首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The Scoping Plan for compliance with California Assembly Bill 32 (Global Warming Solutions Act of 2006; AB 32) proposes a substantial reduction in 2020 greenhouse gas (GHG) emissions from all economic sectors through energy efficiency, renewable energy, and other technological measures. Most of the AB 32 Scoping Plan measures will simultaneously reduce emissions of traditional criteria pollutants along with GHGs leading to a co-benefit of improved air quality in California. The present study quantifies the airborne particulate matter (PM2.5) co-benefits of AB 32 by comparing future air quality under a Business as Usual (BAU) scenario (without AB 32) to AB 32 implementation by sector. AB 32 measures were divided into five levels defined by sector as follows: 1) industrial sources, 2) electric utility and natural gas sources, 3) agricultural sources, 4) on-road mobile sources and 5) other mobile sources. Air quality throughout California was simulated using the UCD source-oriented air quality model during 12 days of severe air pollution and over 108 days of typical meteorology representing an annual average period in the year 2030 (10 years after the AB 32 adoption deadline). The net effect of all AB 32 measures reduced statewide primary PM and NOx emissions by ~1 % and ~15 %, respectively. Air quality simulations predict that these emissions reductions lower population-weighted PM2.5 concentrations by ~6 % for California. The South Coast Air Basin (SoCAB) experienced the greatest reductions in PM2.5 concentrations due to the AB 32 transportation measures while the San Joaquin Valley (SJV) experiences the smallest reductions or even slight increases in PM2.5 concentrations due to the AB 32 measures that called for increased use of dairy biogas for electricity generation. The ~6 % reduction in PM2.5 exposure associated with AB 32 predicted in the current study reduced air pollution mortality in California by 6.2 %, avoiding 880 (560–1100) premature deaths per year for the conditions in 2030. The monetary benefit from this avoided mortality was estimated at $5.4B/yr with a weighted average benefit per tonne of $35 k/tonne ($23 k/tonne–$45 k/tonne) of PM, NOx, SOx, and NH3 emissions reduction.  相似文献   

2.
The degradation of air quality, an environmental consequence of anthropogenic activities, poses a challenge to human health. However, the corresponding control measures incur additional costs. This study presents an analysis of the health and socioeconomic benefits of air quality control measures and climate change mitigation. Multidisciplinary modelling was used for PM2.5 and ozone distribution to analyze the co-benefits of end-of-pipe measures and electrification as well as their period-specific impacts on human health and the economy. The results indicated that the long-term impacts of end-of-pipe technologies and electrification in Japan's residential, building, and transportation sectors could reduce premature deaths, caused by PM2.5 and ozone pollution, by 65,500 annually from 2010 to 2050. These technologies could save a per capita work hour loss of 3.64 h and avoid an economic loss of 5.43 billion USD by 2050. This study predicted climate actions would enable western Japan to benefit from PM2.5 control measures, whereas the entire country would benefit from ozone pollution reduction.  相似文献   

3.
气候变化引起的地面气溶胶浓度变化与区域空气质量密切相关。本文利用“国际大气化学—气候模式比较计划”(Atmospheric Chemistry and Climate Model Intercomparison Project, ACCMIP)中4个模式的试验数据分析了RCP8.5情景下2000~2100年气候变化对中国气溶胶浓度的影响。结果显示,在人为气溶胶排放固定在2000年、仅考虑气候变化的影响时,2000~2100年气候变化导致中国北部地区(31°N~45°N, 105°E~122°E)硫酸盐、有机碳和黑碳气溶胶分别增加28%、21%和9%,硝酸盐气溶胶在中国东部地区减少30%。气候变化对细颗粒物(PM2.5)浓度的影响有显著的季节变化特征,冬季PM2.5浓度在中国东部减少15%,这主要是由硝酸盐气溶胶在冬季的显著减少造成的;夏季PM2.5浓度在中国北部地区增加16%,而长江以南地区减少为9%,这可能与模式模拟的未来东亚夏季风环流的增强有关。  相似文献   

4.
Surface solar radiation (SSR) can affect climate, the hydrological cycle, plant photosynthesis, and solar power. The values of solar radiation at the surface reflect the influence of human activity on radiative climate and environmental effects, so it is a key parameter in the evaluation of climate change and air pollution due to anthropogenic disturbances. This study presents the characteristics of the SSR variation in Nanjing, China, from March 2016 to June 2017, using a combined set of pyranometer and pyrheliometer observations. The SSR seasonal variation and statistical properties are investigated and characterized under different air pollution levels and visibilities. We discuss seasonal variations in visibility, air quality index (AQI), particulate matter (PM10 and PM2.5), and their correlations with SSR. The scattering of solar radiation by particulate matter varies significantly with particle size. Compared with the particulate matter with aerodynamic diameter between 2.5 μm and 10 μm (PM2.5?10), we found that the PM2.5 dominates the variation of scattered radiation due to the differences of single-scattering albedo and phase function. Because of the correlation between PM2.5 and SSR, it is an effective and direct method to estimate PM2.5 by the value of SSR, or vice versa to obtain the SSR by the value of PM2.5. Under clear-sky conditions (clearness index ≥0.5), the visibility is negatively correlated with the diffuse fraction, AQI, PM10, and PM2.5, and their correlation coefficients are ?0.50, ?0.60, ?0.76, and ?0.92, respectively. The results indicate the linkage between scattered radiation and air quality through the value of visibility.  相似文献   

5.
大气污染物排放清单是空气质量模拟和空气污染治理的重要依据.本研究比较分析了两套覆盖江苏省的2017年大气污染物排放清单,即分别由上海市环境科学研究院、江苏省环境科学研究院编制的"长三角清单"和"江苏省清单",并结合区域空气质量模型CMAQ评估不同清单对长三角地区2017年1、4、7、10月的空气质量模拟的影响.清单比较结果表明,除二氧化硫(SO2)以外,江苏省清单估算的各污染物排放量较长三角清单低.通过与观测数据比较,发现两套清单对SO2、氮氧化物(NOx)、臭氧(O3)和细颗粒物(PM2.5)的模型模拟性能均较好.江苏省清单与长三角清单两者的模拟结果空间分布接近,其中江苏省清单模拟的PM2.5和O3在长三角多数地区略低于长三角清单的模拟结果(1月O3除外).江苏省清单与长三角清单均能够用于空气质量模式模拟,可为江苏地区的细颗粒物和光化学烟雾污染的控制策略制定提供参考.  相似文献   

6.
Surface ozone (O3) and fine particulate matter (PM2.5) are dominant air pollutants in China. Concentrations of these pollutants can show significant differences between urban and nonurban areas. However, such contrast has never been explored on the country level. This study investigates the spatiotemporal characteristics of urban-to-suburban and urban-to-background difference for O3 (Δ[O3]) and PM2.5 (Δ[PM2.5]) concentrations in China using monitoring data from 1171 urban, 110 suburban, and 15 background sites built by the China National Environmental Monitoring Center (CNEMC). On the annual mean basis, the urban-to-suburban Δ[O3] is ?3.7 ppbv in Beijing–Tianjin–Hebei, 1.0 ppbv in the Yangtze River Delta, ?3.5 ppbv in the Pearl River Delta, and ?3.8 ppbv in the Sichuan Basin. On the contrary, the urban-to-suburban Δ[PM2.5] is 15.8, ?0.3, 3.5 and 2.4 μg m?3 in those areas, respectively. The urban-to-suburban contrast is more significant in winter for both Δ[O3] and Δ[PM2.5]. In eastern China, urban-to-background differences are also moderate during summer, with ?5.1 to 6.8 ppbv for Δ[O3] and ?0.1 to 22.5 μg m?3 for Δ[PM2.5]. However, such contrasts are much larger in winter, with ?22.2 to 5.5 ppbv for Δ[O3] and 3.1 to 82.3 μg m?3 for Δ[PM2.5]. Since the urban region accounts for only 2% of the whole country’s area, the urban-dominant air quality data from the CNEMC network may overestimate winter [PM2.5] but underestimate winter [O3] over the vast domain of China. The study suggests that the CNEMC monitoring data should be used with caution for evaluating chemical models and assessing ecosystem health, which require more data outside urban areas.  相似文献   

7.
In this work, the influence of South Asian biomass burning emissions on O3 and PM2.5 concentrations over the Tibetan Plateau (TP) is investigated by using the regional climate chemistry transport model WRF-Chem. The simulation is validated by comparing meteorological fields and pollutant concentrations against in situ observations and gridded datasets, providing a clear perspective on the spatiotemporal variations of O3 and PM2.5 concentrations across the Indian subcontinent, including the Tibetan Plateau. Further sensitivity simulations and analyses show that emissions from South Asian biomass burning mainly affect local O3 concentrations. For example, contribution ratios were up to 20% in the Indo-Gangetic Plain during the pre-monsoon season but below 1% over the TP throughout the year 2016. In contrast, South Asian biomass burning emissions contributed more than 60% of PM2.5 concentration over the TP during the pre-monsoon season via significant contribution of primary PM2.5 components (black carbon and organic carbon) in western India that were lofted to the TP by westerly winds. Therefore, it is suggested that cutting emissions from South Asian biomass burning is necessary to alleviate aerosol pollution over the TP, especially during the pre-monsoon season.  相似文献   

8.
Haze-fog conditions over northern India are associated with visibility degradation and severe attenuation of solar radiation by airborne particles with various chemical compositions. PM2.5 samples have been collected in Delhi, India from December 2011 to November 2012 and analyzed for carbonaceous and inorganic species. PM10 measurements were made simultaneously such that PM10–2.5 could be estimated by difference. This study analyzes the temporal variation of PM2.5 and carbonaceous particles (CP), focusing on identification of the primary and secondary aerosol emissions, estimations of light extinction coefficient (bext) and the contributions by the major PM2.5 chemical components. The annual mean concentrations of PM2.5, organic carbon (OC), elemental carbon (EC) and PM10–2.5 were found to be 153.6 ± 59.8, 33.5 ± 15.9, 6.9 ± 3.9 and 91.1 ± 99.9 μg m?3, respectively. Total CP, secondary organic aerosols and major anions (e.g., SO4 2? and NO3 ?) maximize during the post-monsoon and winter due to fossil fuel combustion and biomass burning. PM10–2.5 is more abundant during the pre-monsoon and post-monsoon. The OC/EC varies from 2.45 to 9.26 (mean of 5.18 ± 1.47), indicating the influence of multiple combustion sources. The bext exhibits highest values (910 ± 280 and 1221 ± 371 Mm?1) in post-monsoon and winter and lowest in monsoon (363 ± 110 and 457 ± 133 Mm?1) as estimated via the original and revised IMPROVE algorithms, respectively. Organic matter (OM =1.6 × OC) accounts for ~39 % and ~48 % of the bext, followed by (NH4)2SO4 (~21 % and ~24 %) and EC (~13 % and ~10 %), according to the original and revised algorithms, respectively. The bext estimates via the two IMPROVE versions are highly correlated (R2 = 0.95, root mean square error = 38 % and mean bias error = 28 %) and are strongly related to visibility impairment (r = ?0.72), mostly associated with anthropogenic rather than natural PM contributions. Therefore, reduction of CP and precursor gas emissions represents an urgent opportunity for air quality improvement across Delhi.  相似文献   

9.
California Governor’s Executive Order (CGEO) S-3-05 requires that California greenhouse gas (GHG) emissions be reduced to 80 % below 1990 levels by the year 2050. Meeting this target will require drastic changes in transportation technology, fuel, and behavior which will reduce criteria pollutant emissions as well as GHG emissions. The improvement to local air quality caused by the reduced criteria pollutant emissions must be calculated to fully evaluate the overall benefits and costs of CGEO S-3-05. In the present study, seven different transportation scenarios that move towards the goals of CGEO S-3-05 in the transportation sector were examined to determine how they would affect future airborne particulate matter (PM2.5) concentrations in California: (1) hydrogen fuel cells, (2) electric vehicles, (3) high efficiency vehicles, (4) public mass transit, (5) biofuels, (6) biofuels + hybrid electric vehicles, and (7) hydrogen fuel cells + electric vehicles. The air quality implications of each scenario were evaluated using a chemical transport model applied during a wintertime stagnation episode representing future climate in California. Scenarios (6) and (7) reduced population-weighted PM2.5 mass concentrations by ~9 % and PM2.5 elemental carbon (EC) concentrations by ~30 % relative to base-case predictions.  相似文献   

10.
Particulate air pollution is associated with adverse health effects to the population exposed. The aim of this paper is the identification of local and regional sources, affecting PM10 and PM2.5 levels in four large cities of southern Europe, namely: Lisbon, Madrid, Marseille, and Rome. Air pollution data from seven sampling sites of the European Union network were used. These stations were selected due to their ability of monitoring PM2.5 concentrations and providing reliable series of data. Each station’s background was also taken into account. Pearson correlation coefficients and primal component analysis components were extracted separately for cold and warm periods in order to define the relationships among particle matters (PMs) and gaseous pollutants (CO, NO2, SO2, and O3) and evaluate the contributions of local sources. Possible seasonal variations of PM2.5/PM10 ratio daily values were also used as markers of PM sources, influencing particulate size distribution. Particle emissions were primarily attributed to traffic and secondarily to natural sources. Minimum daily values of PM2.5/PM10 ratio were observed during warm periods, particularly at suburban stations with rural background, due to dust resuspension and also due to the increase of biogenic coarse PM (pollen, dust, etc.). Hybrid Single-Particle Lagrangian Integrated Trajectory Model trajectory model was used in order to compute the 4-day backward trajectories of the air masses that affected the four cities which are under study during days with recorded PM10 exceedances, within a 5-year period (2003–2007), at 300, 750, and 1,500 m above ground level (AGL). The trajectories were then divided to clusters with a K-means analysis. In all four cities, the influence of slow-moving air masses was associated with a large fraction of PM10 exceedances and with high average and maximum daily mean PM10 concentrations, principally at the 300 m AGL analysis. As far the issue of the increased PM10 concentrations, the results were weaker in Marseille and particularly in Rome, probably due to their greater distance from Northwest Africa, in comparison to Madrid and Lisbon. Dust intrusions from the Sahara desert and transportation of Mediterranean/Atlantic sea spray, were characterized as primary regional sources of exogenous PM10 in all four cities. Continental trajectories from the industrialized northern Italy affected PM10 levels particularly in Marseille and Rome, due to their more eastern geographical position.  相似文献   

11.
Climate change has been receiving wide attention in the last few decades. In order to quantify the climate variability of extreme weather events and their possible impacts on weather parameters and air quality, cold surge events in the past 45 years and the difference in characteristics of air pollutants before and after frontal passage has been examined after December 1993 in Taiwan. The potential impact of climate change on air pollutant concentration and its health implication were presented and discussed. In the past 45 years, the cold surge days (about 18.7 days, or 0.42 day/year) decreased significantly and the average lowest daily temperature for winter in northern Taiwan increased nearly 3°C (0.067°C/year). Based on the definition of cold surge in Taiwan and excluding the stagnation frontal passage, 21 cold surge frontal passage (CSFP) cases and 89 common frontal passage (CFP) events in winter (December–February) were identified in the past 12 years (1993–2005). We take the frontal passage day as the baseline and the differences in air pollutant concentrations and weather-related parameters between the two days before and after the frontal passage days were examined for each case. The averages of the above-mentioned differences during CSFP were compared to the corresponding differences during CFP. During CSFP, the air temperatures after the frontal passage were nearly 4–6°C lower than before the passage at both the background windward stations and urban stations. The average wind speed was about 4–5 m/s higher at the windward stations and less than 2 m/s higher in the major urban areas in Taiwan. During CFP, there was a 2°C increase in temperature but 1 m/s decrease in wind speeds on the day after frontal passage. Because of these meteorological differences, the concentration change of air pollutants during CSFP is significantly greater than that during CFP, especially for PM10 concentration. The difference of PM10 concentration during CSFP can be as large as 20–40 μg/m3 while that during CFP is only about 10 μg/m3. The differences in the other air pollutants such as CO, SO2, and O3 during CSFP are greater than those during CFP, but the difference is insignificant. Under the warming trend, less frequent CSFP’s are expected; the impacts on deterioration of air quality and human health are noteworthy.  相似文献   

12.
基于国家生态环境部发布的环境空气质量监测数据等资料,采取调查研究与量化分析相结合的方法,对关中地区西安、渭南、咸阳、铜川、宝鸡5市空气质量的总体特征和空间差异进行研究.结果表明:颗粒污染物普遍严重超标,其中PM2.5和PM10分别超标91%和77%;空气污染具有明显的季节性,冬季的首要污染物是PM2.5和PM10,夏季的主要污染物是O3;关中空气污染受地形、气象条件和工业排放、采暖、施工、道路扬尘、汽车尾气等人类活动综合影响,大气污染具有相似性,同时表现出一定的差异性.  相似文献   

13.
对防城港市影响最大的首要空气污染物为PM2.5和O3,空气污染日主要集中在秋冬季。空气污染按500 hPa环流形势可分为西北气流型、偏西气流型及西南气流型;按地面气压场可分为冷高压脊型、均压型、高压后部低压前部型。在无境外输入的情况下,PM2.5产生在风速小、气温较低、能见度小、湿度较大并且无降雨或降雨不明显的天气环境里,而O3产生在高温、低湿、日照充足、风速较大和能见度好的天气环境里。在垂直运动方面,中低层的下沉气流利于空气污染物累积。在温度层结分布方面,700~850 hPa的低层存在的逆温层对PM2.5浓度增加非常重要,近地面的逆温层对PM2.5浓度增加的作用要比低层弱,而近地面的逆温层对O3浓度的增加非常重要,但是低层的逆温却不重要。  相似文献   

14.
We used simultaneous measurements of surface PM2.5 concentration and vertical profiles of aerosol concentration, temperature, and humidity, together with regional air quality model simulations, to study an episode of aerosol pollution in Beijing from 15 to 19 November 2016. The potential effects of easterly and southerly winds on the surface concentrations and vertical profiles of the PM2.5 pollution were investigated. Favorable easterly winds produced strong upward motion and were able to transport the PM2.5 pollution at the surface to the upper levels of the atmosphere. The amount of surface PM2.5 pollution transported by the easterly winds was determined by the strength and height of the upward motion produced by the easterly winds and the initial height of the upward wind. A greater amount of PM2.5 pollution was transported to upper levels of the atmosphere by upward winds with a lower initial height. The pollutants were diluted by easterly winds from clean ocean air masses. The inversion layer was destroyed by the easterly winds and the surface pollutants and warm air masses were then lifted to the upper levels of the atmosphere, where they re-established a multi-layer inversion. This region of inversion was strengthened by the southerly winds, increasing the severity of pollution. A vortex was produced by southerly winds that led to the convergence of air along the Taihang Mountains. Pollutants were transported from southern–central Hebei Province to Beijing in the boundary layer. Warm advection associated with the southerly winds intensified the inversion produced by the easterly winds and a more stable boundary layer was formed. The layer with high PM2.5 concentration became dee-per with persistent southerly winds of a certain depth. The polluted air masses then rose over the northern Taihang Mountains to the northern mountainous regions of Hebei Province.  相似文献   

15.
This study investigates atmospheric conditions’ influence on the mean and extreme characteristics of PM10 concentrations in Poznań during the period 2006–2013. A correlation analysis was carried out to identify the most important meteorological variables influencing the seasonal dynamics of PM10 concentrations. The highest absolute correlation values were obtained for planetary boundary layer height (r = ?0.57), thermal (daily minimum air temperature: r = ?0.51), anemological (average daily wind speed: r = ?0.37), and pluvial (precipitation occurrence: r = ?0.36) conditions, however the highest correlations were observed for temporal autocorrelations (1 day lag: r = 0.70). As regulated by law, extreme events were identified on the basis of daily threshold value i.e. 50 μg m?3. On average, annually there are approximately 71.3 days anywhere in the city when the threshold value is exceeded, 46.6 % of those occur in winter. Additionally, 83.7 % of these cases have been found to be continuous episodes of a few days, with the longest one persisting for 22 days. The analysis of the macro-scale circulation patterns led to the identification of an easy-to-perceive seasonal relations between atmospheric fields that favour the occurrence of high PM10 concentration, as well as synoptic situations contributing to the rapid air quality improvement. The highest PM10 concentrations are a clear reaction to a decrease in air temperature by over 3 °C, with simultaneous lowering of PBL height, mean wind speed (by around 1 m s?1) and changing dominant wind directions from western to eastern sectors. In most cases, such a situation is related to the expansion of a high pressure system over eastern Europe and weakening of the Icelandic Low. Usually, air quality conditions improve along with an intensification of westerlies associated with the occurrence of low pressure systems over western and central Europe. Opposite relations are distinguishable in summer, when air quality deterioration is related to the inflow of tropical air masses originating over the Sahara desert.  相似文献   

16.
In recent years, China has implemented several measures to improve air quality. The Beijing-Tianjin-Hebei(BTH)region is one area that has suffered from the most serious air pollution in China and has undergone huge changes in air quality in the past few years. How to scientifically assess these change processes remain the key issue in further improving the air quality over this region in the future. To evaluate the changes in major air pollutant emissions over this region, this paper employs ens...  相似文献   

17.
气溶胶辐射效应在华东地区一次雾霾过程中的作用   总被引:3,自引:1,他引:2  
张悦  樊曙先  李皓  康博识 《气象学报》2016,74(3):465-478
利用WRF/Chem(Weather Research and Forecasting Model coupled with Chemistry)模拟了2013年12月华东地区一次雾、霾事件气溶胶辐射反馈效应对气象场和大气质量的影响。通过3个不同气溶胶浓度设置的试验区分气溶胶浓度不同辐射效应的影响。比较不同试验得出,本次雾、霾过程中,不论是气溶胶直接、半直接辐射效应还是间接效应均使污染地区短波辐射减少、2 m气温下降、大气边界层高度降低,不利于水汽与污染物的扩散,空气污染进一步加重,雾结构进一步稳定,并使雾的持续时间延长,发展高度更高;对于化学场来说,气溶胶直接、半直接辐射效应使污染地区PM_(2.5)浓度增大、消光系数增大、氮氧化物浓度增大,臭氧浓度降低;间接辐射效应使PM_(2.5)浓度和消光系数进一步增大,氮氧化物、臭氧浓度降低。综上所述,气溶胶辐射效应能使大气污染加重,并利于雾的发生、发展。  相似文献   

18.
Economically consistent long-term scenarios for air pollutant emissions   总被引:1,自引:0,他引:1  
Pollutant emissions such as aerosols and tropospheric ozone precursors substantially influence climate. While future century-scale scenarios for these emissions have become more realistic through the inclusion of emission controls, they still potentially lack consistency between surface pollutant concentrations and regional levels of affluence. We find that the default method of scenario construction, whereby emissions factors converge to similar values in different regions, does not yield pollution concentrations consistent with historical experience. We demonstrate a methodology combining use of an integrated assessment model and a three-dimensional atmospheric chemical transport model, whereby a reference scenario is constructed by requiring consistent surface pollutant concentrations as a function of regional income over the 21st century. By adjusting air pollutant emission control parameters, we improve consistency between projected PM2.5 and economic income among world regions through time; consistency for ozone is also improved but is more difficult to achieve because of the strong influence of upwind world regions. Reference case pollutant emissions described here were used to construct the RCP4.5 Representative Concentration Pathway climate policy scenario.  相似文献   

19.
To investigate the interannual variations of particulate matter (PM) pollution in winter, this paper examines the pollution characteristics of PM with aerodynamic diameters of less than 2.5 and 10 μm (i.e., PM2.5 and PM10), and their relationship to meteorological conditions over the Beijing municipality, Tianjin municipality, and Hebei Province—an area called Jing–Jin–Ji (JJJ, hereinafter)—in December 2013–16. The meteorological conditions during this period are also analyzed. The regional average concentrations of PM2.5 (PM10) over the JJJ area during this period were 148.6 (236.4), 100.1 (166.4), 140.5 (204.5), and 141.7 (203.1) μg m–3, respectively. The high occurrence frequencies of cold air outbreaks, a strong Siberian high, high wind speeds and boundary layer height, and low temperature and relative humidity, were direct meteorological causes of the low PM concentration in December 2014. A combined analysis of PM pollution and meteorological conditions implied that control measures have resulted in an effective improvement in air quality. Using the same emissions inventory in December 2013–16, a modeling analysis showed emissions of PM2.5 to decrease by 12.7%, 8.6%, and 8.3% in December 2014, 2015, and 2016, respectively, each compared with the previous year, over the JJJ area.  相似文献   

20.
大气质量的周循环特征反映了人类周期性的活动规律对大气环境的影响。基于安徽省16个城市PM_(2.5)、PM_(10)、CO、NO_2、SO_2和O_3这6种污染物的监测结果,对安徽省大气污染的周循环特征进行了评估。首先基于原始逐小时污染物浓度时间序列在日和周窗口时间宽度上的滑动平均序列,定义了周循环距平百分率序列的计算方法,排除了日循环和长期低频变化的影响。以此为基础,基于合成分析以及贝叶斯统计分析,发现这6种大气污染物中,PM_(2.5)、PM_(10)、CO和NO_2有着较为明显的周循环变化特征,其周循环距平百分率有着较大的变幅;而O_3的周循环特征相对不明显。主成分分析获得的周循环,第1模态发现除O_3以外的其他5种污染物的周循环有着同样的演进模式,即从周三开始持续到周五的累积和周六之后的衰减;O_3的周循环峰值与谷值与其他污染物存在着大于12 h的滞后,反映了在周循环尺度上O_3距平变化对其光化学反应前体距平变化的滞后响应特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号