首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The seismic performance of conventional wood‐frame structures in south‐western British Columbia is analytically investigated through incremental dynamic analysis by utilizing available UBC‐SAWS models, which were calibrated based on experimental test results. To define an adequate target response spectrum that is consistent with information from national seismic hazard maps, record selection/scaling based on the conditional mean spectrum (CMS) is implemented. Furthermore, to reflect complex seismic hazard contributions from different earthquake sources (i.e. crustal events, interface events, and inslab events), we construct CMS for three earthquake types, and use them to select and scale an adequate set of ground motion records for the seismic performance evaluation. We focus on the impacts of adopting different record selection criteria and of using different shear‐wall types (Houses 1–4; in terms of seismic resistance, House 1>House 2>House 3>House 4) on the nonlinear structural response. The results indicate that the record selection procedures have significant influence on the probabilistic relationship between spectral acceleration at the fundamental vibration period and maximum inter‐story drift ratio, highlighting the importance of taking into account response spectral shapes in selecting and scaling ground motion records. Subjected to ground motions corresponding to the return period of 2500 years, House 1 is expected to experience very limited extent of damage; Houses 2 and 3 may be disturbed by minor damage; whereas House 4 may suffer from major damage occasionally. Finally, we develop statistical models of the maximum inter‐story drift ratio conditioned on a seismic intensity level for wood‐frame houses, which is useful for seismic vulnerability assessment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   

3.
Fragility functions are commonly used in performance‐based earthquake engineering for predicting the damage state of a structure subjected to an earthquake. This process often involves estimating the structural damage as a function of structural response, such as the story drift ratio and the peak floor absolute acceleration. In this paper, a new framework is proposed to develop fragility functions to be used as a damage classification/prediction method for steel structures based on a wavelet‐based damage sensitive feature (DSF). DSFs are often used in structural health monitoring as an indicator of the damage state of the structure, and they are easily estimated from recorded structural responses. The proposed framework for damage classification of steel structures subjected to earthquakes is demonstrated and validated with a set of numerically simulated data for a four‐story steel moment‐resisting frame designed based on current seismic provisions. It is shown that the damage state of the frame is predicted with less variance using the fragility functions derived from the wavelet‐based DSF than it is with fragility functions derived from an alternate acceleration‐based measure, the spectral acceleration at the first mode period of the structure. Therefore, the fragility functions derived from the wavelet‐based DSF can be used as a probabilistic damage classification model in the field of structural health monitoring and an alternative damage prediction model in the field of performance‐based earthquake engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the main results of the evaluation of residual inter‐story drift demands in typical moment‐resisting steel buildings designed accordingly to the Mexican design practice when subjected to narrow‐band earthquake ground motions. Analytical 2D‐framed models representative of the study‐case buildings were subjected to a set of 30 narrow‐band earthquake ground motions recorded on stations placed in soft‐soil sites of Mexico City, where most significant structural damage was found in buildings as a consequence of the 1985 Michoacan earthquake, and scaled to reach several levels of intensity to perform incremental dynamic analyses. Thus, results were statistically processed to obtain hazard curves of peak (maximum) and residual drift demands for each frame model. It is shown that the study‐case frames might exhibit maximum residual inter‐story drift demands in excess of 0.5%, which is perceptible for building's occupants and could cause human discomfort, for a mean annual rate of exceedance associated to peak inter‐story drift demands of about 3%, which is the limiting drift to avoid collapse prescribed in the 2004 Mexico City Seismic Design Provisions. The influence of a member's post‐yield stiffness ratio and material overstrength in the evaluation of maximum residual inter‐story drift demands is also discussed. Finally, this study introduces response transformation factors, Tp, that allow establishing residual drift limits compatible with the same mean annual rate of exceedance of peak inter‐story drift limits for future seismic design/evaluation criteria that take into account both drift demands for assessing a building's seismic performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
文俊  蒋友宝 《地震工程学报》2020,42(2):326-331,367
为测试高层钢结构建筑抗震性能,在有限元模型中以某高层钢框架结构办公大厦作为研究对象,测试其横向支撑地震动力响应状况。选取地震峰值加速度为200 cm/s^2的El-Centro波作为地震波输入,采用瞬态动力方法分析不同楼板厚度下建筑地震模拟响应,得到建筑顶层位移时程曲线;在SAP2000结构软件中分析建筑工程添加横向支撑前后的反应谱,记录各楼层垂直与水平方向位移与层间位移角。得到如下结果:高层钢结构建筑在地震响应下产生的位移不随楼板厚度的增加而增大,楼板厚度为100 mm、170 mm时位移波动显著;添加横向支撑后,建筑水平刚度显著提升,同理,添加横向支撑后横向层间位移角的最大值变化较大,且低于1/250,符合相关建筑标准。  相似文献   

6.
The purpose of this paper is to investigate the ground motion characteristics of the Chi‐Chi earthquake (21 September 1999) as well as the interpretation of structural damage due to this earthquake. Over 300 strong motion records were collected from the strong motion network of Taiwan for this earthquake. A lot of near‐field ground motion data were collected. They provide valuable information on the study of ground motion characteristics of pulse‐like near‐field ground motions as well as fault displacement. This study includes: attenuation of ground motion both in PGA and spectral amplitude, principal direction, elastic and inelastic response analysis of a SDOF system subjected to near‐field ground motion collected from this event. The distribution of spectral acceleration and spectral velocity along the Chelungpu fault is discussed. Based on the mode decomposition method the intrinsic mode function of ground acceleration of this earthquake is examined. A long‐period wave with large amplitude was observed in most of the near‐source ground acceleration. The seismic demand from the recorded near‐field ground motion is also investigated with an evaluation of seismic design criteria of Taiwan Building Code. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
A fundamental issue in the framework of seismic probabilistic risk analysis is the choice of ground motion intensity measures (IMs). Based on the floor response spectrum method, the present contribution focuses on the ability of IMs to predict non‐structural components (NSCs) horizontal acceleration demand. A large panel of IMs is examined and a new IM, namely equipment relative average spectral acceleration (E‐ASAR), is proposed for the purpose of NSCs acceleration demand prediction. The IMs efficiency and sufficiency comparisons are based on (i) the use of a large dataset of recorded earthquake ground motions; (ii) numerical analyses performed on three‐dimensional numerical models, representing actual structural wall and frame buildings; and (iii) systematic statistical analysis of the results. From the comparative study, the herein introduced E‐ASAR shows high efficiency with respect to the estimation of maximum floor response spectra ordinates. Such efficiency is particularly remarkable in the case of structural wall buildings. Besides, the sufficiency and the simple formulation allowing the use of existing ground motion prediction models make the E‐ASAR a promising IMs for seismic probabilistic risk assessment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Special concentrically braced frames (SCBFs) are commonly used for seismic design of buildings. Their large elastic stiffness and strength efficiently sustains the seismic demands during smaller, more frequent earthquakes. During large, infrequent earthquakes, SCBFs exhibit highly nonlinear behavior due to brace buckling and yielding and the inelastic behavior induced by secondary deformation of the framing system. These response modes reduce the system demands relative to an elastic system without supplemental damping using a response modification coefficient, commonly termed the R factor. More recently, procedures put forth in FEMAP695 have been made to quantify the R factor through a formalized procedure that accounts for collapse potential. The primary objective of the research in this paper was to evaluate the approach for SCBFs. An improved model for SCBFs that permits simulation of brace fracture was used to conduct response history analyses. A series of three‐story, nine‐story and 20‐story SCBFs were designed and evaluated. Initially, the FEMAP695 method was conducted to estimate collapse and the corresponding R factor. An alternate procedure for scaling the multiple acceleration records to the seismic design hazard was also evaluated. The results show significant variation between the two methods. Of the three variations of buildings studied, the largest vulnerability was identified for the three‐story building. To achieve a consistent margin of safety against collapse, a significantly lower R factor is required for the low‐rise SCBFs (three‐story), whereas the mid‐rise and high‐rise SCBFs (nine‐story and 20‐story) may continue to use the current value of 6, as provided in ASCE‐07. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The seismic design of multi‐story buildings asymmetric in plan yet regular in elevation and stiffened with ductile RC structural walls is addressed. A realistic modeling of the non‐linear ductile behavior of the RC walls is considered in combination with the characteristics of the dynamic torsional response of asymmetric buildings. Design criteria such as the determination of the system ductility, taking into account the location and ductility demand of the RC walls, the story‐drift demand at the softer (most displaced) edge of the building under the design earthquake, the allowable ductility (ultimate limit state) and the allowable story‐drift (performance goals) are discussed. The definition of an eccentricity of the earthquake‐equivalent lateral force is proposed and used to determine the effective displacement profile of the building yet not the strength distribution under the design earthquake. Furthermore, an appropriate procedure is proposed to calculate the fundamental frequency and the earthquake‐equivalent lateral force. A new deformation‐based seismic design method taking into account the characteristics of the dynamic torsional response, the ductility of the RC walls, the system ductility and the story‐drift at the softer (most displaced) edge of the building is presented and illustrated with an example of seismic design of a multi‐story asymmetric RC wall building. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents, within the performance‐based earthquake engineering framework, a comprehensive probabilistic seismic loss estimation method that accounts for main sources of uncertainty related to hazard, vulnerability, and loss. The loss assessment rigorously integrates multiple engineering demand parameters (maximum and residual inter‐story drift ratio and peak floor acceleration) with consideration of mainshock–aftershock sequences. A 4‐story non‐ductile reinforced concrete building located in Victoria, British Colombia, Canada, is considered as a case study. For 100 mainshock and mainshock–aftershock earthquake records, incremental dynamic analysis is performed, and the three engineering demand parameters are fitted with a probability distribution and corresponding dependence computed. Finally, with consideration of different demolition limit states, loss assessment is performed. From the results, it can be shown that when seismic vulnerability models are integrated with seismic hazard, the aftershock effects are relatively minor in terms of overall seismic loss (1–4% increase). Moreover, demolition limit state parameters, uncertainties of collapse fragility, and non‐collapse seismic demand prediction models have showed significant contribution to the loss assessment. The seismic loss curves for the reference case and for cases with the varied parameters can differ by as large as about 150%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
地裂缝场地结构抗震设防避让距离研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以西安地铁二号线沿线地质勘查资料为基础,借助ABAQUS有限元软件建立地裂缝场地与结构共同作用模型,将结构分别置于距地裂缝不同距离的位置,并施加El-Centro地震波,通过比较不同位置结构的层间位移角、框架柱剪力的变化情况,研究近地裂缝结构在地震作用下的工作特性,找出不同避让距离下的结构动力响应变化规律,并与地表峰值加速度的变化规律进行对比分析,为地裂缝场地结构的避让距离选取提供参考。结果表明:上盘结构层间位移角放大幅度为30%~41%,而下盘结构层间位移角放大幅度为18%~22%,上盘结构的破坏程度远大于下盘结构。随避让距离的增大,地表加速度峰值逐渐减小,结构破坏情况相应减弱,但地表峰值加速度表现出现较为平缓的线性下降,而其上部结构的峰值位移曲线则出现大幅度的下降,甚至在近地裂缝处产生突变,其最大层间位移角放大幅度由41%降为21%,地表加速度峰值的变化并不能完全反映出近地裂缝结构的动力响应规律。位于地裂缝场地的结构动力时程响应规律明显区别于普通场地上的结构,对位于地裂缝场地的结构进行抗震设计时应对水平地震影响系数最大值αmax进行调整。  相似文献   

12.
The study presented in this paper addresses the issue of engineering validation of Graves and Pitarka's (2010) hybrid broadband ground motion simulation methodology with respect to some well‐recorded historical events and considering the response of multiple degrees of freedom (MDoF) systems. Herein, validation encompasses detailed assessment of how similar is, for a given event, the seismic response due to comparable hybrid broadband simulated records and real records. In the first part of this study, in order to investigate the dynamic response of a wide range of buildings, MDoF structures are modeled as elastic continuum systems consisting of a combination of a flexural cantilever beam coupled with a shear cantilever beam. A number of such continuum systems are selected including the following: (1) 16 oscillation periods between 0.1 and 6 s; (2) three shear to flexural deformation ratios to represent respectively shear‐wall structures, dual systems, and moment‐resisting frames; and (3) two stiffness distributions along the height of the systems, that is, uniform and linear. Demand spectra in terms of generalized maximum interstory drift ratio (IDR) and peak floor acceleration (PFA) are derived using simulations and actual recordings for four historical earthquakes, namely, the 1979 Mw 6.5 Imperial Valley earthquake, 1989 Mw 6.8 Loma Prieta earthquake, 1992 Mw 7.2 Landers earthquake, and 1994 Mw 6.7 Northridge earthquake. In the second part, for two nonlinear case study structures, the IDR and PFA distributions over the height and their statistics, are obtained and compared for both recorded and simulated time histories. These structures are steel moment frames designed for high seismic hazard, 20‐story high‐rise and 6‐story low‐rise buildings. The results from this study highlight the similarities and differences between simulated and real records in terms of median and intra‐event standard deviation of logs of seismic demands for MDoF building systems. This general agreement, in a broad range of moderate and long periods, may provide confidence in the use of the simulation methodology for engineering applications, whereas the discrepancies, statistically significant only at short periods, may help in addressing improvements in generation of synthetic records. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The linked column frame (LCF) system is proposed as a seismic load resisting system that uses conventional components to limit seismic damage to relatively easily replaced elements. The LCF features a primary lateral system, denoted the linked column, which is made up of dual columns connected with replaceable links, and a secondary flexible moment frame system with beams having fully restrained connections at one end and simple connections at the other. The linked columns are designed to limit seismic forces and provide energy dissipation via link yielding, while preventing damage to the moment frame under certain earthquake hazard levels. A design procedure is proposed that ensures plastic hinges develop in the links of the linked columns at a significantly lower story drift than when plastic hinges develop in the moment frame beams. The large drift difference helps enable design of this system for two distinct performance states: rapid return to occupancy, where only link damage occurs and relatively simple link replacement is possible, and collapse prevention, where both the links and the beams of the moment frame may be damaged. A series of 3‐story, 6‐story, and 9‐story prototype LCF buildings were designed using the proposed design approach. Nonlinear models were developed for the designs with the link models validated using recent experimental results. The seismic response of these systems was investigated for ground motions representing various seismic hazard levels. Results show that the LCF system not only provides collapse prevention, but also has the capability of limiting economic loss by reducing structural damage and allowing for rapid return to occupancy following earthquakes with shorter return periods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The seismometer network of the Japanese expressway system has been enhanced since the 1995 Kobe earthquake. Using earthquake information from the instruments, the expressways are closed if the peak ground acceleration (PGA) is larger than or equal to 80cm/s2. The aim of this regulation is to avoid secondary disasters, e.g. cars running into the collapsed sections. However, recent studies on earthquake damage have revealed that expressway structures are not seriously damaged under such‐level of earthquake motion. Hence, we may think of relaxing the regulation of expressway closure. But before doing this, it is necessary to examine the effects of shaking to automobiles since the drivers may encounter difficulties in controlling their vehicles and traffic accidents may occur. In this study, a vehicle was modelled with a six‐degree‐of‐freedom system and its responses were investigated with respect to PGA, peak ground velocity (PGV) and Japan Meteorological Agency (JMA) seismic intensity using five ground motion records. It was observed that the response of the vehicle shows a larger amplitude for the record that has larger response spectrum in the long period range compared to other records. However, similar response amplitudes of the vehicle were observed for all the records with respect to the JMA seismic intensity. The response characteristics of the vehicle model may be very useful for decision‐making regarding the relaxation of the expressway closure under seismic motion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
带SRC桁架转换层及钢加强层高层建筑抗震性能研究   总被引:6,自引:2,他引:4  
本文对一座设置钢骨混凝土桁架转换层及两道钢桁架加强层的超高层建筑结构模型振动台试验结果进行了分析,发现Ⅶ度小震和中震阶段在下部转换层和中部加强层加速度突变较大,而上部加强层突变较小:在Ⅶ度大震阶段由于转换层及其附近楼层裂缝的出现,地震能量转嫁到中部加强层,致使中部加强层加速度突变出现大幅度的增长,该层及附近楼层核心筒墙肢出现一定程度的破坏。采用SAP2000有限元程序对该结构模型进行了小震阶段三维分析,并与试验值进行了对比:从动力特性来看,前几阶周期比较吻合,高阶周期误差较大;从动力反应来看,侧移曲线、加速度包络图、地震作用包络图在整体上符合较好,但在中部加强层和转换层处突变幅度计算值偏小;从层间剪力包络图来看,试验值与有限元计算值都呈现近似直线分布。  相似文献   

16.
A structure that has a permanent offset from a true vertical line is commonly referred to as being ‘out‐of‐plumb’. Out‐of‐plumb may result from construction tolerances or post‐earthquake permanent deformations in steel buildings. This paper quantifies the displacements of buildings with out‐of‐plumb in subsequent seismic events by means of inelastic dynamic time history analysis. Structures considered have different structural heights, force design reduction factors (R), and target inter‐story drifts. It is shown that buildings with greater out of plumb and force design reduction factor have larger normalized peak inter‐story drift ratio and ratio of residual‐to‐peak drift. Also, the ratio of residual‐to‐peak drift was not strongly dependent on structural height or design drift. A design procedure and example provided, based on the results obtained, show how peak and residual inter‐story drift ratio can be estimated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Nonstructural reinforced concrete flat walls architecturally designed as exterior/partition walls in concrete buildings were severely damaged by the 2011 earthquake off the Pacific coast of Tohoku. This damage was observed in the monolithic nonstructural flat walls of relatively old ductile concrete buildings. Although these flat walls might affect the overall seismic performance and behavior of a building, the nonstructural wall effects have not been clarified because of the complex interactions among the structural components. To understand these effects, this paper conducts an experimental and numerical investigation of the nonstructural wall effects, focusing on a typical residential building damaged by the 2011 earthquake. A single‐story, one‐bay moment‐resisting frame model of the building with a nonstructural flat wall was tested to clarify the fundamental behavior. The results reveal that the wall significantly contributed to the seismic performance of the overall frame until it failed in shear, subsequently losing structural effectiveness. Such experimental wall behavior could be simulated by the isoparametric element model. Moreover, the structural effects of the nonstructural flat walls on the global seismic performance and behavior of the investigated building were discussed through earthquake response analyses using ground motions recorded near the building site and pushover analyses. Consequently, the building damage could be simulated in an analytical case considering the nonstructural flat walls, showing larger inter‐story drifts in the lower stories due to softening of the walls. The analytical results also indicated that the softening of the nonstructural flat walls decreased the building ductility, as defined by ultimate inter‐story drifts. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
高延性纤维增强水泥基复合材料(ECC)是一种高强度、高延性的新型建筑材料,在加固工程中具有广泛的应用前景。本文利用ECC的高延性和抗剪性,提出一种采用ECC面层加固小雁塔的保护方案,以提高古塔抗震性能;通过有限元软件ANSYS进行模拟分析,比较了小雁塔加固前后的地震响应。分析结果表明:采用ECC面层加固可显著增强塔身整体的延性和承载力,有效地提高塔体损伤容限,为ECC在古塔抗震加固的实际应用中提供借鉴,可作为古塔抗震保护的新途径。  相似文献   

19.
The ‘strength’ of an earthquake ground motion is often quantified by an Intensity Measure (IM), such as peak ground acceleration or spectral acceleration at a given period. This IM is used to predict the response of a structure. In this paper an intensity measure consisting of two parameters, spectral acceleration and epsilon, is considered. The IM is termed a vector‐valued IM, as opposed to the single parameter, or scalar, IMs that are traditionally used. Epsilon (defined as a measure of the difference between the spectral acceleration of a record and the mean of a ground motion prediction equation at the given period) is found to have significant ability to predict structural response. It is shown that epsilon is an indicator of spectral shape, explaining why it is related to structural response. By incorporating this vector‐valued IM with a vector‐valued ground motion hazard, we can predict the mean annual frequency of exceeding a given value of maximum interstory drift ratio, or other such response measure. It is shown that neglecting the effect of epsilon when computing this drift hazard curve leads to conservative estimates of the response of the structure. These observations should perhaps affect record selection in the future. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Seismic pounding of base‐isolated buildings has been mostly studied in the past assuming unidirectional excitation. Therefore, in this study, the effects of seismic pounding on the response of base‐isolated reinforced concrete buildings under bidirectional excitation are investigated. For this purpose, a three‐dimensional finite element model of a code‐compliant four‐story building is considered, where a newly developed contact element that accounts for friction and is capable of simulating pounding with retaining walls at the base, is used. Nonlinear behavior of the superstructure as well as the isolation system is considered. The performance of the building is evaluated separately for far‐fault non‐pulse‐like ground motions and near‐fault pulse‐like ground motions, which are weighted scaled to represent two levels of shaking viz. the design earthquake (DE) level and the risk‐targeted maximum considered earthquake (MCER) level. Nonlinear time‐history analyses are carried out considering lower bound as well as upper bound properties of isolators. The influence of separation distance between the building and the retaining walls at the base is also investigated. It is found that if pounding is avoided, the performance of the building is satisfactory in terms of limiting structural and nonstructural damage, under DE‐level motions and MCER‐level far‐fault motions, whereas unacceptably large demands are imposed by MCER‐level near‐fault motions. In the case of seismic pounding, MCER‐level near‐fault motions are found to be detrimental, where the effect of pounding is mostly concentrated at the first story. In addition, it is determined that considering unidirectional excitation instead of bidirectional excitation for MCER‐level near‐fault motions provides highly unconservative estimates of superstructure demands. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号