion, where the gas cools in filaments before flowing into the parent halo with high velocities. The latter drives supersonic turbulence at the centre of the galaxy and could lead to very efficient chemical mixing. The onset of turbulence in the first galaxies thus likely marks the transition to Pop II star formation.  相似文献   

9.
Lorimer et al. have recently reported that the spin-down age (∼7 × 109 yr) of the low-mass binary pulsar PSR J1012+5307 is much higher than the cooling age (3 × 108 yr) of its white dwarf companion. The proposed solutions for this discrepancy are outlined and discussed. In particular, the revised cooling age estimate proposed by Alberts et al. agrees with data from other low-mass binary pulsar systems if a transition to the 'classical' cooling regime occurs between ∼0.14 and ∼0.28 M. If this transition is excluded, PSR J1012+5307 seems to have finished its accretion phase far from the spin-up line.  相似文献   

10.
We discuss the formation of pulsars with massive companions in eccentric orbits. We demonstrate that the probability for a non-recycled radio pulsar to have a white dwarf as a companion is comparable to that of having an old neutron star as a companion. Special emphasis is given to PSR B1820−11 and PSR B2303+46. Based on population synthesis calculations we argue that PSR B1820−11 and PSR B2303+46 could very well be accompanied by white dwarfs with mass ≳1.1 M. For PSR B1820−11, however, we cannot exclude the possibility that its companion is a main-sequence star with a mass between ∼0.7 M and ∼5 M.  相似文献   

11.
The first orbital solution for the spectroscopic pair in the multiple star system σ Scorpii, determined from measurements with the Sydney University Stellar Interferometer, is presented. The primary component is of β Cephei variable type and has been one of the most intensively studied examples of its class. The orbital solution, when combined with radial velocity results found in the literature, yields a distance of  174+23−18 pc  , which is consistent with, but more accurate than the Hipparcos value. For the primary component we determine  18.4 ± 5.4 M, −4.12 ± 0.34 mag  and  12.7 ± 1.8 R  for the mass, absolute visual magnitude and radius, respectively. A B1 dwarf spectral type and luminosity class for the secondary is proposed from the mass determination of  11.9 ± 3.1 M  and the estimated system age of 10 Myr.  相似文献   

12.
The binary companion to the peculiar F supergiant HD 172481 is shown to be a Mira variable with a pulsation period of 312 d. Its characteristics are within the normal range found for solitary Miras of that period, although its pulsation amplitude and mass-loss rate ̇ ∼3×10−6 M yr−1 are higher than average. Reasons are given for suspecting that the F supergiant, which has L ∼104 L, is a white dwarf burning hydrogen accreted from its companion.  相似文献   

13.
The concept of Roche lobe overflow is fundamental to the theory of interacting binaries. Based on potential theory, it is dependent on all the relevant material corotating in a single frame of reference. Therefore if the mass losing star is asynchronous with the orbital motion or the orbit is eccentric, the simple theory no longer applies and no exact analytical treatment has been found. We use an analytic approximation whose predictions are largely justified by smoothed particle hydrodynamic simulations (SPH). We present SPH simulations of binary systems with the same semi-major axis   a = 5.55 R  , masses   M 1= 1 M, M 2= 2 M  and radius   R 1= 0.89 R  for the primary star but with different eccentricities   e = 0.4, 0.5, 0.6  and 0.7. In each case the secondary star is treated as a point mass. When   e = 0.4  no mass is lost from the primary while at   e = 0.7  catastrophic mass transfer, partly through the L2 point, takes place near periastron. This would probably lead to common-envelope evolution if star 1 were a giant or to coalescence for a main-sequence star. In between, at   e ≥ 0.5  , some mass is lost through the L1 point from the primary close to periastron. However, rather than being all accreted by the secondary, some of the stream appears to leave the system. Our results indicate that the radius of the Roche lobe is similar to circular binaries when calculated for the separation and angular velocity at periastron. Part of the mass loss occurs through the L2 point.  相似文献   

14.
We present X-ray, broad-band optical and low-frequency radio observations of the bright type IIP supernova SN 2004et. The Chandra X-ray Observatory observed the supernova at three epochs, and the optical coverage spans a period of ∼470 d since explosion. The X-ray emission softens with time, and we characterize the X-ray luminosity evolution as   L X∝ t −0.4  . We use the observed X-ray luminosity to estimate a mass-loss rate for the progenitor star of  ∼2 × 10−6 M yr−1  . The optical light curve shows a pronounced plateau lasting for about 110 d. Temporal evolution of photospheric radius and colour temperature during the plateau phase is determined by making blackbody fits. We estimate the ejected mass of 56Ni to be  0.06 ± 0.03 M  . Using the expressions of Litvinova & Nadëzhin we estimate an explosion energy of  (0.98 ± 0.25) × 1051 erg  . We also present a single epoch radio observation of SN 2004et. We compare this with the predictions of the model proposed by Chevalier, Fransson & Nymark. These multiwavelength studies suggest a main-sequence progenitor mass of  ∼20 M  for SN 2004et.  相似文献   

15.
We present phase resolved optical photometry and spectroscopy of the accreting millisecond pulsar HETE J1900.1−2455. Our R -band light curves exhibit a sinusoidal modulation, at close to the orbital period, which we initially attributed to X-ray heating of the irradiated face of the secondary star. However, further analysis reveals that the source of the modulation is more likely due to superhumps caused by a precessing accretion disc. Doppler tomography of a broad Hα emission line reveals an emission ring, consistent with that expected from an accretion disc. Using the velocity of the emission ring as an estimate for the projected outer disc velocity, we constrain the maximum projected velocity of the secondary to be 200 km s−1, placing a lower limit of  0.05 M  on the secondary mass. For a  1.4 M  primary, this implies that the orbital inclination is low, ≲20°. Utilizing the observed relationship between the secondary mass and the orbital period in short-period cataclysmic variables, we estimate the secondary mass to be ∼0.085  M  , which implies an upper limit of  ∼2.4 M  for the primary mass.  相似文献   

16.
We present phase resolved optical spectroscopy and photometry of V4580 Sagittarii, the optical counterpart to the accretion powered millisecond pulsar SAX J1808.4−3658, obtained during the 2008 September/October outburst. Doppler tomography of the N  iii λ4640.64 Bowen blend emission line reveals a focused spot of emission at a location consistent with the secondary star. The velocity of this emission occurs at  324 ± 15 km s−1  ; applying a ' K -correction', we find the velocity of the secondary star projected on to the line of sight to be  370 ± 40 km s−1  . Based on existing pulse timing measurements, this constrains the mass ratio of the system to be  0.044+0.005−0.004  , and the mass function for the pulsar to be  0.44+0.16−0.13 M  . Combining this mass function with various inclination estimates from other authors, we find no evidence to suggest that the neutron star in SAX J1808.4−3658 is more massive than the canonical value of  1.4 M  . Our optical light curves exhibit a possible superhump modulation, expected for a system with such a low mass ratio. The equivalent width of the Ca  ii H and K interstellar absorption lines suggest that the distance to the source is ∼2.5 kpc. This is consistent with previous distance estimates based on type-I X-ray bursts which assume cosmic abundances of hydrogen, but lower than more recent estimates which assume helium-rich bursts.  相似文献   

17.
We present observations of Sakurai's Object obtained at 1–5 μm between 2003 and 2007. By fitting a radiative transfer model to an echelle spectrum of CO fundamental absorption features around  4.7 μm  , we determine the excitation conditions in the line-forming region. We find  12C/13C = 3.5+2.0−1.5  , consistent with CO originating in ejecta processed by the very late thermal pulse, rather than in the pre-existing planetary nebula. We demonstrate the existence of  2.2 × 10−6≤ M CO≤ 2.7 × 10−6 M  of CO ejecta outside the dust, forming a high-velocity wind of  500 ± 80 km s−1  . We find evidence for significant weakening of the CO band and cooling of the dust around the central star between 2003 and 2005. The gas and dust temperatures are implausibly high for stellar radiation to be the sole contributor.  相似文献   

18.
Many objects studied in astronomy follow a power-law distribution function (DF), for example the masses of stars or star clusters. A still used method by which such data is analysed is to generate a histogram and fit a straight line to it. The parameters obtained in this way can be severely biased, and the properties of the underlying DF, such as its shape or a possible upper limit, are difficult to extract. In this work, we review techniques available in the literature and present newly developed (effectively) bias-free estimators for the exponent and the upper limit. Furthermore, we discuss various graphical representations of the data and powerful goodness-of-fit tests to assess the validity of a power law for describing the distribution of data. As an example, we apply the presented methods to the data set of massive stars in R136 and the young star clusters in the Large Magellanic Cloud. For R136 we confirm the result of Koen of a truncated power law with a bias-free estimate for the exponent of  2.20 ± 0.78/2.87 ± 0.98  (where the Salpeter–Massey value is 2.35) and for the upper limit of  143 ± 9/163 ± 9 M  , depending on the stellar models used. The star clusters in the Large Magellanic Cloud (with ages up to  107.5 yr  ) follow a truncated power-law distribution with exponent  1.62 ± 0.06  and upper limit  68 ± 12 × 103 M  . Using the graphical data representation, a significant change in the form of the mass function below  102.5 M  can be detected, which is likely caused by incompleteness in the data.  相似文献   

19.
We present a detailed calculation of the evolution of low-mass (<0.25 M) helium white dwarfs. These white dwarfs (the optical companions to binary millisecond pulsars) are formed via long-term, low-mass binary evolution. After detachment from the Roche lobe, the hot helium cores have a rather thick hydrogen layer with mass between 0.01 and 0.06 M. As a result of mixing between the core and outer envelope, the surface hydrogen content ( X surf) is 0.5–0.35 , depending on the initial value of the heavy element Z and the initial secondary mass. We found that the majority of our computed models experience one or two hydrogen shell flashes. We found that the mass of the helium dwarf in which the hydrogen shell flash occurs depends on the chemical composition. The minimum helium white dwarf mass in which a hydrogen flash takes place is 0.213 M ( Z =0.003), 0.198 M ( Z =0.01), 0.192 M ( Z =0.02) or 0.183 M ( Z =0.03). The duration of the flashes (independent of chemical composition) is between a few ×106 and a few ×107 yr. In several flashes the white dwarf radius will increase so much that it forces the model to fill its Roche lobe again. Our calculations show that the cooling history of the helium white dwarf depends dramatically on the thickness of the hydrogen layer. We show that the transition from a cooling white dwarf with a temporarily stable hydrogen-burning shell to a cooling white dwarf in which almost all residual hydrogen is lost in a few thermal flashes (via Roche lobe overflow) occurs between 0.183 and 0.213 M (depending on the heavy element value).  相似文献   

20.
In general, H  ii regions do not show clear signs of self-enrichment in products from massive stars  ( M ≥ 8 M)  . In order to explore why I modelled the contamination with Wolf–Rayet star ejecta of metal-poor  ( Z = 0.001)  H  ii regions, ionized either by a  106 M  cluster of coeval stars (cluster 1) or by a cluster resulting from continuous star formation at a rate of  1 M yr−1  (cluster 2). The clusters have   Z = 0.001  and a Salpeter initial mass function from 0.1 to  120 M  . Independent one-dimensional constant density simulations of the emission-line spectra of unenriched H  ii regions were computed at the discrete ages 1, 2, 3, 4 and 5 Myr, with the photoionization code cloudy , using as input, radiative and mechanical stellar feedbacks predicted by the evolutionary synthesis code starburst99 . Each H  ii region was placed at the outer radius of the adiabatically expanding superbubble of Mac Low & McCray. For models with thermal and ionization balance time-scales of less than 1 Myr, and with oxygen emission-line ratios in agreement with observations, the volume of the superbubble and the H  ii region was uniformly and instantaneously polluted with stellar ejecta predicted by starburst99 . I obtained a maximum oxygen abundance enhancement of 0.025 dex, with cluster 1, at 4 Myr. It would be unobservable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号