首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The direction of Na, K, Ca, Mg, and Fe transfer was determined in the granite-chloride solution system during the metasomatic replacement of granite in response to a temperature and pressure change. The analysis of modeled metasomatic zoning (metasomatic columns) indicates that metasomatic processes of alkaline/acidic and basification/debasification types are controlled by differences in the chemical potentials of components in the solution and rock and by the addition/removal of material due to its excess/deficit in the solution. The former are manifested in the mineralogy of the rear zones of metasomatic columns, while the latter control the total variations in the contents of components in all zones. One of the consequences of this difference is the occurrence of extrema in the distribution of components in zones. Information on the chemical composition of rocks in any given zone does not provide a clue to either the character of the metasomatic processes or the proportions of component concentrations in the solution. In contrast to isobaric-isothermal columns, their thermogradient analogues are characterized by the continuous replacement of minerals and mass transfer in all zones. This predetermines the possibility of the identification of the gradient character of certain columns.  相似文献   

2.
Metasomatic reaction zones which developed at marble-pelitic schist contacts in a granulite facies terrane in West Greenland contain a consistent sequence of five mineralogical zones. Outward from the carbonates the zones are characterized by the assemblages grossular-diopside-meionite (I), meionite-anorthite-diopside (II), anorthite-diopside-edenitic hornblende (III), anorthite-enstatite (IV), plagioclase-almandine-sillimanite (V). Sphene is superceded by ilmenite between zones (II) and (III); quartz is present in all zones except zone I. Scapolite, plagioclase, clinopyroxene and mica exhibit a small degree of compositional variation which correlates with distance from the carbonate. These small compositional variations are superimposed on a strong CaO chemical potential gradient. Compositional features, zone distributions and CaO activity calculations demonstrate that the zones developed in response to CaO diffusion along a chemical potential gradient of 2 kcal/m. The CaO source appears to be carbonate rocks which release calcium as decarbonation reactions proceed. The maximum volume of CO2 released in this process, and that released during discontinuous reactions in the marbles, will contribute a total volume of CO2 approximately equivalent to the volume of carbonate in the rock. Calculations demonstrate that a terrane consisting of as little as 8% carbonate will release sufficient CO2 to result in complete dehydration of an amphibolite terrane, at deep crustal conditions. Dehydration through CO2 release will be accomplished either through rapid burial, which would prevent both equilibration of mineral assemblages and CO2 release at intermediate crustal levels, or through diffusion-driven metasomatic reactions which would lead to CO2 release primarily at the high temperatures of deep crustal environments. The latter process would be the dominant CO2 source at deep crustal levels if carbonate rocks occur predominately as relatively thin layers.  相似文献   

3.
Jadeitite is a rare constituent of serpentinite-matrix mélange bodies from certain subduction complexes. Most jadeitite crystallizes from Na-, Al-, and Si-bearing fluids that are apparently derived from multiple subduction-zone sources. Even though jadeitite is near-end-member NaAlSi2O6 in major element composition and is volumetrically minor in subduction complexes, its trace elements and stable isotopes appear to record fluid compositions not directly seen in other subduction zone metasomatic systems.

Prior to our work, how jadeitite-forming fluids interact with serpentinite host rocks and serpentinizing fluids were largely unknown, because serpentinite-to-jadeitite contacts are generally not exposed. In the Sierra de las Minas, Guatemala, we have studied a 3 m-wide pit transecting the contact between a mined-out jadeitite body and its host serpentinite. An apparent transition zone between the former jadeitite and nearby serpentinite exposed in the mine pit contains four texturally distinct rock types of differing outcrop colours, composed of albitites and meta-ultramafic rocks. (The jadeitite body is now represented only by a large spoil pile.) Seven samples from the contact zone, jadeitite from the spoil pile, a serpentinite outcrop approximately 1 m outside the pit, and a jadeitite nodule within the contact zone albitite were analysed for major, minor, and trace elements.

Abundances of Al2O3, Na2O, MgO, FeO, Cr, Ni, and Sc track the contact between sheared albitite and foliated meta-ultramafic rocks. These elements change from values typical of Guatemalan jadeitites in the jadeitite block and albitites in the contact zone to values for Guatemalan meta-ultramafic rocks and serpentinites across the contact zone. In addition, the abundances of SiO2, CaO, Fe2O3, K2O, Rb, Cs, and Y show important features. Of greatest interest, perhaps, approximately 15 cm from the contact with meta-ultramafic rock, Zr, U, Hf, Pb, Ba, Sr, Y, and Cs in albitite are greatly enriched compared to elsewhere in the contact zone. Element enrichments spatially coincide with the appearance, increase in modal abundance, and/or increase in grain sizes of zircon, rare earth element (REE) rich epidote, titantite, and celsian within albitite. All of these ‘trace-element-rich’ accessory minerals show poikiloblastic inclusions of albite, which suggests that they grew concomitantly in the metasomatic zone.

Graphical and computational methods of evaluating mass changes of metasomatites relative to likely protoliths show that, near the contact, fewer minor and trace elements in albitite show 1:1 coordination with presumed protoliths. Most metasomatitites are enriched in large-ion lithophile elements (LILE) and heat-producing elements (HPE) relative to likely protoliths. Albitite near the contact with meta-ultramafic rocks also shows ultramafic components. Except for a Ca-rich actinolite schist zone, the meta-ultramafic rocks are depleted in LILE and HPE relative to serpentinite; host serpentinite is itself under-abundant in these elements relative to average upper mantle or chondrite.

In summary, the metasomatic zone shows more evidence for the introduction of components to albitite and actinolitic meta-ultramafic rock than it does for exchange of protolith components between jadeitite and serpentinite. The fluid that presumably formed the metasomatites was sufficiently rich in LILE and high-field-strength elements (HFSE) to both saturate and grow minerals in which Zr, Ba, and Ti are essential structural constituents and/or HFSE, LILE, and HPE minor to moderate substituents. These geochemically diverse element groups were fixed in albitite via the crystallization and growth of new accessory minerals within these rocks during albititization. The amount of LILE and HPE-depleted meta-ultramafic rock appears to be too small to call upon a local source for the LILE and HPE-enrichment seen in albitites. Therefore, LILE and HPE must be of exotic origin, carried and deposited by fluids within the albitites at the jadeitite-serpentinite contact. This contact clearly testifies to an alteration style that involved crystallization of ‘trace-element’-rich minerals during fluid flow; this process appears to be essential to mass transfer within subduction zones.  相似文献   

4.
The mineralogy of a metasomatic sequence formed between ultramafic and quartzofeldspathic protoliths from the Southern Alps of New Zealand consists of a forsterite-antigorite core surrounded concentrically by zones of antigorite-magnesite, magnesite-talc, talc, tremolite, chlorite and muscovite with discontinuous pods of albite associated with the muscovite zone. On the basis of trace element data the original ultramafite-schist contact is positioned between the present tremolite and chlorite zones.An experimental study of a metasomatic system was undertaken in an attempt to clarify diffusion relationships during the metasomatic event. To simulate the natural event, ultramafic and quartzofeldspathic natural starting materials were tightly packed in a gold tube with a graphite layer between to allow later identification of the original lithological interface. Run conditions were 450° C at 2 kb for 40 days. Phase dissolution and formation were analysed petrographically and component migration was examined with the electron-microprobe. The following hierarchical scheme of component migration, phase dissolution and phase formation is delineated: CO2 migrates from the schist into the ultramafite forming first the antigorite-magnesite zone and then the magnesite-talc zone at higher values of CO2. These zones are then partially overprinted by the formation of talc due to SiO2 metasomatism. The SiO2 is supplied from the schist by the dissolution of quartz and albite in the region adjacent to the ultramafite. The tremolite zone forms at the expense of the metasomatic talc zone upon the introduction of CaO from the schist into the ultramafite. Concurrent with tremolite formation, MgO migrates from the ultramafite into the schist to form the chlorite metasomatic zone. The growth of the chlorite zone causes dissolution of the pre-metasomatic micas and displaces K2O from the chlorite zone further into the schist. Displaced K2O and Na2O are responsible for the formation of the muscovite zone and the albitite pods.  相似文献   

5.
The geology and genesis of a large high-grade silica deposit is considered. It occurs in the form of a quartzite layer, 20–50 m thick, extending for 8 km in conformity with the host Upper Proterozoic silicate-carbonate metasedimentary rocks. The average content of SiO2 is 99.2%. It has been established that quartzite was formed by metasomatic silicification of sandstone during metamorphism of the carbonate-silicate sequence. The rocks were silicified by infiltration acid leaching, whereas long-term refinement of quartzite was provided by diffusion in finely dispersed capillary-porous systems, where the energy of the solution-solid phase interface was important. In the course of metasomatic migration of components, Au, Ag, Pb, Zn, Fe, and other elements were removed from quartzite and formed gold-sulfide mineralization in contact zones of the quartzite body. This opens up opportunities for discovering economic Au-Ag and Pb-Zn ores in the ore field.  相似文献   

6.
‘Sakenites’ constitute a unique association of corundum‐, spinel‐ and sapphirine‐bearing anorthitic to phlogopitic rocks, first described in rocks from an exposure along the beds of the Sakena river to the NW of Ihosy, south Madagascar. The exposure has been revisited and subjected to a detailed petrological and geochemical study. The aluminous anorthitic rocks occur as boudinaged bands and lenses, closely associated with corundum‐, spinel‐ and sapphirine‐bearing phlogopitites, diverse calcsilicate rocks and marbles within a series of biotite‐sillimanite‐cordierite gneisses of the Ihosy granulite unit in the NW of the Pan‐African Bongolava‐Ranotsara shear zone. Bimineralic anorthite + corundum domains preserve the earliest record of a polyphasic evolutionary history that includes two distinct metasomatic episodes. Probable protoliths of these bimineralic rocks were kaolinite‐rich sediments or calcareous bauxites that were altered by Ca or Si infiltration‐metasomatism prior to or coeval with the development of the anorthite‐corundum assemblage. P–T pseudosection modelling of metapelitic gneisses suggests peak‐conditions around 800 °C and 6–7 kbar for the regional high‐grade metamorphism and deformation in the NW part of the Bongolava‐Ranotsara shear zone. The well‐annealed granoblastic‐polygonal textures indicate complete chemical and textural re‐equilibration of the foliated bimineralic rocks during this event. Subsequently, at somewhat lower P–T conditions (750–700 °C, 6 kbar), the influx of Mg‐, Si‐ and K‐bearing fluids into the anorthite‐corundum rocks caused significant metasomatic changes. In zones infiltrated by ‘primary’ potassic fluids, the bimineralic assemblage was completely replaced by phlogopite and Mg‐Al minerals, thereby producing corundum‐, spinel‐ and sapphirine‐bearing phlogopitites. Further advance of the resulting ‘residual’ Mg‐ and Si‐bearing fluids into anorthite‐corundum domains led to partial to complete replacement of corundum porphyroblasts by spinel, spinel + sapphirine or sapphirine, depending on the activities of the solutes. The static textures developed during this second metasomatic episode suggest fluid influx subsequent to intense ductile deformation in the Bongolava‐Ranotsara ductile shear zone c. 530–500 Ma ago.  相似文献   

7.
Lateritic Ni ore mined in the Rio Tuba Mine, Philippines, derived from ultramafic rock by tropical intense weathering, is generally composed of two accumulated zones, an upper laterite zone and a lower saprolite zone. These two zones are very different in appearance, mineral assemblage, chemical composition, and in other ways. A transitional zone may be seen between the upper and lower zones, but it does not develop to any appreciable thickness. Although serpentine and goethite are still predominant in the constituent minerals, other clay minerals are increasing.

The transitional zone may be subdivided into three groups based on chemical composition. The behaviour of the chemical composition in this horizon indicates a complicated process of component transportation under the weathering process.

In the ore, chemical components are closely related in particle size of constituent minerals. In the laterite - transitional - saprolite sequence, a common variation range and tendency in chemical composition for each particle size can be seen. However, taking samples with the same particle size the chemical composition obviously differed, representing the characteristics of the components for each zone.

Concerning the correlation coefficient of the chemical components of each zone, a somewhat different inter-component relationship can be seen in these zones. These differences of correlation suggest the different complicated lateritized conditions under which they are formed.  相似文献   


8.
The geologic position, development stages, age, and geochemical features of metasomatic and felsic igneous rocks along the southern edge of the Siberian craton are compared. The comparison shows that all the studied metasomatic rocks are confined to the faults feathering the main suture zone of the craton. From Biryusa zone in the southwest and farther northeast, from Primor’e zone to Davan shear zone and Katugino-Ayan zone in the Aldan area, the metasomatic rocks are of similar composition but show higher mineralization. The process begins with blastocataclasis (barren stage). During the second stage, ore-bearing (Nb, Zr, Hf, and REE) potassic solutions circulate along the blastocataclastic zones. They form metasomatic potassic rocks of the early alkaline stage, expressed in subalkaline granitization. The next (acid) stage is marked by the formation of greisens with Sn, Be, Th, U, and W mineralization. The igneous stage might precede or follow the metasomatism. At the time of ongoing tectonic movements, it produces rapakivi-like granites rich in the same elements. Also, a huge volcanoplutonic belt develops along the craton edge during this time. The geochemical features of its felsic volcanics are close to those of the metasomatic rocks and granites. The age of all these rocks is within 2.1-1.6 Ga.  相似文献   

9.
Discordant andalusite-biotite-quartz-bearing veins occur in the contact aureole of the Vedrette di Ries pluton (Italian Eastern Alps), never outside the area of contact metamorphic andalusite development. Andalusite veins are found only within andalusite-bearing hornfelses, and vein biotite occurs wherever host-rock garnet is partially replaced by biotite. Veins formed during contact metamorphism, synchronously with the crystallization of andalusite and biotite within host rocks. Their pegmatitic structure and their orientation suggest that vein parageneses crystallized within fluid-filled cavities that opened by hydraulic fracturing. A mechanism of synmetamorphic veining is proposed to explain rock failure and subsequent mineral deposition within veins. During hydrofracturing induced by dehydration reactions in response to heating in the aureole, fissures were immediately filled with locally derived fluids. The lack of large-scale flux, together with high fluid pressures required by hydrofracturing, suggest fluid in the cavities was a virtually stagnant, passive medium, and that mass-transport toward fractures was driven by intergranular diffusion. Because temperature and Pf values within veins are similar to those in the host rock, vein assemblages are interpreted as the stable, high-T side of reactions taking place within pelitic schists, at the time when fractures opened. Once nucleation of product phases occurred, chemical components released by dissolution of reactant minerals were driven to precipitation sites by chemical potential gradients. Since nucleation was favoured at the strained grains of vein walls, andalusite and biotite simultaneously grew in vein and host rock. The proposed genetic model contrasts with generally adopted metasomatic mechanisms for the genesis of Al2SiO5-bearing veins, in not requiring large fluid/rock ratios or a highly ‘aggressive’ fluid composition. The mechanism of synmetamorphic veining may be particularly useful in the interpretation of vein occurrences in medium- and deep-crustal rocks which have undergone extensive devolatilization.  相似文献   

10.
南岭中段锡矿主要类型及找矿方向   总被引:7,自引:1,他引:6  
南岭中段锡矿床的成因类型主要有五种:蚀变花岗岩型、斑岩型、云英岩型、热液充填型、热液交代型和接触交代型.成矿作用主要发生于燕山期,与同期花岗岩浆的侵位密切相关,矿化主要集中于成矿花岗岩体的内外接触带.其中,骑田岭、九嶷山、姑婆山、都庞岭等巨型复式花岗岩基分布区具良好的找矿前景.  相似文献   

11.
Pb-Zn-Ag-bearing M anganoan Skarns of China   总被引:2,自引:0,他引:2  
Manganoan skarns consist of special Mn (Ca, Mg, Fe, Al) silicate metasomatic minerals and are usually associated with Pb-Zn(Ag) mineralization. They occur chiefly along the lithologic contacts or faults and fractures of carbonate wall rocks distal from the intrusive contact zone, and are combined with Fe, Cu, W, Sn and Cu-bearing calcic or magnesian skarns occurring in the contact zones to constitute certain metasomatic zoning. Manganoan skarns are formed later than calcic or magnesian skarns. Their rock-forming temperatures are lower than those of calcic or magnesian skarns. The mineral assemblages of manganoan skarns occurring in different carbonate rocks (limestone or dolomite) are notably different.  相似文献   

12.
David C. Rubie 《Lithos》1982,15(2):99-109
Mass transfer estimates for metasomatic rocks are dependent on volume-change determinations and a knowledge of the original composition. In particular, such estimates are highly sensitive to uncertainties in the original rock composition. A volume-change model is derived for Kisingiri fenites by considering textural evidence, the known transfer of SiO2 to the crystallizing ijolite magma, the immobility of Al in low grade fenites, the effect of the stress field around an intrusion, and by considering major element ‘ion content’ concentration gradients across the fenites for various degrees of volume change. The model suggests volume decreases of up to 20% in a zone adjacent to the intrusions and approximately constant volume beyond this zone. Such volume decreases are explained by the removal of quartz by dissolution and diffusion into the crystallizing magma. Aluminium was almost immobile according to this model.  相似文献   

13.
Hydrogeological and climatic effect on chemical behavior of groundwater along a climatic gradient is studied along a river basin. ‘Semi-arid’ (500–800 mm of mean annual rainfall), ‘sub-humid’ (800–1,200 mm/year) and ‘humid’ (1,200–1,500 mm/year) are the climatic zones chosen along the granito-gneissic plains of Kabini basin in South India for the present analysis. Data on groundwater chemistry is initially checked for its quality using NICB ratio (<±5 %), EC versus TZ+ (~0.85 correlation), EC versus TDS and EC versus TH analysis. Groundwater in the three climatic zones is ‘hard’ to ‘very hard’ in terms of Ca–Mg hardness. Polluted wells are identified (>40 % of pollution) and eliminated for the characterization. Piper’s diagram with mean concentrations indicates the evolution of CaNaHCO3 (semi-arid) from CaHCO3 (humid zone) along the climatic gradient. Carbonates dominate other anions and strong acids exceeded weak acids in the region. Mule Hole SEW, an experimental watershed in sub-humid zone, is characterized initially using hydrogeochemistry and is observed to be a replica of entire sub-humid zone (with 25 wells). Extension of the studies for the entire basin (120 wells) showed a chemical gradient along the climatic gradient with sub-humid zone bridging semi-arid and humid zones. Ca/Na molar ratio varies by more than 100 times from semi-arid to humid zones. Semi-arid zone is more silicaceous than sub-humid while humid zone is more carbonaceous (Ca/Cl ~14). Along the climatic gradient, groundwater is undersaturated (humid), saturated (sub-humid) and slightly supersaturated (semi-arid) with calcite and dolomite. Concentration–depth profiles are in support of the geological stratification i.e., ~18 m of saprolite and ~25 m of fracture rock with parent gneiss beneath. All the wells are classified into four groups based on groundwater fluctuations and further into ‘deep’ and ‘shallow’ based on the depth to groundwater. Higher the fluctuations, larger is its impact on groundwater chemistry. Actual seasonal patterns are identified using ‘recharge–discharge’ concept based on rainfall intensity instead of traditional monsoon–non-monsoon concept. Non-pumped wells have low Na/Cl and Ca/Cl ratios in recharge period than in discharge period (Dilution). Few other wells, which are subjected to pumping, still exhibit dilution chemistry though water level fluctuations are high due to annual recharge. Other wells which do not receive sufficient rainfall and are constantly pumped showed high concentrations in recharge period rather than in discharge period (Anti-dilution). In summary, recharge–discharge concept demarcates the pumped wells from natural deep wells thus, characterizing the basin.  相似文献   

14.
Salt weathering is a crucial process that brings about a change in stone, from the scale of landscapes to stone outcrops and natural building stone façades. It is acknowledged that salt weathering is controlled by fluctuations in temperature and moisture, where repeated oscillations in these parameters can cause re-crystallisation, hydration/de-hydration of salts, bringing about stone surface loss in the form of, for example, granular disaggregation, scaling, and multiple flaking. However, this ‘traditional’ view of how salt weathering proceeds may need to be re-evaluated in the light of current and future climatic trends. Indeed, there is considerable scope for the investigation of consequences of climate change on geomorphological processes in general. Building on contemporary research on the ‘deep wetting’ of natural building stones, it is proposed that (as stone may be wetter for longer), ion diffusion may become a more prominent mechanism for the mixing of molecular constituents, and a shift in focus from physical damage to chemical change is suggested. Data from ion diffusion cell experiments are presented for three different sandstone types, demonstrating that salts may diffuse through porous stone relatively rapidly (in comparison to, for example, dense concrete). Pore water from stones undergoing diffusion experiments was extracted and analysed. Factors controlling ion diffusion relating to ‘time of wetness’ within stones are discussed, (continued saturation, connectivity of pores, mineralogy, behaviour of salts, sedimentary structure), and potential changes in system dynamics as a result of climate change are addressed. System inputs may change in terms of increased moisture input, translating into a greater depth of wetting front. Salts are likely to be ‘stored’ differently in stones, with salt being in solution for longer periods (during prolonged winter wetness). This has myriad implications in terms of the movement of ions by diffusion and the potential for chemical change in the stone (especially in more mobile constituents), leading to a weakening of the stone matrix/grain boundary cementing. The ‘output’ may be mobilisation and precipitation of elements leading to, for example, uneven cementing in the stone. This reduced strength of the stone, or compromised ability of the stone to absorb stress, is likely to make crystallisation a more efficacious mechanism of decay when it does occur. Thus, a delay in the onset of crystallisation while stonework is wet does not preclude exaggerated or accelerated material loss when it finally happens.  相似文献   

15.
河南栾川东鱼库钼(钨)矿床地质特征及找矿标志   总被引:1,自引:0,他引:1  
河南栾川东鱼库钼(钨)矿床是东秦岭—大别山钼成矿带新发现双大型矿床.该钼(钨)矿床空间分布受晚侏罗世花岗斑岩体控制,矿体赋存于东鱼库—竹园沟二长花岗岩复式岩体内外接触带——三川组及南泥湖组岩石经接触交代变质形成的矽卡岩和长英质角岩中,呈层状、似层状分布.长1400m,宽200~800m.钼矿体厚10.30~244.35...  相似文献   

16.
云南个旧锡矿床花岗岩接触带的交代现象   总被引:5,自引:0,他引:5  
赵一鸣  李大新 《地球学报》1987,9(2):237-252
我国个旧锡矿是闻名中外最大的锡矿床之一,矿床中除含锡外,还伴生铜、钴、锌、钨、铋、铍及稀有元素。矿化主要产于燕山期花岗岩接触带及其附近的三叠纪碳酸盐围岩中的交代岩。本文着重讨论含锡花岗岩接触带交代岩的类型。矿物组合、分带性、岩石化学特征及其与矿化的关系,把各类含矿交代建造作为一个有成团联系的统一体——交代系列来考虑。  相似文献   

17.
The development of vertical zoning of wall-rock metasomatic alteration is considered with the Mesozoic Strel’tsovka caldera as an example. This caldera hosts Russia’s largest uranium ore field. Metasomatic rocks with the participation of various phyllosilicates, carbonates, albite, and zeolites are widespread in the ore field. In the eastern block of the caldera, where the main uranium reserves are accommodated, hydromica metasomatic alteration gives way to beresitization with depth. Argillic alteration, which is typical of the western block, is replaced with hydromica and beresite alteration only at a significant depth. Postore argillic alteration is superposed on beresitized rocks in the lower part of the section. Two styles of vertical metasomatic zoning are caused by different modes of deformation in the western and eastern parts of the caldera. Variations of the most important petrophysical properties of host rocks—density, apparent porosity, velocities of P- and S-waves, dynamic Young’s modulus, and Poisson coefficient—have been determined by sonic testing of samples taken from different depths. It is suggested that downward migration of the brittle-ductile transition zone could have been a factor controlling facies diversity of metasomatic rocks. Such a migration was caused by a new phase of tectonothermal impact accompanied by an increase in the strain rate or by emplacement of a new portion of heated fluid. Transient subsidence of the brittle-ductile boundary increases the depth of the hydrodynamically open zone related to the Earth’s surface and accelerates percolation of cold meteoric water to a greater depth. As a result, the temperature of the hydrothermal solution falls down, increasing the vertical extent of argillic alteration. High-grade uranium mineralization is also localized more deeply than elsewhere.  相似文献   

18.

Restoration of fault displacements on a section through the Lunnon Shoot is made in accordance with the general importance, noted by others, of flexural slip and ductile flow in the growth of the Kambalda Anticline. Coupled with the interpretation here that ‘normal’ and ‘reverse’ faults at Kambalda may simply be opposite walls of the same dilated fracture (one movement instead of two) this restoration allows the prism of anomalous stratigraphic sequence confined by faults and hosting the ores to be interpreted structurally‐metamorphically (‐metasomatically) rather than magmatically. The movement picture may be synoptically described as ‘boudinage on radial fractures or axial‐plane cleavage’, the structure being close to that for which the term ‘boudinage’ was originally coined. A model is proposed whereby flattening and commensurate pullapart due to tangential longitudinal strain between the footwall Lunnon Basalt and the overlying Upper (ultramafic) Sequence is focused within the contact zone occupied by the Lower (ultramafic‐sediment) Sequence (the ore sequence). Sulfur‐halogen‐rich volatiles expressed from the shales and ductile interlayered ultramafics are mobilised intraformationally commensurate with flattening, and are juxtaposed in the gaps created as the sediment units are pulled apart over the tightening anticline (the ‘zones of missing sediments'—ore zones). A boudinage model that allows for the juxtaposition of ore constituents (sulfur‐halogen‐rich volatiles and silicate nickel) in the sites that are now ore, supports the view that metamorphism has been important in the formation of the orebody, and provides scope for interpreting the entire orebody as having been structurally‐metamorphically‐metasomatically emplaced. A boudinage model is arguably simpler than magmatic models, accounting not only for all the features supporting magmatic models but also for features that magmatic models cannot explain adequately. As the Lunnon Shoot is typical of Kambalda ores, and Kambalda is the type for stratiform ultramafic‐hosted nickel deposits in Archaean greenstone belts worldwide, the currently widely accepted magmatic model could usefully be reappraised.  相似文献   

19.
An approach is presented for the evaluation of groundwater potential using remote sensing, geographic information system, geoelectrical, and multi-criteria decision analysis techniques. The approach divides the available hydrologic and hydrogeologic data into two groups, exogenous (hydrologic) and endogenous (subsurface). A case study in Salboni Block, West Bengal (India), uses six thematic layers of exogenous parameters and four thematic layers of endogenous parameters. These thematic layers and their features were assigned suitable weights which were normalized by analytic hierarchy process and eigenvector techniques. The layers were then integrated using ArcGIS software to generate two groundwater potential maps. The hydrologic parameters-based groundwater potential zone map indicated that the ‘good’ groundwater potential zone covers 27.14% of the area, the ‘moderate’ zone 45.33%, and the ‘poor’ zone 27.53%. A comparison of this map with the groundwater potential map based on subsurface parameters revealed that the hydrologic parameters-based map accurately delineates groundwater potential zones in about 59% of the area, and hence it is dependable to a certain extent. More than 80% of the study area has moderate-to-poor groundwater potential, which necessitates efficient groundwater management for long-term water security. Overall, the integrated technique is useful for the assessment of groundwater resources at a basin or sub-basin scale.  相似文献   

20.
New data are discussed on the distribution of mercury in the host volcanosedimentary and igneous rocks, hydrothermal—metasomatic rocks, and all types of modern newly formed materials (hydrothermal clays, argillized soil—pyroclastic beds, siliceous and limonite—hematite covers, bottom sediments, salt ‘sweat-outs’ of various compositions, etc.) typical of the supergene zone of geothermal deposits. By the example of the Nizhne-Koshelevskii (vapor-dominated) and Pauzhetka (water-type) geothermal deposits and thermal fields of the Koshelevskii volcanic massif and Kambal’nyi volcanic range (southern Kamchatka), the role of mercury was illustrated as an indicator element of the temperature, phase state, and dynamics of hydrothermal systems; intensity of rock argillization; and relative age (maturity) of geothermal deposits and thermal anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号