首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The ``combined approach', which is suitable to represent subgrid land surface heterogeneity in both inter-patch and intra-patch variabilities, is employed in the Biosphere/Atmosphere Transfer Scheme (BATS) as a land surface component of the regional climate model RegCM3 to consider the heterogeneities in temperature and moisture at the land surface, and then annual-scale simulations for 5 years (1988--1992) were conducted. Results showed that on the annual scale, the models response to the heterogeneities is quite sensitive, and that the effect of the temperature heterogeneity (TH) is more pronounced than the moisture heterogeneity (MH). On the intraannual scale, TH may lead to more (less) precipitation in warm (cold) seasons, and hence lead to larger intraannual variability in precipitation; the major MH effects may be lagged by about 1 month during the warm, rainy seasons, inducing ~6% more precipitation for some sub-regions. Additionally, the modeled climate for the northern sub-regions shows larger sensitivities to the land surface heterogeneities than those for the southern sub-regions. Since state-of-art land surface models seldom account for surface intra-patch variabilities, this study emphasizes the importance of including this kind of variability in the land surface models.  相似文献   

2.
This is an investigation of exchanges of energy and water between the atmosphere and thevegetated continents,and the impact of and mechanisms for land surface-atmosphere interactionson hydrological cycle and general circulation by implementing the Simplified Simple Biosphere(SSiB)model in a modified version of IAP/LASG global spectral general model(L9R15 AGCM).This study reveals that the SSiB model produces a better partitioning of the land surface heat andmoisture fluxes and its diurnal variations,and also gives the transport of energy and water amongatmosphere,vegetation and soil explicitly and realistically.Thus the coupled SSiB-AGCM runslead to the more conspicuous improvement in the simulated circulation,precipitation,mean watervapor content and its transport.particularly in the Asian monsoon region in the real world thanCTL-AGCM runs.It is also pointed out that both the implementation of land surfaceparameterizations and the variations in land surface into the GOALS model have greatly improvedhydrological balance over continents and have a significant impact on the simulated climate.particularly over the massive continents.Improved precipitation recycling model was employed to verify the mechanisms for landsurface hydrology parameterizations on hydrological cycle and precipitation climatology in AGCM.It can be argued that the recycling precipitation rate is significantly reduced,particularly in the aridand semi-arid region of the boreal summer hemisphere,coincident with remarkable reduction inevapotranspiration over the continental area.Therefore the coupled SSiB-AGCM runs reduce thebias of too much precipitation over land surface in most AGCMs,thereby bringing the simulatedprecipitation closer to observations in many continental regions of the world than CTL-AGCMruns.  相似文献   

3.
Two land surface models, Community Land Model (CLM3.5) and NOAH model, have been coupled to the Weather Research and Forecasting (WRF) model and been used to simulate the precipitation, temperature, and circulation fields, respectively, over eastern China in a typical flood year (1998). The purpose of this study is to reveal the effects of land surface changes on regional climate modeling. Comparisons of simulated results and observation data indicate that changes in land surface processes have significant impact on spatial and temporal distribution of precipitation and temperature patterns in eastern China. Coupling of the CLM3.5 to the WRF model (experiment WRF-C) substantially improves the simulation results over eastern China relative to an older version of WRF coupled to the NOAH-LSM (experiment WRF-N). It is found that the simulation of the spatial pattern of summer precipitation in WRF-C is better than in WRF-N. WRF-C also significantly reduces the summer positive bias of surface air temperature, and its simulated surface air temperature matches more closely to observations than WRF-N does, which is associated with lower sensible heat fluxes and higher latent heat fluxes in WRF-C.  相似文献   

4.
Effects of Crop Growth and Development on Land Surface Fluxes   总被引:2,自引:0,他引:2  
In this study, the Crop Estimation through Resource and Environment Synthesis model (CERES3.0) was coupled into the Biosphere-Atmosphere Transfer Scheme (BATS), which is called BATS CERES, to represent interactions between the land surface and crop growth processes. The effects of crop growth and development on land surface processes were then studied based on numerical simulations using the land surface models. Six sensitivity experiments by BATS show that the land surface fluxes underwent substantial changes when the leaf area index was changed from 0 to 6 m2 m-2. Numerical experiments for Yucheng and Taoyuan stations reveal that the coupled model could capture not only the responses of crop growth and development to environmental conditions, but also the feedbacks to land surface processes. For quantitative evaluation of the effects of crop growth and development on surface fluxes in China, two numerical experiments were conducted over continental China: one by BATS CERES and one by the original BATS. Comparison of the two runs shows decreases of leaf area index and fractional vegetation cover when incorporating dynamic crops in land surface simulation, which lead to less canopy interception, vegetation transpiration, total evapotranspiration, top soil moisture, and more soil evaporation, surface runoff, and root zone soil moisture. These changes are accompanied by decreasing latent heat flux and increasing sensible heat flux in the cropland region. In addition, the comparison between the simulations and observations proved that incorporating the crop growth and development process into the land surface model could reduce the systematic biases of the simulated leaf area index and top soil moisture, hence improve the simulation of land surface fluxes.  相似文献   

5.
Simulated regional precipitation, especially extreme precipitation events, and the regional hydrologic budgets over the western North Pacific region during the period from May to June 2008 were investigated with the high-resolution (4-km grid spacing) Weather Research and Forecast (WRF v3.2.1) model with explicit cloud microphysics. The model initial and boundary conditions were derived from the National Centers for Environmental Prediction/Department of Energy (NCEP/DOE) Reanalysis 2 data. The model precipitation results were evaluated against the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 product. The results show that the WRF simulations can reason- ably reproduce the spatial distributions of daily mean precipitation and rainy days. However, the simulated frequency distributions of rainy days showed an overestimation of light precipitation, an underestimation of moderate to heavy precipitation, but a good representation of extreme precipitation. The downscaling approach was able to add value to the very heavy precipitation over the ocean since the convective processes are resolved by the high-resolution cloud-resolving model. Moreover, the water vapor budget analysis indi- cates that heavy precipitation is contributed mostly by the stronger moisture convergence; whereas, in less convective periods, the precipitation is more influenced by the surface evaporation. The simulated water vapor budgets imply the importance in the tropical monsoon region of cloud microphysics that affects the precipitation, atmospheric latent heating and, subsequently, the large-scale circulation.  相似文献   

6.
The sensitivity of the East Asian summer monsoon to soil moisture anomalies over China was investigated based on ensembles of seasonal simulations(March–September) using the NCEP GCM coupled with the Simplified Simple Biosphere Model(NCEP GCM/SSi B). After a control experiment with free-running soil moisture, two ensembles were performed in which the soil moisture over the vast region from the lower and middle reaches of the Yangtze River valley to North China(YRNC) was double and half that in the control, with the maximum less than the field capacity. The simulation results showed significant sensitivity of the East Asian summer monsoon to wet soil in YRNC. The wetter soil was associated with increased surface latent heat flux and reduced surface sensible heat flux. In turn, these changes resulted in a wetter and colder local land surface and reduced land–sea temperature gradients, corresponding to a weakened East Asian monsoon circulation in an anomalous anticyclone over southeastern China, and a strengthened East Asian trough southward over Northeast China. Consequently, less precipitation appeared over southeastern China and North China and more rainfall over Northeast China. The weakened monsoon circulation and strengthened East Asian trough was accompanied by the convergence of abnormal northerly and southerly flow over the Yangtze River valley, resulting in more rainfall in this region.In the drier soil experiments, less precipitation appeared over YRNC. The East Asian monsoon circulation seems to show little sensitivity to dry soil anomalies in NCEP GCM/SSi B.  相似文献   

7.
The fifth-generation Pennsylvania State University/NCAR Mesoscale Model Version 3 (MM5V3) was used to simulate extreme heavy rainfall events over the Yangtze River Basin in June 1999. The effects of model's horizontal and vertical resolution on the extreme climate events were investigated in detail. In principle, the model was able to characterize the spatial distribution of monthly heavy precipitation. The results indicated that the increase in horizontal resolution could reduce the bias of the modeled heavy rain and reasonably simulate the change of daily precipitation during the study period. A finer vertical resolution led to obviously improve rainfall simulations with smaller biases, and hence, better resolve heavy rainfall events. The increase in both horizontal and vertical resolution could produce better predictions of heavy rainfall events. Not only the rainfall simulation altered in the cases of different horizontal and vertical grid spacing, but also other meteorological fields demonstrated diverse variations in terms of resolution change in the model. An evident improvement in the simulated sea level pressure resulted from the increase of horizontal resolution, but the simulation was insensitive to vertical grid spacing. The increase in vertical resolution could enhance the simulation of surface temperature as well as atmospheric circulation at low levels, while the simulation of circulation at middle and upper levels were found to be much less dependent on changing resolution. In addition, cumulus parameterization schemes showed high sensitivity to horizontal resolution. Different convective schemes exhibited large discrepancies in rainfall simulations with regards to changing resolution. The percentage of convective precipitation in the Grell scheme increased with increasing horizontal resolution. In contrast, the Kain-Fritsch scheme caused a reduced ratio of convective precipitation to total rainfall accumulations corresponding to increasing horizontal resolution.  相似文献   

8.
Land breeze is a type of mesoscale circulation developed due to thermal forcing over a heterogeneous landscape. It can contribute to atmospheric dynamic and hydrologic processes through affecting heat and water fluxes on the land-atmosphere interface and generating shallow convective precipitation. If the scale of the landscape heterogeneity is smaller than a certain size, however, the resulting land breeze becomes weak and becomes mixed up with other thermal convections like thermals. This study seeks to identify a scale threshold to distinguish the effects between land breeze and thermals. Two-dimensional simulations were performed with the Regional Atmospheric Modeling System (RAMS) to simulate thermals and land breeze. Their horizontal scale features were analyzed using the wavelet transform. The thermals developed over a homogeneous landscape under dry or wet conditions have an initial scale of 2-5 km during their early stage of development. The scale jumps to 10-15 km when condensation occurs. The solution of an analytical model indicates that the reduced degree of atmospheric instability due to the release of condensation potential heat could be one of the contributing factors for the increase in scale. The land breeze, on the other hand, has a major scale identical to the size of the landscape heterogeneity throughout various stages of development. The results suggest that the effects of land breeze can be clearly distinguished from those of thermals only if the size of the landscape heterogeneity is larger than the scale threshold of about 5 km for dry atmospheric processes or about 15 km for moist ones.  相似文献   

9.
The impacts of soil moisture(SM) on heavy rainfall and the development of Mesoscale Convection Systems(MCSs) are investigated through 24-h numerical simulations of two heavy rainfall events that occurred respectively on28 March 2009(Case 1) and 6 May 2010(Case 2) over southern China. The numerical simulations were carried out with WRF and its coupled Noah LSM(Land Surface Model). First, comparative experiments were driven by two different SM data sources from NCEP-FNL and NASA-GLDAS. Secondary, with the run driven by NASA-GLDAS data as a control one, a series of sensitivity tests with different degree of(20%, 60%) increase or decrease in the initial SM were performed to examine the impact of SM on the simulations. Comparative experiment results show that the 24-h simulated cumulative rainfall distributions are not substantially affected by the application of the two different SM data,while the precipitation intensity is changed to some extent. Forecast skill scores show that simulation with NASA-GLDAS SM data can lead to some improvement, especially in the heavy rain(芏50 mm) forecast, where there is up to 5% increase in the TS score. Sensitivity test analysis found that a predominantly positive feedback of SM on precipitation existed in these two heavy rain events but not with completely the same features. Organization of the heavy rainfall-producing MCS seems to have an impact on the feedback process between SM and precipitation. For Case 1, the MCS was poorly organized and occurred locally in late afternoon, and the increase of SM only caused a slight enhancement of precipitation. Drier soil was found to result in an apparent decrease of rainfall intensity,indicating that precipitation is more sensitive to SM reduction. For Case 2, as the heavy rain was caused by a well-organized MCS with sustained precipitation, the rainfall is more sensitive to SM increase, which brings more rainfall. Additionally, distinctive feedback effects were identified from different stages and different organization of MCS, with strong feedback between SM and precipitation mainly appearing in the early stages of the poorly organized MCS and during the late period of the well-organized MCS.  相似文献   

10.
Currently, short wave radiation at the ground surface (GSW) is calculated under the assumption of a horizontal surface. This method of estimating the GSW may lead to considerable errors when the model resolution becomes higher and the model terrain becomes steeper. In this paper, to improve the short wave solar radiation simulations, a terrain slope and orientation parameterization has been implemented into the non-hydrostatic mesoscale model GRAPES (Global/Regional Assimilation and Prediction System). The effects of the terrain slope and orientation on different short range weather processes in China under different model resolutions are simulated and discussed. In the simulations, topography height is taken from NCEP(National Centers for Environmental Prediction) with a resolution of 1 km, and the slope and orientation of terrain are calculated using different staggering schemes and under di erent weather conditions. The results show that when the model resolution is low (30 and 60 km) and the slope of terrain is not large, the influence of the slope and orientation of terrain on the GSW is not evident; otherwise, however, it is not negligible. Under high model resolutions (3 and 6 km), the increase (decrease) of simulated precipitation corresponds to the decrease (increase) of the GSW induced by the slope effect, and the variations of precipitation are usually ranged between -5 and 5 mm. Under the high resolution, the surface temperature and heat fluxes are strongly correlated to each other and the high correlation exists mostly in the complex terrain regions. The changes of the GSW, precipitation, surface temperature, and heat fluxes induced by the e ects of the terrain slope and orientation are more obvious in mountainous regions, due to the alternations in the atmospheric circulation. It is found as well that under the weather condition of less cloud and less precipitation, the effects of the terrain slope and orientation can be more realistically seen. Therefore, the terrain slope and orientation can usually be neglected in numerical models when the horizontal model resolution is low and the slopes are moderate, but should be taken into account when the model resolution becomes high and the terrain is steep and undulating.  相似文献   

11.
Land surface processes take place on the interface between the earth and atmosphere, exerting significant influences on the weather and climate. Correct modeling of these processes is important to numerical weather forecast and climate prediction. In order to obtain a more thorough understanding of the land surface processes over the Gobi landscape, we evaluated the performance of the Common Land Model(Co LM) at Dunhuang station in Gansu Province of China to determine whether the model formulation, driven by observational data, is capable of simulating surface fluxes over the underlying desert surface. In comparison with the enhanced observation data collected at Dunhuang station over the period 22–28 August 2008, the results showed that the surface albedo simulated by Co LM was larger than that in the observation, and the simulated surface temperature was lower than the observed. After the measured values were used to correct the surface albedo, the solar radiation absorbed by the ground surface was more consistent with the measurements. A new empirical relationship of the surface thermal exchange coefficient rah was used to modify the thermal aerodynamic impedance. The simulated soil surface temperature became significantly closer to the observed value, and the simulated surface sensible heat as well as net radiative fluxes were also improved.  相似文献   

12.
The authors examined the performance of version 3.4.1 of the Weather Research and Forecasting Model(WRF) with various land surface schemes in simulating a severe drought event in Southwest China. Five numerical experiments were completed using the Noah land surface scheme, the Pleim-Xiu land surface scheme, the Noah-MP land surface schemes, the Noah- MP scheme with dynamic vegetation, and the Noah-MP scheme with dynamic vegetation and groundwater processes. In general, all the simulations reasonably reproduced the spatial and temporal variations in precipitation, but significant bias was also found, especially for the spatial pattern of simulated precipitation. The WRF simulations with the Noah-MP series land surface schemes performed slightly better than the WRF simulation with the Noah and Pleim-Xiu land surface schemes in reproducing the severe drought events in Southwest China. The leaf area index(LAI) simulated by the different land surface schemes showed significant deviations in Southwest China. The Pleim-Xiu scheme overestimated the value of LAI by a factor of two. The Noah-MP scheme with dynamical vegetation overestimated the magnitude of the annual cycle of the LAI, although the annual mean LAI was close to observations. The simulated LAI showed a long-term lower value from autumn 2009 to spring 2010 relative to normal years. This indicates that the LAI is a potential indictor to monitor drought events.  相似文献   

13.
A statistically-based low-level cloud parameterization scheme is introduced, modified, and applied in the Flexible coupled General Circulation Model (FGCM-0). It is found that the low-level cloud scheme makes improved simulations of low-level cloud fractions and net surface shortwave radiation fluxes in the subtropical eastern oceans off western coasts in the model. Accompanying the improvement in the net surface shortwave radiation fluxes, the simulated distribution of SSTs is more reasonably asymmetrical about the equator in the tropical eastern Pacific, which suppresses, to some extent, the development of the double ITCZ in the model. Warm SST biases in the ITCZ north of the equator are more realistically reduced, too. But the equatorial cold tongue is strengthened and extends further westward, which reduces the precipitation rate in the western equatorial Pacific but increases it in the ITCZ north of the equator in the far eastern Pacific. It is demonstrated that the low-level cloud-radiation feedback would enhance the cooperative feedback between the equatorial cold tongue and the ITCZ. Based on surface layer heat budget analyses, it is demonstrated that the reduction of SSTs is attributed to both the thermodynamic cooling process modified by the increase of cloud fractions and the oceanic dynamical cooling processes associated with the strengthened surface wind in the eastern equatorial Pacific, but it is mainly attributed to oceanic dynamical cooling processes associated with the strengthening of surface wind in the central and western equatorial Pacific.  相似文献   

14.
Decadal circulation differences between more and less rainfall periods in the annually first rainy season of Guangxi and their association with sea surface temperature (SST) of the austral Indian Ocean are investigated by using the NCEP/NCAR reanalysis data. The results are shown as follows. A pattern in which there is uniform change of the Guangxi precipitation shows a 20-year decadal oscillation and a 3-year interannual change. In contrast, a pattern of reversed-phase change between the north and the south of Guangxi has a 6-year interannual periodicity and quasi-biennial oscillation. In the period of more precipitation, the surface temperature in Eurasia is positively anomalous so as to lead to stronger low pressure systems on land and larger thermal contrast between land and ocean. Therefore, the air column is more unstable and ascending flows over Guangxi are intensified while the Hadley cell is weakened. Furthermore, the weaker western Pacific subtropical high and South Asia High, together with a stronger cross-equatorial flow, result in the transportation of more humidity and the appearance of more precipitation. The correlation analysis indicates that the Indian Ocean SST in Southern Hemisphere is closely associated with the variation of the seasonal precipitation of Guangxi on the decadal scale by influencing the Asian monsoon through the cross-equatorial flow.  相似文献   

15.
A regional air-sea coupled model,comprising the Regional Integrated Environment Model System (RIEMS)and the Princeton Ocean Model(POM)was developed to simulate summer climate features over East Asia in 2000.The sensitivity of the model's behavior to the coupling time interval(CTI),the causes of the sea surface temperature(SST)biases,and the role of air-sea interaction in the simulation of precipitation over China are investigated.Results show that the coupled model can basically produce the spatial pattern of SST,precipitation,and surface air temperature(SAT)with five different CTIs respectively.Also,using a CTI of 3,6 or 12 hours tended to produce more successful simulations than if using 1 and 24 hours.Further analysis indicates that both a higher and lower coupling frequency result in larger model biases in air-sea heat flux exchanges,which might be responsible for the sensitivity of the coupled model's behavior to the CTI. Sensitivity experiments indicate that SST biases between the coupled and uncoupled POM occurring over the China coastal waters were due to the mismatch of the surface heat fluxes produced by the RIEMS with those required by the POM.In the coupled run,the air-sea feedbacks reduced the biases in surface heat fluxes,compared with the uncoupled RIEMS,consequently resulted in changes in thermal contrast over land and sea and led to a precipitation increase over South China and a decrease over North China.These results agree well observations in the summer of 2000.  相似文献   

16.
This article studies the response of the distribution pattern and the physiological characteristics of the ecosystem to the spontaneous precipitation and the interaction between vegetation and the atmosphere on multiple scales in arid and semi-arid zones, based on measured data of the ecological physiological parameters in the Ordas Plateau of northern China. The results show that the vegetation biomass and the energy use efficiency of photosynthesis are especially sensitive to the annual precipitation; strong and complex interactions exist between the vegetation and the atmosphere on multiple scales leading to supernormal thermal heterogeneity of the underlying surface, the strong vortex movement and turbulence. This study can facilitate understanding of the land surface processes and the influences of global climate change as well as human activities on the human environment in the arid and semi-arid zones. It also aids in improving the parameterization schemes of turbulent fluxes of a heterogeneous underlying surface for land surface processes in climate models.  相似文献   

17.
A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, is implemented into the National Climate Center regional climate model (RegCM_NCC). The effects of the modified surface runoff scheme on RegCMANCC performance are tested with an abnormal heavy rainfall process which occurred in summer 1998. Simulated results show that the model with the original surface runoff scheme (noted as CTL) basically captures the spatial pattern of precipitation, circulation and land surface variables, but generally overestimates rainfall compared to observations. The model with the new surface runoff scheme (noted as NRM) reasonably reproduces the distribution pattern of various variables and effectively diminishes the excessive precipitation in the CTL. The processes involved in the improvement of NRM-simulated rainfall may be as follows: with the new surface runoff scheme, simulated surface runoff is larger, soil moisture and evaporation (latent heat flux) are decreased, the available water into the atmosphere is decreased; correspondingly, the atmosphere is drier and rainfall is decreased through various processes. Therefore, the implementation of the new runoff scheme into the RegCMANCC has a significant effect on results at not only the land surface, but also the overlying atmosphere.  相似文献   

18.
Two sets of numerical experiments using the coupled National Center for Environmental Prediction General Circulation Model (NCEP/GCM T42L18) and the Simplified Simple Biosphere land surface scheme (SSiB) were carried out to investigate the climate impacts of fractional vegetation cover (FVC) and leaf area index (LAI) on East Asia summer precipitation, especially in the Yellow River Basin (YRB). One set employed prescribed FVC and LAI which have no interannual variations based on the climatology of vegetation distribution; the other with FVC and LAI derived from satellite observations of the International Satellite Land Surface Climate Project (ISLSCP) for 1987 and 1988. The simulations of the two experiments were compared to study the influence of FVC, LAI on summer precipitation interannual variation in the YRB. Compared with observations and the NCEP reanalysis data, the experiment that included both the effects of satellite-derived vegetation indexes and sea surface temperature (SST) produced better seasonal and interannual precipitation variations than the experiment with SST but no interannual variations in FVC and LAI, indicating that better representations of the vegetation index and its interannual variation may be important for climate prediction. The difference between 1987 and 1988 indicated that with the increase of FVC and LAI, especially around the YRB, surface albedo decreased, net surface radiation increased, and consequently local evaporation and precipitation intensified. Further more, surface sensible heat flux, surface temperature and its diurnal variation decreased around the YRB in response to more vegetation. The decrease of surface-emitting longwave radiation due to the cooler surface outweighed the decrease of surface solar radiation income with more cloud coverage, thus maintaining the positive anomaly of net surface radiation. Further study indicated that moisture flux variations associated with changes in the general circulation also contributed to the precipitation interannual variation.  相似文献   

19.
Freshwater is recharged mainly by rainfall and stored inland for a period of time, which is directly affected by its storage capability. The storage capability of river basins has different spatiotemporal features that are important for the predictability of freshwater resources. However, the estimation of freshwater storage capability(FSC) remains a challenge due to the lack of observations and quantification indices. Here, we use a metric that characterizes hydrological "inertia"after rainfalls to analyze FSC over the 194 largest global major river basins based on satellite observations from the Gravity Recovery and Climate Experiment(GRACE) and simulations from the Community Land Model version 5(CLM5). During2003–16, the global land was observed to retain 28% of precipitation after one month based on GRACE observations, and the simulation depicts that the retained proportions decrease from 42% after one day to 26% after one month, with smaller FSC partly attributed to wetter conditions and higher vegetation densities. The root zone contributes about 40% to the global land FSC on daily to monthly time scales. As the time scale increases, the contribution from the surface soil decreases from 26% to 14%, while the contribution from the deep soil increases from 4% to 10%. Snow contributes over20% of land FSC, especially over high latitudes. With six decades of CLM5 long-term simulations, it is revealed that the change of FSC in most basins is related to internal climate variability. The FSC of river basins which displays the proportion of precipitation retained on land is worthy of further attention regarding the predictability of water resources.  相似文献   

20.
Variable thicknesses in the lowest half-ηmodel level (LML) are often used in atmospheric models to compute surface diagnostic fields such as surface latent and sensible heat fluxes.The effects of the LML on simulated tropical cyclone (TC)evolution were investigated in this study using the Weather Research and Forecasting (WRF) model.The results demonstrated notable influences of the LML on TC evolution when the LML was placed below 12 m.The TC intensification rate decreased progressively with a lowering of the LML,but its ultimate intensity change was relatively small.The maximum 10-m winds showed different behavior to minimum sea level pressure and azimuthally-averaged tangential winds,and thus the windpressure relationship was changed accordingly by varying the LML.The TC circulation was more contracted in association with a higher LML.Surface latent heat fluxes were enhanced greatly by elevating the LML,wherein the wind speed at the LML played a dominant role.The changes in the wind speed at the LML were dependent not only on their profile differences,but also the different heights they were taken from.Due to the enhanced surface heat fluxes,more intense latent heat release occurred in the eyewall,which boosted the storm's intensification.A higher LML tended to produce a stronger storm,and therefore the surface friction was reinforced,which in turn induced stronger boundary layer inflow together with increased diabatic heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号