首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
对45个冬季格陵兰以东区域海冰密集度场与北大西洋500hPa位势高度滤波方差作奇异值(SVD)分析,结果表明:SVD得到的第一对空间典型分布反映了冬季格陵兰以东区域海冰异常与风暴轴的异常变化密切相关。进一步的合成分析显示,海冰异常使得大气环流调整,气压梯度、天气尺度涡动热量的经向通量和垂直通量、局地斜压性均发生改变,从而对风暴轴的强度及中心的位移造成影响。  相似文献   

2.
 Precipitation (P) and freshwater (E-P) fluxes at the air-sea interface are investigated in the Atlantic Ocean sector using the reanalyses of the European Centre for Medium Range Weather Forecasts (ERA) and of the National Centers for Environmental Prediction (NCEP). A canonical correlation analysis method between these fields and sea level pressure (SLP) is used to identify patterns. We also test whether precipitation and freshwater fluxes can be reconstructed from SLP data. In the winter months, patterns associated with both the North Atlantic Oscillation (NAO) and the East Atlantic (EA) mode are identified. The signals are strong enough to be reconstructed from the reanalysis fields, and they correspond to a significant part of the variability. The NAO signal is more robust than the EA one. The NAO-related variability mode is also present when the monthly precipitation rate is averaged for the winter season and even for annual averages. However, in the later case, other variability of natural origin (for instance, ENSO variability) or noise from the model and assimilation system prevents the reconstruction of E-P associated with NAO from SLP variability. Difficulties are identified in the tropical Atlantic with a different behaviour of NCEP and ERA precipitation variability, especially near the Inter Tropical Convergence Zone (ITCZ). The ERA patterns suggest a NAO signature in the tropical Atlantic which has clear monthly patterns and indicates a link between the phase of NAO and changes in the position and intensity of ITCZ. However, the analysis of winter rainfall based on satellite and in situ data does not support the monthly tropical pattern of ERA precipitation although it suggests a relation between convection near 15°S and NAO during northern winter. Received: 10 February 2000 / Accepted: 7 May 2001  相似文献   

3.
近百年东亚冬季气温及其大气环流变化型态   总被引:7,自引:2,他引:5  
范可  刘辉 《大气科学》2013,37(2):383-394
利用最新20世纪近百年再分析气象资料,研究近百年东亚冬季气温变化型及其相关的大气环流型态.结果表明近百年内东亚冬季气温主要有两种变化型:第一是东亚西南与东北相反气温变化型,表现在40°N以南及105°E以西地区(西南地区)气温变化与40°N以北及105°E以东地区(东北地区)变化相反;第二是40°N以南气温一致变化型.与第一种气温变化型耦合的大气模态是500hPa欧亚型遥相关、西伯利亚高压及北大西洋涛动.当欧亚型遥相关负位相,北大西洋涛动正位相及西伯利亚高压减弱时,有利于蒙古和我国105° E以东的区域增温而我国西南地区和青藏高原降温,反之亦然.第二种气温变化型耦合大气模态是500hPa西太平洋型遥相关,北太平洋涛动.当西太平洋型遥相关及北太平洋涛动处于正位相时(北太平洋北负南正),东亚40°N以南地区增温,东亚40°N以北地区降温.耦合的大气模态的型态差异,影响各阶段气温的年际变化.近一百年中,欧亚型遥相关和北大西洋涛动在1984~2010期间的型态最显著,是20世纪80年代东亚显著增暖的原因之一.研究还发现20世纪中期后东亚气温的年际变化与极地环流的变化联系紧密,表现在西伯利亚高压范围东扩并与极地环流联系,也是近百年气温趋势上升的一个原因.  相似文献   

4.
Several 19-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the monthly mean sea surface temperature (SST) observed in 1970–1988 were examined to study extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST monthly variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis (CCA), which select from two time-dependent fields optimally correlated pairs of patterns, was applied to monthly anomalies of SST in the North Alantic and Pacific Oceans and monthly anomalies of sea level pressure and 500 hPa geopotential height in the Northern Hemisphere. In the GAGO run the best correlated atmospheric pattern is global and is characterized by north-south dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospehric response is more local than in the GAGO run with main centers in the North Atlantic and North Pacific, respectively. The extratropical response in the GAGO run is not equal to the sum of the responses in the MOGA and TOGA runs. The artificial meridional SST gradients at 25°–30°N probably influence the results of the MOGA and TOGA runs. The atmopsheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 hPa. winter climate. The normal modes with smallest eigenvalues are similar to the model leading variability modes and canonical patterns of 500 hPa geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans.  相似文献   

5.
The influence of the natural variability of the Atlantic meridional overturning circulation (AMOC) on the atmosphere is studied in multi-centennial simulations of six global climate models, using Maximum Covariance Analysis (MCA). In all models, a significant but weak influence of the AMOC changes is found during the Northern Hemisphere cold-season, when the ocean leads the atmosphere by a few years. Although the oceanic pattern slightly varies, an intensification of the AMOC is followed in all models by a weak sea level pressure response that resembles a negative phase of the North Atlantic Oscillation (NAO). The signal amplitude is typically 0.5?hPa and explains about 10% of the yearly variability of the NAO in all models. The atmospheric response seems to be due primarily due to an increase of the heat loss along the North Atlantic Current and the subpolar gyre, associated with an AMOC-driven warming. Sea-ice changes appear to be less important. The stronger heating is associated to a southward shift of the lower-tropospheric baroclinicity and a decrease of the eddy activity in the North Atlantic storm track, which is consistent with the equivalent barotropic perturbation resembling the negative phase of the NAO. This study thus provides some evidence of an atmospheric signature of the AMOC in the cold-season, which may have some implications for the decadal predictability of climate in the North Atlantic region.  相似文献   

6.
Sea-ice cover over the Hudson Bay (HB) exhibits large variability in the freeze-up season normally starting in November. Its influence on the climate over eastern Canada has been studied with the Canadian Regional Climate Model (CRCM) in three steps. First, a 30-year continuous simulation from 1970 to 1999 was performed as a control run to evaluate the simulated climate variability over eastern Canada, in particularly variability associated with the North Atlantic oscillation (NAO). Then, 50 additional 1 month experiments were performed with modified sea-surface conditions prescribed over the HB. These integrations allowed us to quantify the contribution of HB sea-ice anomalies versus large scale NAO atmospheric variability (as defined by prescribed lateral boundary conditions) in inducing climate variability over eastern Canada. Results show that the NAO is the dominant factor controlling climate variability over eastern Canada. The contribution of HB sea-ice anomalies is significant only in the immediate coastal region. Under the influence of different phases of NAO, HB sea-ice anomalies do co-vary with temperature and precipitation anomalies downstream of the HB over eastern Canada. The ultimate cause of this co-variability is NAO variability which forces variability in both HB sea-ice cover as well as temperature/precipitation over eastern Canada.  相似文献   

7.
A thermodynamic-dynamic sea-ice model based on a granular material rheology developed by Tremblay and Mysak is used to study the interannual variability of the Arctic sea-ice cover during the 41-year period 1958–98. Monthly wind stress forcing derived from the National Centers for Environmental Prediction (NCEP) Reanalysis data is used to produce the year-to-year variations in the sea-ice circulation and thickness. We focus on analyzing the variability of the sea-ice volume in the Arctic Basin and the subsequent changes in sea-ice export into the Greenland Sea via Fram Strait. The relative contributions of the Fram Strait sea-ice thickness and velocity anomalies to the sea-ice export anomalies are first investigated, and the former is shown to be particularly important during several large export events. The sea-ice export anomalies for these events are next linked to prior sea-ice volume anomalies in the Arctic Basin. The origin and evolution of the sea-ice volume anomalies are then related to the sea-ice circulation and atmospheric forcing patterns in the Arctic. Large sea-ice export anomalies are generally preceded by large volume anomalies formed along the East Siberian coast due to anomalous winds which occur when the Arctic High is centered closer than usual to this coastal area. When the center of this High relocates over the Beaufort Sea and the Icelandic Low extends far into the Arctic Basin, the ice volume anomalies are transported to the Fram Strait region via the Transpolar Drift Stream. Finally, the link between the sea-ice export and the North Atlantic Oscillation (NAO) index is briefly discussed. The overall results from this study show that the Arctic Basin and its ice volume anomalies must be considered in order to fully understand the export through Fram Strait. Received: 27 January 1999 / Accepted: 8 July 1999  相似文献   

8.
Regional magnitudes and patterns of Arctic winter climate changes in consequence of regime changes of the North Atlantic Oscillation (NAO) are analyzed using a regional atmospheric climate model. The regional model has been driven with data of positive and negative NAO phases from a control simulation as well as from a time-dependent greenhouse gas and aerosol scenario simulation. Both global model simulations include a quite realistic interannual variability of the NAO with pronounced decadal regime changes and no or rather weak long-term NAO trends. The results indicate that the effects of NAO regime changes on Arctic winter temperatures and precipitation are regionally significant over most of northwestern Eurasia and parts of Greenland. In this regard, mean winter temperature variations of up to 6 K may occur over northern Europe. Precipitation and synoptic variability are also regionally modified by NAO regime changes, but not as significantly as temperatures. However, the climate changes associated with the NAO are in some regions clearly stronger than those attributed to enhanced greenhouse gases and aerosols, indicating that projected global changes of the atmospheric composition and internal circulation changes are competing with each other in their importance for the Arctic climate evolution in the near future. The knowledge of the future NAO trend on decadal and longer time scales appears to be vitally important in terms of a regional assessment of climate scenarios for the Arctic.  相似文献   

9.
宁夏春季沙尘暴与北极海冰之间的遥相关关系   总被引:11,自引:3,他引:11  
根据宁夏沙尘暴发生次数资料、北极海冰密集度资料和NCEP/NCAR再分析500hPa、850hPa高度场、风场资料,得出了宁夏春季沙尘暴发生次数的变化规律及其与北极海冰面积之间的年代际和年际相关关系,发现宁夏春季沙尘暴发生次数与欧亚大陆北部的喀拉海、巴伦支海和格陵兰海冰面积之间存在较显著的年代际、年际相关关系。通过合成和相关分析知,宁夏春季沙尘暴偏多、偏少状况有明显不同的环流背景场,秋季格陵兰海冰异常变化通过影响其后一段时间的大气环流背景场,从而对宁夏沙尘暴产生影响。初步得出当格陵兰海秋季海冰面积增大(减小),次年春季蒙古至西伯利亚一带500hPa、850hPa高压场降低(升高),风场有明显的气旋性(反气旋性)特点,在宁夏至新疆一带西风明显偏强(偏弱),说明冷空气活动次数偏多(少),对应宁夏春季沙尘暴发生次数偏多(少)。通过海冰将全球气候变暖和宁夏(我国北方)沙尘暴总减少趋势联系起来,初次提出在环境总体恶化情况下,我国沙尘暴发生次数总体趋于减少,很可能是全球气候变暖所致。  相似文献   

10.
The link between the Pacific/North American pattern (PNA) and the North Atlantic Oscillation (NAO) is investigated in reanalysis data (NCEP, ERA40) and multi-century CGCM runs for present day climate using three versions of the ECHAM model. PNA and NAO patterns and indices are determined via rotated principal component analysis on monthly mean 500?hPa geopotential height fields using the varimax criteria. On average, the multi-century CGCM simulations show a significant anti-correlation between PNA and NAO. Further, multi-decadal periods with significantly enhanced (high anti-correlation, active phase) or weakened (low correlations, inactive phase) coupling are found in all CGCMs. In the simulated active phases, the storm track activity near Newfoundland has a stronger link with the PNA variability than during the inactive phases. On average, the reanalysis datasets show no significant anti-correlation between PNA and NAO indices, but during the sub-period 1973?C1994 a significant anti-correlation is detected, suggesting that the present climate could correspond to an inactive period as detected in the CGCMs. An analysis of possible physical mechanisms suggests that the link between the patterns is established by the baroclinic waves forming the North Atlantic storm track. The geopotential height anomalies associated with negative PNA phases induce an increased advection of warm and moist air from the Gulf of Mexico and cold air from Canada. Both types of advection contribute to increase baroclinicity over eastern North America and also to increase the low level latent heat content of the warm air masses. Thus, growth conditions for eddies at the entrance of the North Atlantic storm track are enhanced. Considering the average temporal development during winter for the CGCM, results show an enhanced Newfoundland storm track maximum in the early winter for negative PNA, followed by a downstream enhancement of the Atlantic storm track in the subsequent months. In active (passive) phases, this seasonal development is enhanced (suppressed). As the storm track over the central and eastern Atlantic is closely related to the NAO variability, this development can be explained by the shift of the NAO index to more positive values.  相似文献   

11.
ABSTRACT

Seasonal time series of sea-ice area or extent in several regions along the east coast of Canada were compiled from several sources for the period 1901 to 2013 and compared with an index of ice extent off southwest Greenland, iceberg season length south of 48°N, air temperature, and other climate indices. Trends in winter ice area and iceberg season length are significant over the past 100 years and 30 years. Variability of winter ice area and iceberg season length is associated with a combination of the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO) indices superimposed on a negative trend. Thus, large declines in ice area and iceberg season length in the 1920s and 1990s can be attributed to a decreasing NAO index and a shift to the positive phase of the AMO at the end of these decades. Ice extent in southern areas such as the Scotian Shelf is more strongly correlated with the Western Atlantic index than with the NAO. Ice area trends (in percent per decade) are larger in magnitude and account for twice as much of the variance in ice area for summer than for winter, with summer trends significant over 30-, 60- and 100-year periods. Sea-ice variability is generally consistent with air temperature variability in the various regions; in the 1930s, during the early twentieth-century warming period, ice anomalies were higher and temperature anomalies were lower along the coast of eastern Canada than along the coast of southwestern Greenland.  相似文献   

12.
近45a冬季北大西洋涛动异常与我国气候的关系   总被引:14,自引:1,他引:14  
利用1873-1995年的北半球海平面气压月平均资料,定义了北大西洋涛动指数。用近45a资料研究了北大西洋涛动与我国冬、夏季气候变化的关系。指出,北大西洋涛动异常变化与我国冬、夏季天气气候关系密切。强涛动年,冬季我国是偏暖、多雨的气候特征;夏季我国江淮之间地区气温明显偏低。还表明,强涛动年冬季,西太平洋副热带高压强度与西伯利亚高压及高空经向环流都明显偏弱,大气环流具有弱WA遥相关型、弱的东亚冬季风特征,对应的夏季环流特征与强东亚夏季风特征较接近。  相似文献   

13.
The relationship between the variability of the surface elevation of the Greenland Ice Sheet (GIS) in winter and sea level pressure is identified through analysis of data from satellite-borne radar altimeters, together with meteorological data fields during 1993-2005. We found that both the North Pacific Oscillation (NPO) and the North Atlantic Oscillation (NAO), the two major teleconnection patterns of the atmospheric surface pressure fields in the Northern Hemisphere, significantly influence the GIS winter elevation change. Further, it is suggested that the NPO may affect the GIS accumulation by influencing the NAO, particularly by changing the intensity and location of the Icelandic Low.  相似文献   

14.
A gridded monthly precipitable water (PW) data for 1979?C2007 from the NCEP/NCAR reanalysis are used to investigate summertime interannual PW variability over Europe and its relation to the key climate parameters in the region. During summer season the first EOF mode of PW, explaining 27?C41% of its total variance, demonstrates significant month-to-month changes in its structure, thus, implying its essential non-stationarity. The second EOF mode of PW is also non-stationary during the summer season. In contrast to precipitation, both leading modes of PW are not associated with the North Atlantic Oscillation (NAO), as well as with other regional teleconnections, suggesting relatively minor role of the atmospheric dynamics in atmospheric moisture variability over Europe during summer season. Analysis of links between leading EOF modes of regional PW and air temperature (AT) has revealed a strong link between PW and AT over Europe, persisting during entire summer season. Locally, these links imply that positive (negative) AT anomalies result in enhanced (decreased) PW over particular region. Revealed links between leading modes of PW and AT highlight important role of thermodynamics in summertime PW variability over Europe. Detected relatively weak and unstable links between leading modes of PW and precipitation over Europe were somewhat expected since in contrast to atmospheric moisture, regional precipitation variability is largely driven by the atmospheric dynamics (particularly, the NAO).  相似文献   

15.
Winter precipitation over Central Asia and the western Tibetan Plateau (CAWTP) is mainly a result of the interaction between the westerly circulation and the high mountains around the plateau. Empirical Orthogonal Functions (EOFs), Singular Value Decomposition (SVD), linear regression and composite analysis were used to analyze winter daily precipitation and other meteorological elements in this region from 1979 to 2013, in order to understand how interactions between the regional circulation and topography affect the intraseasonal variability in precipitation. The SVD analysis shows that the winter daily precipitation variability distribution is characterized by a dipole pattern with opposite signs over the northern Pamir Plateau and over the Karakoram Himalaya, similar to the second mode of EOF analysis. This dipole pattern of precipitation anomaly is associated with local anomalies in both the 700 hPa moisture transport and the 500 hPa geopotential height and is probably caused by oscillations in the regional and large-scale circulations, which can influence the westerly disturbance tracks and water vapor transport. The linear regression shows that the anomalous mid-tropospheric circulation over CAWTP corresponds to an anti-phase variation of the 500 hPa geopotential height anomalies over the southern and northern North Atlantic 10 days earlier (at 95% significance level), that bears a similarity to the North Atlantic Oscillation (NAO). The composite analysis reveals that the NAO impacts the downstream regions including CAWTP by controlling south-north two branches of the middle latitude westerly circulation around the Eurasian border. During the positive phases of the NAO, the northern branch of the westerly circulation goes around the northwest Tibetan Plateau, whereas the southern branch encounters the southwest Tibetan Plateau, which leads to reduced precipitation over the northern Pamir Plateau and increased precipitation over the Karakoram Himalaya, and vice versa.  相似文献   

16.
The temporal and spatial variability of winter total cloud cover in southern Europe and the Mediterranean region and its connection to the synoptic-scale features of the general atmospheric circulation are examined for the period 1950–2005, by using the diagnostic and intrinsic NCEP/NCAR Reanalysis data sets. At first, S-mode factor analysis is applied to the time series of winter cloud cover, revealing five factors that correspond to the main modes of inter-annual variability of cloudiness. The linkage between each of the five factors and the atmospheric circulation is examined by constructing the 500 hPa and 1,000 hPa geopotential height anomaly patterns that correspond to the highest/lowest factor scores. Then, k-means cluster analysis is applied to the factor scores time series, classifying the 56 years into six distinct clusters that describe the main modes of spatial distribution of cloudiness. Eventually, canonical correlation analysis is applied to the factor scores time series of: (1) 500 and 1,000 hPa geopotential heights over Europe and the North Atlantic Ocean and (2) total cloud cover over southern Europe and the Mediterranean, in order to define the main centers of action in the middle and the lower troposphere that control winter cloudiness variability in the various sub-regions of the area under study. Three statistically significant canonical pairs are revealed, defining the main modes of atmospheric circulation forcing on cloudiness variability. North Atlantic oscillation and European blocking activity modulate the highest percentage of cloudiness variability. A statistically significant negative trend of winter cloudiness is found for central and southern Europe and the Mediterranean region. This negative trend is associated with the corresponding positive trends in NAO and European blocking activity.  相似文献   

17.
Summary Interannual variability in the activity of fluctuations with subseasonal time scales is investigated based upon observed data of the extratropical Northern Hemisphere circulation over the recent 38 winters. Their activity is represented in the root mean square (RMS) field of filtered geopotential height in which the fluctuations with time scales between 10 days and a season are retained. The singular value decomposition (SVD) was applied to the covariance matrix between the seasonal mean and RMS fields for the 500-hPa height.The leading SVD mode for the north Pacific represents the strong relationship between the polarity of the Pacific/North American (PNA) pattern in the seasonal-mean anomalies and the amplitude of a meridionally-oriented dipole-like oscillation within the season. It tends to be more active when the seasonal-mean jet stream is strongly diffluent over the central Pacific than when the jet is extended zonally across the Pacific. The leading SVD mode for the north Atlantic is indicative of stronger intraseasonal fluctuations near Greenland in the presence of anticyclonic seasonal-mean anomalies associated with the North Atlantic Oscillation (NAO).The intraseasonal variability in the extratropics is strongly correlated with the underlying sea surface temperature (SST) anomalies, and that in the north Pacific also exhibits significant but rather weak correlation with SST anomalies in the equatorial Pacific. The activity of the atmospheric intraseasonal fluctuations is found to be modulated in accordance with interdecadal variability in the seasonal-mean circulation and SST.On leave from Department of Earth & Planetary Physics, University of Tokyo.With 12 Figures  相似文献   

18.
A long-term simulation performed with a coarse-resolution, global, atmosphere-ocean-sea-ice model displays strong decadal variability of the sea-ice volume in the Northern Hemisphere with a significant peak at about 15-18 years. This model results from the coupling of ECBILT, a spectral T21, 3-level quasi-geostrophic atmospheric model, and CLIO, a sea-ice-ocean general circulation model. First, the mechanism underlying the variability of ice volume in the model was studied by performing correlation analyses between the simulated variables. In a second step, a series of additional sensitivity experiments was performed in order to illustrate the role of specific physical processes. This has allowed us to identify a feedback loop in the ice-ocean system, which proceeds as follows: an increase in Arctic sea-ice volume induces an increase in the salinity there. This salinity anomaly is transported to the Greenland Sea where it promotes convective activity. This warms up the surface oceanic layer and the atmosphere in winter and induces a decrease of the ice volume, completing half a cycle. The changes in ice volume are driven by a geopotential height pattern characterised by centres of action of opposite signs over Greenland and the Barents-Kara-Central Arctic area. Thermodynamic feedback between the ice and the atmosphere appear also to be very important for the persistence of the oscillation. The dynamical response of the atmosphere to sea-ice and temperature anomalies at surface plays a smaller role.  相似文献   

19.
对45个冬季格陵兰以东区域海冰密集度场与北太平洋500 hPa位势高度滤波方差场作奇异值(SVD)分析.结果表明:SVD得到的第1对空间典型分布反映了冬季格陵兰以东区域海冰异常与北太平洋风暴轴异常变化密切相关.进一步的合成分析显示:海冰异常导致大气环流调整,气压梯度、急流、850 hPa天气尺度涡动热量经向通量和垂直通量、局地斜压性均发生改变,从而对北太平洋风暴轴的强度及中心位置位移造成影响.  相似文献   

20.
Abstract

The relationship between Arctic sea‐ice concentration anomalies, particularly those associated with the “Great Salinity Anomaly” of 1968–1982, and atmospheric circulation anomalies north of 45°N is investigated. Empirical orthogonal function (EOF) analyses are performed on winter Arctic ice concentration from 1954 to 1990, sea level pressure and 500‐hPa heights from 1947 to 1994, and 850‐hPa temperatures from 1963 to 1994. Variability on both interannual and decadal timescales is apparent in the time series of the leading winter EOFs of all variables. The first EOF of winter sea‐ice concentration was found to characterize the patterns of ice variability associated with the Great Salinity Anomaly in the northern North Atlantic from 1968–82. Spatial maps of temporal correlation coefficients between the time series of the first EOF of winter sea‐ice concentration and the winter atmospheric anomaly fields are calculated at lags of 0 and ±7 year. Maximum correlations were found to exist when the time‐series of this ice EOF 1 leads the atmospheric anomaly fields by one year. A particularly interesting result is the connection between the presence of ice anomalies in the Greenland and Barents Seas and subsequent pressure anomalies of the same sign over the Irminger Basin and the Canadian Arctic. The main emphasis of the paper is to identify connections between Arctic sea‐ice and atmospheric circulation anomalies at interannual time‐scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号