首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The development and implementation of a hybrid discrete fracture network/equivalent porous medium (DFN/EPM) approach to groundwater flow at the Gyeong-Ju low- and intermediate-level radioactive waste (LILW) disposal site in the Republic of Korea is reported. The geometrical and hydrogeological properties of fractured zones, background fractures and rock matrix were derived from site characterization data and implemented as a DFN. Several DFN realizations, including the deterministic fractured zones and the stochastic background fractures, whose statistical properties were verified by comparison with in-situ fracture and hydraulic test data, were suggested, and they were then upscaled to continuums using a fracture tensor approach for site-scale flow simulations. The upscaled models were evaluated by comparison to in-situ pressure monitoring data, and then used to simulate post-closure hydrogeology for the LILW facility. Simulation results demonstrate the importance of careful characterization and implementation of fractured zones. The study highlighted the importance of reducing uncertainty regarding the properties and variability of natural background fractures, particularly in the immediate vicinity of repository emplacement.  相似文献   

2.
Estimating bedrock hydraulic conductivity of regional fractured aquifers is challenging due to a lack of aquifer testing data and the presence of small and large-scale heterogeneity. This study provides a novel approach for estimating the bedrock hydraulic conductivity of a regional-scale fractured bedrock aquifer using discrete fracture network (DFN) modeling. The methodology is tested in the mountainous Okanagan Basin, British Columbia, Canada. Discrete fractures were mapped in outcrops, and larger-scale fracture zones (corresponding to lineaments) were mapped from orthophotos and LANDSAT imagery. Outcrop fracture data were used to generate DFN models for estimating hydraulic conductivity for the fractured matrix (K m). The mountain block hydraulic conductivity (K mb) was estimated using larger-scale DFN models. Lineament properties were estimated by best fit parameters for a simulated pumping test influenced by a fracture zone. Unknown dip angles and directions for lineaments were estimated from the small-scale fracture sets. Simulated K m and K mb values range from 10–8 to 10–7?m/s and are greatest in a N–S direction, coinciding with the main strike direction of Okanagan Valley Fault Zone. K mb values also decrease away from the fault, consistent with the decrease in lineament density. Simulated hydraulic conductivity values compare well with those estimated from pumping tests.  相似文献   

3.
Large-scale geological features have been identified by satellite imagery and global positioning system data in the Wajid Sandstone in Saudi Arabia. The main objective is to evaluate the importance of fractures for the overall flow behaviour in this fractured rock aquifer and to estimate in-situ hydraulic apertures. Data on fractures and lineaments were available for three outcrops. By applying a “cut-out” routine on the fracture endpoint data of these fracture trace windows, three deterministic discrete fracture networks (DFN), with an area of 100 m?×?100 m, could be generated. These were used to simulate the fracture flow and to determine the hydraulic conductivity tensors. Using additional data on hydraulic pumping tests and matrix conductivities, in-situ hydraulic apertures could be determined. Average in-situ hydraulic apertures range from 1,300 to 1,700 µm. Observations from the field support these results. In addition, a hydraulic conductivity ratio between the matrix and fracture system was used to identify the contribution of the DFN to the overall fluid transport. A ratio of 10.4 was determined, which indicates that the effective flow behaviour in the Wajid Sandstone aquifer is not entirely dominated by the fracture system, though evidently strongly controlled by it.  相似文献   

4.
5.
Groundwater flow in fractured rocks is modeled using a coupled model based on the domain decomposition method. In the model, the fractured porous medium is divided into two non-overlapping sub-domains. One is the rock matrix, in which the medium is described using a continuum model. The other consists of deep fractures and fissure zones, where the medium is described using a discrete fracture network (DFN) model. The two models are coupled through the continuity of the hydraulic heads and fluxes on the common boundaries. The coupled model is used to simulate groundwater flow in a hydropower station. The results show that the model simulates groundwater levels that are in agreement with the measured groundwater levels. Furthermore, the model’s parameters relating to deep fractures and fissure zones are verified by comparing three different models (the continuum model, coupled model, and DFN model). The results show that the coupled model can capture and duplicate the hydrogeological conditions in the study domain, whereas the continuum model overestimates and the DFN model underestimates the measured hydraulic heads. A sensitivity analysis shows that fracture aperture has a considerable effect on the groundwater level. So, when the fracture aperture is large, the coupled model or DFN model is more appropriate than the continuum model in the fracture domain.  相似文献   

6.
基于离散裂隙网络模型的裂隙水渗流计算   总被引:1,自引:1,他引:0  
离散裂隙网络模型(Discrete Fracture Network(DFN))是研究裂隙水渗流最为有效的手段之一。文章根据裂隙几何参数和水力参数的统计分布,利用Monte Carlo随机模拟技术生成二维裂隙网络,基于图论无向图的邻接矩阵判断裂隙网络的连通,利用递归算法提取出裂隙网络的主干网或优势流路径。基于立方定律和渗流连续性方程,利用数值解析法建立了二维裂隙网络渗流模型,分析不同边界条件下裂隙网络中的流体流动。结果表明,该方法可以模拟区域宏观水力梯度和边界条件下,裂隙网络水力梯度方向总的流量,以及节点的水位、节点间的流量和流动方向的变化特征,为区域岩溶裂隙水渗流计算提供了一种实用、可行的方法。   相似文献   

7.
Two numerical simulation techniques have been used to identify a suitable method to assist in the characterization of DNAPL movement within fractured porous rock aquifers. Both MODFLOW and UTCHEM software modeling suites were used to simulate different scenarios in fracture dip and hydraulic conductivities. The complexity and the physical structure of fracture characterization were shown to have a significant effect on modeling results, to the extent that fracture zone should be characterized fully before simulation models are used for DNAPL simulations. Sensitivity analysis was conducted on both the hydraulic conductivity and fracture dip values. DNAPL movement in the subsurface showed a high sensitivity to fracture dip variation.  相似文献   

8.
The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1–10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40–60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at <300 m than the regional modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.  相似文献   

9.
It is not possible, using numerical methods, to model groundwater flow and transport in the fractured crystalline rock of northeastern Brazil. As an alternative, the usefulness of self-organizing map (SOM), k-means clustering, and Davies-Bouldin techniques to conceptualize the hydrogeology was evaluated. Also estimated was the well yield and groundwater quality across the Juá region. This process relies on relations in the underlying multivariate density function associated with a sparse local set of hydrogeologic (electrical conductivity, geology, temperature, and well yield) and a complete regional set of airborne geophysical (electromagnetic, magnetic, and radiometric) and satellite spectrometric measurements. Resampling of the regional well yield and electrical conductivity estimates provides sufficient resolution to construct variograms for stochastic modeling of the hydrogeologic variables. The combination of these stochastic maps provides a way to identify potential drilling targets for future groundwater development. The data-driven estimation approach, when applied to available airborne electromagnetic and water-well hydrogeologic measurements, provides a low-cost alternative to numerical groundwater flow modeling. In addition to fractured rock environments, the alternative modeling framework can provide spatial parameter estimates and associated variograms for constraints to improve the traditional calibration of equivalent groundwater-porous-media models.  相似文献   

10.
岩体裂隙系统渗流场与应力场耦合模型   总被引:15,自引:0,他引:15  
岩体系统具有复杂的结构。一般认为,岩体系统是非均质各向异性不连续的多相介质体系。当岩体以裂隙为主,且其分布较密集时,可将岩体系统看作等效连续多相介质体系。本文运用等效连续介质理论,提出了两种岩体裂隙系统渗流场与应力场耦合模型:一是以渗透水压力与隙变形关系、应力与渗透系统数关系为基础,建立渗透系数张量计算公式,进而建立等效效连续介质渗流为数学模型。以裂隙岩体应变张量分析为基础,建立裂隙岩体效应力张量  相似文献   

11.
离散裂隙渗流方法与裂隙化渗透介质建模   总被引:4,自引:1,他引:4  
流体渗流模拟的连续介质方法通常适用于多孔地质体,并不一定适用于裂隙岩体,由于裂隙分布及其特征与孔隙差异较大。若流体渗流主要受裂隙的控制,对于一定尺寸的裂隙岩体,多孔介质假设则较难刻划裂隙岩体的渗流特征。离散裂隙渗流方法不但可直接用于模拟裂隙岩体非均质性和各向异性等渗流特征,而且可用其确定所研究的裂隙岩体典型单元体及其水力传导(渗透)张量大小。主要讨论了以下问题:(1)饱和裂隙介质中一般的离散流体渗流模拟;(2)裂隙岩体中的REV(典型单元体)及其水力传导(渗透)张量的确定;(3)利用离散裂隙网络流体渗流模型研究裂隙方向几何参数对水力传导系数和REV的影响;(4)在二维和三维离散裂隙流体渗流模型中对区域大裂隙和局部小裂隙的处理方法。调查结果显示离散裂隙流体渗流数学模型可用来评价不同尺度上的裂隙岩体的水力特征,以及裂隙方向对裂隙化岩体的水力特征有着不可忽视的影响。同时,局部小裂隙、区域大裂隙应当区别对待,以便据其所起的作用及水力特征,建立裂隙化岩体相应的流体渗流模型。  相似文献   

12.
Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997–2006, followed by validation (2007–2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.  相似文献   

13.
14.
Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system.  相似文献   

15.
孙蓉琳  梁杏  靳孟贵 《岩土力学》2006,27(9):1490-1494
在金沙江溪洛渡水电站坝区玄武岩中,进行了3种水力试验,探讨玄武岩渗透性及其尺度效应。平硐渗水试验的试验尺度为1~2 m,渗透系数为10-4~101 m/d,非常离散;地下水示踪试验的尺度为70~145 m,渗透系数为10-0.5~100.5 m/d,非常集中;压水试验的试验尺度为4~7 m,渗透系数值10-2~100 m/d。试验结果显示渗透系数随着试验尺度的增加而增大,笔者认为产生尺度效应的原因在于非均质性。小尺度试验常作用在局部基质段或单条裂隙上,而大尺度试验常穿越几条大裂隙,所获得的渗透系数值要大于前者。在进行裂隙岩体地下水渗流研究时,针对不同尺度的研究对象,应选择不同尺度的野外水力试验来求取渗透系数。  相似文献   

16.
Summary This study investigates the changes in deformation and stress dependent hydraulic conductivities that occur as a result of underground mining in intact and fractured porous media. The intact porous medium is assumed to be comprised of regularly packed spherical grains of uniform size. The variation in grain size or pore space due to the effect of changing intergranular stresses results in a change in rock hydraulic conductivity. A model is developed to describe the sensitivity of hydraulic conductivity to effective stresses through Hertzian contact of spherical grains. The fractured porous medium is approximated as an equivalent fracture network in which a single fracture is idealized as a planar opening having a constant equivalent thickness or aperture. Changes in fracture aperture as a result of changes in elastic deformation control the variation of hydraulic conductivity. A model is presented to illustrate the coupling between strain and hydraulic conductivity. Subsidence induced deformations that result from mining induced changes in hydraulic conductivity in both intact and fractured media. These changes are examined and compared with results from a mining case study.  相似文献   

17.
Tong  Xin  Illman  Walter A.  Berg  Steven J.  Luo  Ning 《Hydrogeology Journal》2021,29(5):1979-1997

The sustainable management of groundwater resources is essential to municipalities worldwide due to increasing water demand. Planning for the optimized use of groundwater resources requires reliable estimation of hydraulic parameters such as hydraulic conductivity (K) and specific storage (Ss). However, estimation of hydraulic parameters can be difficult with dedicated pumping tests while municipal wells are in operation. In this study, the K and Ss of a highly heterogeneous, multi-aquifer/aquitard system are estimated through the inverse modeling of water-level data from observation wells collected during municipal well operations. In particular, four different geological models are calibrated by coupling HydroGeoSphere (HGS) with the parameter estimation code PEST. The joint analysis of water-level records resulting from fluctuating pumping and injection operations amounts to a hydraulic tomography (HT) analysis. The four geological models are well calibrated and yield reliable estimates that are consistent with previously studies. Overall, this research reveals that: (1) the HT analysis of municipal well records is feasible and yields reliable K and Ss estimates for individual geological units where drawdown records are available; (2) these estimates are obtained at the scale of intended use, unlike small-scale estimates typically obtained through other characterization methods; (3) the HT analysis can be conducted using existing data, which leads to substantial cost savings; and (4) data collected during municipal well operations can be used in the development of new groundwater models or in the calibration of existing groundwater models, thus they are valuable and should be archived.

  相似文献   

18.
Visualization of the El Berrocal granite: application to rock engineering   总被引:6,自引:0,他引:6  
This paper outlines the visualization of the El Berrocal granite using a computer-based geological modelling system, EarthVision, and discusses the application of this visualization to engineering aspects of waste disposal in crystalline rocks. The El Berrocal Project was an international study with the aim of understanding and modelling the migration processes which have controlled the distribution of naturally occurring radionuclides in a fractured granitic environment. EarthVision was used to provide three-dimensional geological models of the site structure and properties. Modelling of the site structure concentrated on the development of visualizations of the main discontinuities in the granite. These included a model of the main mineralized structures, a model of the regional fracture network, models of local fracture networks between borehole clusters and a visualization of the mineralogy of the fractures in individual boreholes. These fracture models were visualized with the boreholes and access gallery to the mine. In addition, the fracture network in the region of a large scale tracer test was visualized with the injection and extraction zones for the tracer test. Three-dimensional interpolations of the rock and fluid structure were undertaken. A model of the hydraulic conductivity illustrated large-scale variations in hydraulic conductivity and channelling effects in the tracer test zone. A model of the sulphate concentrations in the groundwater illustrated the interpolation of spatial data based on structural domains. The visualizations of the geology of the El Berrocal granite illustrate that, despite limitations, geological modelling can be a powerful and graphic tool in rock engineering. The use of computer visualizations can be provide the three-dimensional structural framework for computations, can aid decision making during the construction phase of waste repositories and can be useful in understanding and analysing the results of numerical calculations.  相似文献   

19.
20.
利用RQD估算岩体不同深度的平均渗透系数和平均变形模量   总被引:2,自引:1,他引:1  
蒋小伟  万力  王旭升  武雄  程惠红 《岩土力学》2009,30(10):3163-3167
渗透系数是进行裂隙岩体渗流模拟的必备参数,变形模量是工程岩体数值模拟的必备参数。大量研究中忽视了渗透系数和变形模量随深度变化这一重要规律,从而影响模拟结果的可靠性。为此,探讨了利用极易获取的RQD(岩石质量指标)资料估算不同深度的渗透系数和变形模量的可行性。通过以某花岗岩体为例,研究发现,RQD均值随深度增大,渗透系数均值随深度减小,其相关性很好。因此,利用RQD估算不同深度的平均渗透系数是可行的。根据RQD随深度的变化,利用经验公式估算了不同深度的变形模量均值和变化范围。估算得到的变形模量与实测结果基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号