首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Two old drift units called Poti‐Malal and Seguro have been differentiated in the Río Grande basin based on relative‐age criteria, stratigraphical relationships, morphology and fission‐track dating. A tephra dated at 0.226 ± 0.025 Ma was deposited on the Poti‐Malal drift and underlies the Seguro outwash, which is inferred to equate with marine oxygen isotope stage 6. The stratigraphical position and age suggest that the tephra post‐dates the Poti‐Malal glaciation and that it is older than the Seguro drift. The Poti‐Malal glaciation must be at least as old as Early–Middle Pleistocene, and the Seguro glaciation is assigned to the penultimate glaciation. The tephra unit may have been deposited during marine oxygen isotope stage 7. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The existence of the Cretaceous-Tertiary (K/T) boundary in the non-marine succession is expected at Jiayin in the Heilongjiang River area, China. Zircons from a tuff sample from the Baishantou Member of Wuyun Formation in Jiayin were analyzed by the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating and fission-track dating methods. Ages of 64.1±0.7 Ma (U-Pb) and 61.7±1.8 Ma (fission-track dating) were obtained, which allow re-evaluation of a previously reported late Maastrichian age for the tuff layer that was in conflict with the paleontological evidence. These results confirm the Danian age of the section in agreement with the paleontological evidence.  相似文献   

3.
Fission track annealing experiments for vermiculite mineral have been performed under optimised etching conditions and a correction curve translating track length reduction to track density reduction has been constructed. The blocking/closing temperature of the fission track system in the mineral has been calculated to be 125°±30° C. The corrected fission track age of vermiculite from Kasipatnam (Visakhapatnam), South India, has been calculated as 544±14 Ma. The activation energy and average uranium concentration of the mineral are 1.7 eV and 9.9×10?8 gg?1 respectively.  相似文献   

4.
Three independent single‐grain geochronometers applied to detrital minerals from Central Dinaride sediments constrain the timing of felsic magmatism that associated the Jurassic evolution of the Neotethys. The Lower Cretaceous clastic wedge of the Bosnian Flysch, sourced from the Dinaride ophiolitic thrust complex, yields magmatic monazite and zircon grains with dominant age components of 164 ± 3 and 152 ± 10 Ma respectively. A unique tephra horizon within the Adriatic Carbonate Platform was dated at 148 ± 11 Ma by apatite fission track analysis. These consistent results suggest that leucocractic melt generation in the Central Dinaride segment of the Neotethys culminated in Middle to Late Jurassic times, coeval with and slightly post‐dating subophiolitic sole metamorphism. Growth of magmatic monazite and explosive volcanism call for supra‐subduction‐zone processes at the convergent Neotethyan margin. New compilation of geochronological data demonstrates that such Jurassic felsic rocks are widespread in the entire Dinaride–Hellenide orogen.  相似文献   

5.
Fission track dating was applied to analyze the 20 samples from Nyainrong microcontinent, and we obtained 20 apatite and 15 zircon fission track ages. The results show single population grain ages with a single mean age and associated central ages mainly ranging from 108±7Ma to 35±4Ma.Their mean track lengths are 12.2–13.9 μm with a single peak. Zircon fission track age range from 78±3 Ma to 117±4 Ma. The results represented the two tectonic uplift events in the study area, namely the Cretaceous and Paleogene periods. According to thermal history modeling results, uplifting rates of two tectonic events is 0.31–0.1 mm/a and 0.07–0.04 mm/a respectively. Combined with field condition and study results, it is suggested that the Cretaceous tectonic uplift event was related to the closure ocean basin caused by Qaingtang–Lhasa collision, and the Paleogene tectonic uplift event was related to the south to thrust system caused by Indo–Asian collision.  相似文献   

6.
本文利用锆石和磷灰石裂变径迹方法探讨了班韦乌卢地块泛非期以来的主要构造演化时间.为研究班韦乌卢地块的构造活动,本文从班韦乌卢地块中部卡帕图地区的沉积盖层姆波罗科索群的姆巴拉组、萨马组和卡布韦卢马组中采集多件新鲜的岩石样品,并获得5件锆石和2件磷灰石样品裂变径迹分析结果.5件锆石裂变径迹年龄介于575±35~380±22 Ma之间,其峰值年龄组为600~572 Ma和420~390 Ma.2件磷灰石裂变径迹年龄介于59±6~27±4 Ma之间,其峰值年龄组为99~80 Ma和19~11 Ma.它们的峰值年龄组分别对应的主要时代为新元古代的埃迪卡拉纪、早泥盆世、晚白垩世和中新世.对比区域上已有的年龄数据可知,南部非洲地区新元古代的埃迪卡拉纪、早泥盆世和晚白垩世的构造活动是一个区域性的构造事件,仅中新世(19~11 Ma)的构造活动在区域上的表现尚不明确.综合前人成果资料,自泛非构造运动以来,班韦乌卢地块至少经历600~572 Ma、488~441 Ma、420~390 Ma、375~293 Ma、99~80 Ma及19~11 Ma六个构造事件.班韦乌卢地块泛非期以来的构造演化研究程度很低,此次研究成果可为今后在该地区的深入研究提供重要参考.  相似文献   

7.
杨静  施炜  王森  张拴宏  庞建章  杨谦  张宇  王天宇 《地质学报》2023,97(5):1701-1710
磷灰石裂变径迹定年作为揭示岩石低温热年代学的一种重要方法,能够有效重塑地壳浅部约3~5 km内数百万年以来的热演化历史,已经被广泛应用于地球科学的相关研究中。依托于中国地质科学院地质力学研究所建立的裂变径迹实验室,同时采用外探测器法和LA-ICP-MS/FT法对国际上普遍使用的Durango磷灰石进行了测定,得到2个Durango磷灰石外探测器法年龄为:32.9±1.6 Ma、31.9±2.3 Ma; 7个Durango磷灰石LA-ICP-MS/FT法年龄为:31.97±0.82 Ma、30.9±1.5 Ma、32.3±1.4 Ma、30.6±1.1 Ma、30.7±1.4 Ma、29.7±1.9 Ma、31.1±1.3 Ma,两种方法测得的年龄均与国际推荐值在误差范围内一致;此外,我们也应用这两种方法对采集于天山的花岗岩样品18HS-5进行了测试,年龄分别为126.7±3.8 Ma、126.4±3.6 Ma,两种方法得到的年龄在误差范围内一致。实验对比分析表明,实验流程可靠,可推广测试。  相似文献   

8.
新疆阿尔泰造山带构造活动的磷灰石裂变径迹证据   总被引:3,自引:0,他引:3  
从对新疆阿尔泰造山带西部构造活动的研究中获得一批较为系统的磷灰石裂变径迹分析结果。 32个磷灰石裂变径迹年龄为 (16 3.0± 6 .4 )~ (4 6 .9± 7.2 )Ma ,平均径迹长度为 (14 .5± 0 .1)~(11.3± 0 .4 ) μm ,长度标准差为 1.4~ 2 .7μm。区内具有 3阶段热历史 :约 110Ma之前处于约 10 0~12 0℃较高温稳定阶段 ,然后在约 110~ 4 0Ma期间发生快速冷却与隆升事件 ,从约 4 0Ma开始发生另一较为缓慢的冷却事件。总体上自北而南 ,剥蚀速率和冷却速率均逐渐变小。文中裂变径迹资料表明 ,阿尔泰山西段主要断裂带现在向南倾斜 ,区内构造演化亦主要受Tesbahan、Kulti和Basei三条断裂带逆冲热事件的控制。  相似文献   

9.
利用锆石裂变径迹研究漠河盆地隆升过程   总被引:1,自引:1,他引:0  
通过对漠河盆地内32件样品的锆石裂变径迹进行详细分析,锆石单颗粒径迹年龄最大值为143.9±18.7Ma,最小年龄为58±12.1Ma,峰值年龄为92~98Ma和132~138Ma。结合盆地断裂展布及大地构造背景,认为漠河盆地在95Ma和135Ma发生了2次强隆升过程。结合盆地断裂系统、构造特征及区域地质背景,认为自晚侏罗世以来盆地形成受到蒙古-鄂霍次克海碰撞关闭和古太平洋板块俯冲碰撞双重作用的影响,盆地中晚侏罗世(135Ma左右)处于南北向挤压背景,形成东西向展布的前陆盆地;白垩纪中期,盆地处于伸展构造背景,属东北(同)大陆裂谷系的一部分。白垩纪中晚期(95Ma左右),漠河盆地由拉张环境再一次变为挤压环境,盆地形成了又一次的强隆升过程。  相似文献   

10.
The thermal evolution of the only known Alpine (Cretaceous) granite in the Western Carpathians (Rochovce granite) is studied by low-temperature thermochronological methods. Our apatite fission track and apatite (U-Th)/He ages range from 17.5 ± 1.1 to 12.9 ± 0.9 Ma, and 12.9 ± 1.8 to 11.3 ± 0.8 Ma, respectively. The data thus show that the Rochovce granite records a thermal event in the Middle to early Late Miocene, which was likely related to mantle upwelling, volcanic activity, and increased heat flow. During the thermal maximum between ~17 and 8 Ma, the granite was heated to temperatures ? 60 °C. Increase of cooling rates at ~12 Ma recorded by the apatic fission track and (U-Th)/He data is primarily related to the cessation of the heating event and relaxation of the isotherms associated with the termination of the Neogene volcanic activity. This contradicts the accepted concept, which stipulates that the internal parts of the Western Carpathians were not thermally affected during the Cenozoic period. The Miocene thermal event was not restricted to the investigated part of the Western Carpathians, but had regional character and affected several basement areas in the Western Carpathians, the Pannonian basin and the margin of the Eastern Alps.  相似文献   

11.
Alluvial and lacustrine sediments exposed beneath late Pleistocene glaciolacustrine silt and clay at two sites along the Old Crow River, northern Yukon Territory, are rich in fossils and contain tephra beds. Surprise Creek tephra (SZt) occurs in the lower part of the alluvial sequence at CRH47 and Little Timber tephra (LTt) is present near the base of the exposure at CRH94. Surprise Creek tephra has a glass fission-track age of 0.17 ± 0.07 Ma and Little Timber tephra is 1.37 ± 0.12 Ma. All sediments at CRH47 have a normal remanent magnetic polarity and those near LTt at CRH94 have a reversed polarity — in agreement with the geomagnetic time scale. Small mammal remains from sediments near LTt support an Early Pleistocene age but the chronology is not so clear at CRH47 because of the large error associated with the SZt age determination. Tephrochronological and paleomagnetic considerations point to an MIS 7 age for the interglacial beds just below SZt at CRH47 and at Chester Bluffs in east-central Alaska, but mammalian fossils recovered from sediments close to SZt suggest a late Irvingtonian age, therefore older than MIS 7. Further studies are needed to resolve this problem.  相似文献   

12.
The Tiegelongnan is the first discovered porphyry–epithermal Cu (Au) deposit of the Duolong ore district in Tibet, China. In order to constrain the thermal history of this economically valuable deposit and the rocks that host it, eight samples were collected to perform a low‐temperature thermochronology analysis including apatite fission track, apatite, and zircon (U‐Th)/He. Apatite fission track ages of all samples are between 34 ± 3 and 67 ± 5 Ma. Mean apatite (U‐Th)/He ages show wide distribution, ranging from 29.3 ± 2.5 to 56.4 ± 9.1 Ma. Mean zircon (U‐Th)/He ages range from 79.5 ± 12.0 to 97.9 ± 4.4 Ma. The exhumation rate of the Tiegelongnan deposit was 0.086 km m.y.?1 between 98 and 47 Ma and decreased to 0.039 km m.y.?1 since 47 Ma. The mineralized intrusion was emplaced at a depth of about 1400 m in the Tiegelongnan deposit. Six cooling stages were determined through HeFTy software according to low‐temperature thermochronology and geochronology data: (i) fast cooling stage between 120 and 117 Ma, (ii) fast cooling stage between 117 and 100 Ma, (iii) slow cooling stage between100 and 80 Ma, (iv) fast cooling stage between 80 and 45 Ma, (v) slow cooling stage between 45 and 30 Ma, and (vi) slow cooling stage (<30 Ma). Cooling stages between 120 and 100 Ma are mainly caused by magmatic–hydrothermal evolution, whereas cooling stages after 100 Ma are mainly caused by low‐temperature thermal–tectonic evolution. The Bangong–Nujiang Ocean subduction led to the formation of the Tiegelongnan ore deposit, which was buried by the Meiriqiecuo Formation andesite lava and thrust nappe structure; then, the Tiegelongnan deposit experienced uplift and exhumation caused by the India–Asia collision.  相似文献   

13.
青藏高原西北缘盆山过渡带陡坡地貌的形成时代与成因   总被引:1,自引:0,他引:1  
平均海拔大于4500 m的青藏高原,是通过高原边缘的陡坡地貌与海拔低于1500 m的周缘盆地或平原相连接的,这些围绕高原的陡坡地貌是何时、如何形成的呢?本文通过对西昆仑山中段北缘主逆冲断层上盘陡坡地貌区9件磷灰石样品的裂变径迹年龄与长度分析表明:在海拔3900~4635 m的陡坡地貌中的裂变径迹样品年龄为6.2±1.4 Ma~0.9±0.3 Ma,呈现“上新下老”的反序分布特征; 而通过热历史模拟显示约5 Ma,约3~2 Ma,约2~1 Ma 和约1 Ma该地区出现多阶段的隆升与剥露。结合前人研究成果和野外地质的观察认为,现今青藏高原西北缘陡坡地貌的形成是中新世晚期以来高原边界叠瓦状断裂系经历了约8 Ma、约5 Ma、约3~2 Ma、约2~1 Ma和约1 Ma多阶段后展式逆冲运动的结果,这为青藏高原周缘陡坡地貌的形成和青藏高原的隆升时代与型式提供了关键的热年代学约束。  相似文献   

14.
Tephras provide one of the most reliable methods of time control and synchronisation within Quaternary sequences. We report on the identification of two widespread rhyolitic tephras – the Kawakawa and Rangitawa tephras – preserved in extensive peat deposits on Chatham Island ~900 km east of New Zealand. The tephras, both products of supereruptions from the Taupo Volcanic Zone, occur as pale, fine‐ash dominated layers typically 10–150 mm thick. Mineralogically they are dominated by rhyolitic glass, together with subordinate amounts of quartz, feldspar, hypersthene, hornblende, Fe–Ti oxides and zircon. Phlogopite/biotite was identified additionally in Rangitawa Tephra. Ages for each tephra were obtained via mineralogical and major element glass composition‐based correlation with well‐dated equivalent deposits on mainland New Zealand, and we also obtained a new zircon fission‐track age for Rangitawa Tephra (350 ± 50 ka) on Chatham Island. Both tephras were erupted at critical times for palaeoenvironmental reconstructions in the New Zealand region: the Kawakawa at ca. 27 cal. ka, near the beginning of the ‘extended’ LGM early in marine isotope stage (MIS) 2; and the Rangitawa at ca. 350 ka near the end of MIS 10. The time constraints provided by the tephras demonstrate that Chatham Island peats contain long‐distance pollen derived from mainland New Zealand, which provides a reliable proxy for identifying glacial–interglacial climate conditions, in this case during the MIS 11–10 and MIS 2–1 cycles. The two tephras thus provide important chronostratigraphic tie‐points that facilitate correlation and synchronisation not only across the Quaternary deposits of the Chatham Islands group but also with climatically significant terrestrial and marine records in the wider New Zealand region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
杨忠虎  李楠  张良  张志超 《地学前缘》2019,26(5):174-188
阳山金矿带因其独特的构造位置、超大型金资源量以及成矿后区域发生大规模隆升剥蚀事件,成为矿床学领域研究热年代学的理想选区。本文针对金矿带成矿后热历史演化开展锆石和磷灰石裂变径迹研究,获得如下成果:(1)锆石裂变径迹年龄值分布范围为(287.0±21)~(101±3) Ma(1σ),且不同岩性的年龄值各有特征,砂板岩锆石裂变径迹年龄值跨度最大(287~107 Ma),千枚岩锆石裂变径迹值分布范围为177~101 Ma,斜长花岗斑岩中锆石裂变径迹年龄值为193~185 Ma;(2)磷灰石裂变径迹年龄值分布范围为(69±7)~(46±14) Ma(1σ),径迹长度及其分布特征显示金矿带在晚白垩世—古新世的地层冷却表现为单调且缓慢地通过磷灰石裂变径迹的封闭温度。根据金矿带热历史演化分析,结合研究区古地温梯度、成矿深度数据,得出泥山矿段先于葛条湾矿段剥蚀,阳山金矿带自白垩纪以来地层总剥蚀厚度约为12.24 km,矿体剥蚀厚度上限约为880 m,推测阳山金矿带北部地层剥蚀少的矿段有较大的找矿潜力。  相似文献   

16.
韩伟  李玉宏  刘溪  陈高潮  张云鹏 《地质学报》2020,94(10):2834-2843
有关鄂尔多斯三叠纪原型盆地的东南向展布情况不是非常明确,之前有研究表明其东南缘可能位于南召地区,对该区构造演化过程开展研究,可为鄂尔多斯三叠纪原型盆地研究提供重要信息。因此,为了研究南召地区中生代以来的构造演化史及其与鄂尔多斯盆地之间的关系,本文对研究区3条野外剖面上3件三叠系样品开展锆石、磷灰石裂变径迹研究。其锆石裂变径迹年龄为270±15~181±8Ma,与地层年龄相近或大于地层年龄,不能很好地反映地层经历的构造改造时限,可能更多地代表了物源区的信息。磷灰石裂变径迹年龄为57±3~47±5Ma,结合裂变径迹年龄和热史模拟,本文认为南召地区自三叠纪以来经历了4期较大规模的构造改造,早期是三叠纪末遭受了秦岭造山带强烈逆冲推覆对本区的影响;中期是中晚侏罗世到晚白垩世初;晚期是晚白垩世;末期是喜马拉雅期,4期构造改造均与秦岭造山带的构造演化息息相关。此外,通过与鄂尔多斯盆地周缘地区展开对比,发现二者构造演化过程具有相似的时限性,从构造演化的角度支持南召地区属于鄂尔多斯原型盆地的观点。  相似文献   

17.
A tephra layer with normal grading in the sub-bottom depth interval 119–122 cm in marine core SO202-27-6 was collected on Patton Seamount in the northeast North Pacific Ocean. Based on the geochemistry of volcanic glass shards determined by a wavelength dispersive electron probe micro-analyser and an X-ray fluorescence analyser, this layer is correlated to the Dawson tephra, a widespread late Pleistocene time marker tephra in Alaska and the Yukon. The age of the Dawson tephra in the core is 29.03 ± 0.178 ka (1 sigma) based on a published age model. The Dawson tephra is revealed to have been deposited in the transition from marine isotope stage 3 to 2, i.e. the last stage of Heinrich Stadial 3 derived from the ice-rafted debris signal. According to the correlation between Greenland (NGRIP ice core) and this core, the Dawson tephra occupies the record immediately before inter stadial 4 in the δ18O stratigraphy of NGRIP. The Dawson tephra on Patton Seamount includes lithic fragments, which suggests that it was deposited not only by fall-out but also in part via another mechanism, such as icebergs from the Cordilleran ice sheet or seasonal sea ice.  相似文献   

18.
We reconstruct the history of denudation and landscape evolution of the northern East- Brazilian continental margin using apatite fission-track thermochronology and thermal history modeling. This part of the Brazilian Atlantic margin is morphologically characterized by inland and coastal plateaus surrounding a wide low-lying inland region, the Sertaneja Depression. The apatite fission track ages and mean track lengths vary from 39 ± 4 to 350 ± 57 Ma and from 10.0 ± 0.3 to 14.2 ± 0.2 μm, respectively, implying a protracted history of spatially variable denudation since the Permian at relatively low rates (<50 m My−1). The Sertaneja Depression and inland plateaus record Permian-Early Jurassic (300–180 Ma) denudation that precedes rifting of the margin by > 60 Myrs. In contrast, the coastal regions record up to 2.5 km of Late Jurassic-Early Cretaceous (150–120 Ma) denudation, coeval with rifting of the margin. The samples from elevated coastal regions, the Borborema Plateau and the Mantiqueira Range, record cooling from temperatures above 120 °C since the Late Cretaceous extending to the Cenozoic. We interpret this denudation as related to post-rift uplift of these parts of the margin, possibly resulting from compressional stresses transmitted from the Andes and/or magmatism at that time. Several samples from these areas also record accelerated Neogene (<30 Ma) cooling, which may record landscape response to a change from a tropical to a more erosive semi-arid climate during this time. The inferred denudation history is consistent with the offshore sedimentary record, but not with evolutionary scenarios inferred from the recognition of “planation surfaces” on the margin. The denudation history of the northeastern Brazilian margin implies a control of pre-, syn- and post-rift tectonic and climatic events on landscape evolution.  相似文献   

19.
Zircon and apatite fission track ages were determined on granulites dredged along the Bay of Biscay margins. A sample from Ortegal Spur (Iberia margin) yielded 725 ± 67 Ma (zircon). A sample from Le Danois Bank (Iberia margin) yielded 284 ± 58 Ma (zircon), indicating post‐Variscan cooling. Apatite from this sample gave 52 ± 2 Ma, interpreted as final cooling after ‘Pyrenean’ thrust imbrication. Two other samples from Le Danois Bank have Early Cretaceous apatite ages (138 ± 7 and 120 ± 8 Ma), interpreted to result from exhumation during rifting. Finally, a granulite from Goban Spur (Armorican margin) gave 212 ± 10 Ma (apatite), coinciding with a precursory rifting phase. Together with published radiometric results, these data indicate a Precambrian high‐grade terrane at the site of the current margins. The distribution of the granulites on the seafloor reflects tectonic and erosional processes related to (a) Mesozoic rifting and (b) Early Tertiary incipient subduction of the Bay of Biscay beneath Iberia.  相似文献   

20.
Apatite fission track analysis and vitrinite reflectance data from outcrop and well samples in the Hodgkinson Province and Laura Basin reveal regional Cretaceous cooling. Apatite fission track analysis appears to define two discrete cooling episodes, in the mid‐Cretaceous (110–100 Ma) and Late Cretaceous (80–70 Ma), although in most samples data allow only definition of a single episode. Rocks now at outcrop cooled from Cretaceous palaeotemperatures generally between 50 and 130°C in the south of the region, and from >100°C in the north. Some samples from the Hodgkinson Province also show evidence for an Early Jurassic cooling episode, characterised by maximum palaeotemperatures varying from at least 95°C (from apatite fission track analysis) to ~200–220°C (from vitrinite reflectance), with cooling beginning at around 200 Ma. Apatite fission track analysis data do not reveal the earlier event in the Laura Basin, but on the basis of vitrinite reflectance data from Permian? units this event is also inferred to have affected the pre‐Jurassic basin units in this region. The regional extent of the Cretaceous cooling episode in the Hodgkinson Province suggests that the elevated palaeotemperatures in this region were most likely due to greater depth of burial, with subsequent cooling due to kilometre‐scale denudation. For a palaeogeothermal gradient of 30°C/km and a palaeosurface temperature of 25°C the total degree of Cretaceous cooling experienced by the samples corresponds to removal of between ~0.8 and >3.0 km of Triassic and younger section removed by denudation, beginning some time between ca 110 and 80 Ma. Higher palaeogradients would require correspondingly lower amounts of removed section. The geology of the Laura Basin suggests that an explanation of the observed Cretaceous palaeotemperatures in this region in terms of deeper burial may be untenable. Heating due to hot fluid flow may be a more realistic mechanism for producing the observed Cretaceous palaeothermal effects in the Laura Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号