首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In recent years the northwestern Black Sea has been investigated by a great number of geophysical methods. Charts of the M discontinuity and (isopachous) charts of the “granitic”, the “basaltic”, the Paleozoic, the Jurassic-Triassic, the Upper and Lower Cretaceous and the Eocene layers were plotted based on the results of the combined data of these investigations together with associated drilling data. The data for different velocity levels confirms the concept of layered-block structure of the crust, where large blocks are divided by deep faults penetrating to the upper mantle. Sedimentation within each block is continuous while reverse fault zones, dividing the East European Platform with a crustal thickness of more than 40 km and the Scythian Platform with a crust of about 30 km thick, and the latter from the Black Sea depression with crust of about 20 km, are discontinuous. Therefore, one can speak of a continuous-discontinuous nature of the sedimentation.

An inverse relationship in thicknesses of the “granitic” and sedimentary layers has been established. In places of intensive sedimentation the thickness of the “granitic” layer is less than that within the stable unsagging blocks. On the whole the greater the thickness of “basaltic” layer, the greater is the crustal thickness.

The relationship between the main geological structures of the area should be sought in the nature of structure of these “granitic” and “basaltic” layers.  相似文献   


2.
Recently completed investigations of the crustal structure on ancient shields of the East European platform carried out with the method of “deep seismic sounding” (D.S.S.) have drastically changed the previous notions about the deep structure of shields in general. In the upper crust, in the so-called “granitic” layer, complex anticlinal and synclinal structures as well as numerous faults, thrusts, etc., have been identified. A flattening of steeply dipping seismic interfaces with depth is observed. The crustal thickness in different tectonic zones ranges from 30 to 60 km. It is shown that the M-structure correlates with the sub-surface tectonics in the Ukrainian Shield.  相似文献   

3.
Seismic investigations to determine the crustal structure in the southwestern part of the Iberian Peninsula have been initiated in 1970. First experiments were carried out during July 1970, when a series of ten shots was fired off Cabo de Sines (Portugal) in shallow water and recorded up to distances of 185 km along a SE-profile towards Huelva (Spain). The profile was reversed in December 1970, when a series of twelve shots was fired off the south coast near Fuzeta (east of Faro) and recorded up to distances of about 260 km along a NW-profile towards Cabo da Roca west of Lisboa. A considerable increase in the seismic efficiency of the explosions could be achieved by generating standing waves in the water.

The structure deduced exhibits some peculiar features. Below the Palaeozoic sediments a fairly high velocity of 6.4 km/sec is found for the dome-shaped basement in that area. The lower crust, which is separated from the upper crust by a distinct velocity inversion (with a minimum velocity of about 5.3–5.6 km/sec), is characterized by a velocity of 7.1 km/sec. From the geological evidence and the sequence of seismic velocities it must be concluded that the upper crustal block in the southwestern part of the Iberian Peninsula has been uplifted by about 2–5 km since Permo-Triassic time, thus emphasizing the significance of vertical movement in tectonic activity.

The top of the upper mantle (8.15 km/sec) was detected at a depth of 30 km close to the Atlantic coast in the west, while near the Algarve coast in the south the depth to the M-discontinuity is about 34–35 km. This result in conjunction with studies of earthquake focal mechanisms confirms the suggestion that the Iberian block is being underthrust under the African plate.  相似文献   


4.
P. Giese  C. Morelli  L. Steinmetz   《Tectonophysics》1973,20(1-4):367-379
During the past two decades deep seismic sounding measurements have been carried out in western and southern Europe, mainly using the refraction method. These investigations were performed partly on a national basis but as well within international cooperative programs under the sponsorship of the European Seismological Commission.

In France, a systematic study has been executed to determine the main feature of deep structures under the Central Massif and the Paris Basin. In the Forez and Margeride regions, the sub-crustal velocity is lower (7.2 km/sec) than the normal value (8.0 km/sec) observed in the adjacent areas.

The central and southern part of Western Germany is covered by an extensive network of refraction profiles. The crustal thickness varies, similarly to France, from 25 to 35 km. A great amount of deep reflection data was obtained by commercial and special reflection work. The crust beneath the Rhinegraben area shows the typical “rift system” structure with a low subcrustal velocity (7.4–7.7 km/sec).

Very intensive refraction work has been carried out in the Alpine area. The maximum crustal thickness found near the axis of the negative gravity anomaly is about 55–60 km. Furthermore, a clear lowvelocity layer at a depth between 10 and 30 km has been detected. A key position with regard to the geotectonic structure of the Alps is held by the zone of Ivrea characterized by a pronounced gravity high. From the refraction work it may be concluded that there material of the lower crust and the upper mantle (7.2–7.5 km/sec) is overlying a layer of extremely low velocity (5.0 km/sec) which is interpreted as sialic crust.

Three years ago, a systematic study of crustal structure of the Italian peninsula has been started. Reversed profiles were observed on Sicily, in Calabria, and in Puglia. On Sicily, the structure is very complicated; the crust of the western part looks like a transition between a continental and oceanic structure whereas the eastern side shows a continental-type crust. In Calabria and Puglia, the crustal thickness has been determined to be about 25–35 km.  相似文献   


5.
The method of earthquake-generated converted waves which is based on the simultaneous recording of longitudinal (P), transverse (S) and converted (PS and SP) waves has been used in the U.S.S.R. since 1956. Converted phases generated at crustal and upper-mantle discontinuities in the seismic focal area are carefully analyzed. In this paper some dynamic characteristics of transmitted PS- and SP-waves arising at different types of boundaries are described.

From a comparison of the properties of the recorded converted waves with the results of theoretical computations conclusions can be drawn with regard to the possible structure of the “exchange” (conversion) boundaries. Seismic cross-sections are presented which illustrate the high effectiveness of the method in regional investigations of crustal structure. Owing to its significance and the multitude of observations (over 22,000 km of observation lines) the method is one of the principal seismic techniques used in the U.S.S.R. which give quantitative information on crustal layering.  相似文献   


6.
Claus Prodehl 《Tectonophysics》1981,80(1-4):255-269
The crustal structure of the central European rift system has been investigated by seismic methods with varying success. Only a few investigations deal with the upper-mantle structure. Beneath the Rhinegraben the Moho is elevated, with a minimum depth of 25 km. Below the flanks it is a first-order discontinuity, while within the graben it is replaced by a transition zone with the strongest velocity gradient at 20–22 km depth. An anomalously high velocity of up to 8.6 km/s seems to exist within the underlying upper mantle at 40–50 km depth. A similar structure is also found beneath the Limagnegraben and the young volcanic zones within the Massif Central of France, but the velocity within the upper mantle at 40–50 km depth seems to be slightly lower. Here, the total crustal thickness reaches only 25 km. The crystalline crust becomes extremely thin beneath the southern Rhônegraben, where the sediments reach a thickness of about 10 km while the Moho is found at 24 km depth. The pronounced crustal thinning does not continue along the entire graben system. North of the Rhinegraben in particular the typical graben structure is interrupted by the Rhenohercynian zone with a “normal” West-European crust of 30 km thickness evident beneath the north-trending Hessische Senke. A single-ended profile again indicates a graben-like crustal structure west of the Leinegraben north of the Rhenohercynian zone. No details are available for the North German Plain where the central European rift system disappears beneath a sedimentary sequence of more than 10 km thickness.  相似文献   

7.
The effect of different crustal thickness on a regional gravity field may be differentiated, as a first approximation, into-three layers: 1) sedimentary, 2) granitic, and 3) basaltic. The study of complex “wave pictures” obtained in deep seismic sounding has lead to differentiation of the crust as continental, oceanic, and transitional, with a general relationship existing between the surface tectonics of the crust and its deeper structures. The crust is thickest in the mountain regions (40 km-80 km) as against an average for the platforms of about 25 km-35 km. It appears that there are two particularly conspicuous gravity and seismic discontinuities in the crust; one between the sedimentary mantle and the so-called crystalline layer and the other between the latter and the M surface. Tentative estimations of crustal thickness are as follows: the Russian Platform and the north of the western Siberian Platform; 30 km-34 km; the Black Sea about 24 km; the entire south, southeast and east of the U. S. S. R. are marked by greater depth with the Pamirs having a thickness of over 70 km; in the Caucasus the M surface lies below 45 km; in the Northern Kazakhstan the crust is 34 km-36 km thick; in the Altay thickness of around 50 km are indicated; in the Eurasian continent, Tibet has the thickest crust, the gravity minimum indicating about 85 km; in the Verkoyansk region the M surface is over 43 km. Large areas of the Arctic Ocean is occupied by the shelf with a thickness similar to that in the north of the country. This suggests that a considerable stretch of the ocean adjacent to the northern shores of the U. S. S. R. has a continental type. The crust thins rapidly to the north to about 10 km. Along the Pacific coast the M surface is about 33 km, the shelf zone is rather narrow including the Sea of Okhotsk. Toward the ocean and the Kuriles the crust thins rapidly to 10 km. -- C. E. Sears.  相似文献   

8.
Numerous ge ological and geophysical investigations within the past decades have shown that the Rhinegraben is the most pronounced segment of an extended continental rift system in Europe. The structure of the upper and lower crust is significantly different from the structure of the adjacent “normal” continental crust.

Two crustal cross-sections across the central and southern part of the Rhinegraben have been constructed based on a new evaluation of seismic refraction and reflection measurements. The most striking features of the structure derived are the existence of a well-developed velocity reversal in the upper crust and of a characteristic cushion-like layer with a compressional velocity of 7.6–7.7 km/sec in the lower crust above a normal mantle with 8.2 km/sec. Immediately below the sialic low-velocity zone in the middle part of the crust, an intermediate layer with lamellar structure and of presumably basic composition could be mapped.

It is interesting to note that the asymmetry of the sedimentary fill in the central Rhinegraben seems to extend down deeper into the upper crust as indicated by the focal depths of earthquakes. The top of the rift “cushion” shows a marked relief which has no obvious relation to the crustal structure above it or the visible rift at the surface.  相似文献   


9.
Seismic refraction profiles completed in the past twenty years reveal that the top of the basement complex generally lies near sea level in East Antarctica but typically 2 or 3 km below sea level in West Antarctica. Throughout much of East Antarctica the thickness of the layer overlying the basement complex is less than half a kilometer, although a Phanerozoic sequence more than 1 km thick probably underlies the ice at the South Pole. Throughout central West Antarctica, on the other hand, a section one to several kilometers thick generally overlies the basement complex. The observed sedimentary section is no more than one half kilometer thick on either side of the Transantarctic Mountains. Rocks with high seismic velocities typical of the lower continental crust occur within a few kilometers of the surface on both sides of the Transantarctic Mountains. This occurrence lends support to the hypothesis of an abrupt increase in crustal thickness between West and East Antarctica.

In 1969, deep seismic soundings were carried out by the 14th Soviet Antarctic Expedition near the coast of Queen Maud Land. The crustal thickness was found to be about 40 km near the mountains, decreasing to about 30 km near the coast. In the top 15 km of the crust there is a gradual downward increase in P-wave velocity from 6.0 to 6.3 km/sec. The average velocity through the crust is 6.4 km/sec and the measured velocity below the M-discontinuity is 7.9 km/sec.

At the southwestern margin of the Ronne Ice Shelf, near-vertical reflections from the M-discontinuity have been recorded. A mean P-wave velocity of 6 km/sec in the crust was measured, leading to an estimated depth to M of 24 km below sea level.

Seismic surface wave dispersion studies indicate a mean crustal thickness of about 30 km in West Antarctica and about 40 km in East Antarctica. The dispersion data also show that group velocities across East Antarctica are much closer to those along average continental paths than to those across the Canadian shield. The results thus support other indications that central East Antarctica is not a simple crystalline shield.

P′P′-reflections beneath the continent support the existence of a low-velocity channel for P-waves, but show no significant difference in deep structure between Antarctica and other continents.  相似文献   


10.
The POLONAISE'97 (POlish Lithospheric ONset—An International Seismic Experiment, 1997) seismic experiment in Poland targeted the deep structure of the Trans-European Suture Zone (TESZ) and the complex series of upper crustal features around the Polish Basin. One of the seismic profiles was the 300-km-long profile P2 in northwestern Poland across the TESZ. Results of 2D modelling show that the crustal thickness varies considerably along the profile: 29 km below the Palaeozoic Platform; 35–47 km at the crustal keel at the Teisseyre–Tornquist Zone (TTZ), slightly displaced to the northeast of the geologic inversion zone; and 42 km below the Precambrian Craton. In the Polish Basin and further to the south, the depth down to the consolidated basement is 6–14 km, as characterised by a velocity of 5.8–5.9 km/s. The low basement velocities, less than 6.0 km/s, extend to a depth of 16–22 km. In the middle crust, with a thickness of ca. 4–14 km, the velocity changes from 6.2 km/s in the southwestern to 6.8 km/s in the northeastern parts of the profile. The lower crust also differs between the southwestern and northeastern parts of the profile: from 8 km thickness, with a velocity of 6.8–7.0 km/s at a depth of 22 km, to ca.12 km thickness with a velocity of 7.0–7.2 km/s at a depth of 30 km. In the lowermost crust, a body with a velocity of 7.20–7.25 km/s was found above Moho at a depth of 33–45 km in the central part of the profile. Sub-Moho velocities are 8.2–8.3 km/s beneath the Palaeozoic Platform and TTZ, and about 8.1 km/s beneath the Precambrian Platform. Seismic reflectors in the upper mantle were interpreted at 45-km depth beneath the Palaeozoic Platform and 55-km depth beneath the TTZ.

The Polish Basin is an up to 14-km-thick asymmetric graben feature. The basement beneath the Palaeozoic Platform in the southwest is similar to other areas that were subject to Caledonian deformation (Avalonia) such that the Variscan basement has only been imaged at a shallow depth along the profile. At northeastern end of the profile, the velocity structure is comparable to the crustal structure found in other portions of the East European Craton (EEC). The crustal keel may be related to the geologic inversion processes or to magmatic underplating during the Carboniferous–Permian extension and volcanic activity.  相似文献   


11.
A.G. Rodnikov 《Tectonophysics》1973,20(1-4):105-114
Results of seismic investigations in the transition zone from the Asian Continent to the Pacific Ocean are reported in detail. At the bottom of the sedimentary sequence presumably Cretaceous rocks are found in depressions of the sea floor. The “granitic” layer in the transition zone consists of igneous-sedimentary rocks in different stages of granitization. The “basaltic” layer is developed irregularly in thickness and seismic velocities; its origin is obscure. Apparently the earth's crust in the transition zone is still under formation.  相似文献   

12.
A gravimetric and magnetometric study was carried out in the north-eastern portion of the Cuyania terrane and adjacent Pampia terrane. Gravimetric models permitted to interpret the occurrence of dense materials at the suture zone between the latter terranes. Magnetometric models led to propose the existence of different susceptibilities on either side of the suture. The Curie temperature point depth, representing the lower boundary of the magnetised crust, was found to be located at 25 km, consistent with the lower limit of the brittle crust delineated by seismic data; this unusually thick portion of the crust is thought to release stress producing significant seismicity.

Moho depths determined from seismic studies near western Sierras Pampeanas are significantly greater than those obtained from gravimetric crustal models.

Considering mass and gravity changes originated by the flat-slab Nazca plate along Cuyania and western Pampia terranes, it is possible to reconcile Moho thickness obtained either by seismic or by gravity data. Thus, topography and crustal thickness are controlled not only by erosion and shortening but by upper mantle heterogeneities produced by: (a) the oceanic subducted Nazca plate with “normal slope” also including asthenospheric materials between both continental and oceanic lithospheres; (b) flat-slab subducted Nazca plate (as shown in this work) without significant asthenospheric materials between both lithospheres. These changes influence the relationship between topographic altitudes and crustal thickness in different ways, differing from the simple Airy system relationship and modifying the crustal scale shortening calculation. These changes are significantly enlarged in the study area. Future changes in Nazca Plate slope will produce changes in the isostatic balance.  相似文献   


13.
The VRANCEA99 seismic refraction experiment is part of an international and multidisciplinary project to study the intermediate depth earthquakes of the Eastern Carpathians in Romania. As part of the seismic experiment, a 300-km-long refraction profile was recorded between the cities of Bacau and Bucharest, traversing the Vrancea epicentral region in NNE–SSW direction.

The results deduced using forward and inverse ray trace modelling indicate a multi-layered crust. The sedimentary succession comprises two to four seismic layers of variable thickness and with velocities ranging from 2.0 to 5.8 km/s. The seismic basement coincides with a velocity step up to 5.9 km/s. Velocities in the upper crystalline crust are 5.96.2 km/s. An intra-crustal discontinuity at 18–31 km divides the crust into an upper and a lower layer. Velocities within the lower crust are 6.7–7.0 km/s. Strong wide-angle PmP reflections indicate the existence of a first-order Moho at a depth of 30 km near the southern end of the line and 41 km near the centre. Constraints on upper mantle seismic velocities (7.9 km/s) are provided by Pn arrival times from two shot points only. Within the upper mantle a low velocity zone is interpreted. Travel times of a PLP reflection define the bottom of this low velocity layer at a depth of 55 km. The velocity beneath this interface must be at least 8.5 km/s.

Geologic interpretation of the seismic data suggests that the Neogene tectonic convergence of the Eastern Carpathians resulted in thin-skinned shortening of the sedimentary cover and in thick-skinned shortening in the crystalline crust. On the autochthonous cover of the Moesian platform several blocks can be recognised which are characterised by different lithological compositions. This could indicate a pre-structuring of the platform at Mesozoic and/or Palaeozoic times with a probable active involvement of the Intramoesian and the CapidavaOvidiu faults. Especially the Intramoesian fault is clearly recognisable on the refraction line. No clear indications of the important Trotus fault in the north of the profile could be found. In the central part of the seismic line a thinned lower crust and the low velocity zone in the uppermost mantle point to the possibility of crustal delamination and partial melting in the upper mantle.  相似文献   


14.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

15.
K. Hinz 《Tectonophysics》1973,20(1-4):295-302
Within the frame of the German-French project ANNA-1970, two long refraction profiles were investigated north and south of the island of Majorca.

For the southern Balearic Basin an oceanic crust can be derived from the travel-time curves consisting of a 4.0 km thick Cenozoic sedimentary layer with: Vp = 2.35 (km/sec) + 0.35 (sec−1) × Z (km) and a 5 km thick layer with: Vp = 4.0 (km/sec) + 0.28 (sec−1) × Z (km)

The transition to the upper mantle takes place at a depth of 12 km. Directly south of Majorca a crustal thickening was measured which may be caused by the process of crustal shortening. P]In the northern Balearic Basin a faulted transitional type of crust has been observed indicating probably an embryonic and juvenile ocean expansion.  相似文献   


16.
The results of detailed seismic crustal investigations in the marginal part of the transition zone from the Asian continent to the Pacific Ocean are discussed. The observations were carried out during 1963 and 1964 by expeditions of the Institute of Physics of the Earth of the U.S.S.R. Academy of Sciences and the Sakhalin Complex Research Institute, Siberian Division of the U.S.S.R. Academy of Sciences. The results of these measurements have been described in detail in a monograph, by Zverev and Tulina, entitled Deep Seismic Sounding of the Earth's Crust in the Sakhalin-Hokkaido-Primorye Zone (1971).

The distribution of seismic crustal characteristics is studied and schematic maps of the surface of presumably Cretaceous and Meso-Paleozoic (or pre-Paleozoic) sediments near Sakhalin Island as well as of the mantle surface in the Sakhalin-Hokkaido-Primorye zone are presented.  相似文献   


17.
Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is 2 μW/m3 within the 3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of 3.5 μW/m3 at 5.5 km depth, then decreases to 0.5–1 μW/m3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of 40–125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of 0.14 μW/m3. This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the 35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for 70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper 30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content.  相似文献   

18.
The Neogene Volcanic Province (NVP) within the Betic Cordillera (SE Spain) consists of three main metapelitic enclave suites (from SW to NE: El Hoyazo, Mazarrón and Mar Menor). Since the NVP represents a singular place in the world where crustal enclaves were immediately quenched after melting, their microstructures provide a “photograph” of the conditions at depth just after the moment of the melting.

The thermobarometric information provided by the different microstructural assemblages has been integrated with the geophysical and geodynamical published data into a model of the petrologic evolution of the Mar Menor enclaves. They were equilibrated at 2–3 kbar, 850–900 °C, and followed a sequence of heating melt producing reactions. A local cooling event evidenced by minor melt crystallization preceded the eruption.

The lower crustal studies presented in this work contribute to the knowledge of: (i) the partial melting event beneath the Mar Menor volcanic suite through a petrologic detailed study of the enclaves; (ii) how the microstructures of fast cooled anatectic rocks play an important role in tracing the magma evolution in a chamber up to the eruption, and how they can be used as pseudothermobarometers; (iii) the past and current evolution of the Alborán Domain (Betic Cordillera) and Mediterranean Sea, and how the base of a metapelitic crust has melted within an active geodynamic setting.  相似文献   


19.
Igneous and sedimentary rocks recently dredged and cored from the steep western slope of the Beata Ridge provide important data on the composition, age and details of crustal evolution of the rock-types responsible for recorded compressional wave velocities. The sedimentary rock samples also provide new data concerning the age and depositional environment of overlying sedimentary reflectors.

The deepest (4,100 m) dredge haul contains deeply weathered coarsegrained igneous rocks. Nine other hauls, distributed between 4,000–2,300 m, contain holocrystalline basalts and diabases. The compressional wave velocity of air-dried samples of two holocrystalline basalts and a diabase at atmospheric pressure ranges from 5.0–5.6 km/sec. Sampling in depths less than 2,300 m shows that the crest of the Beata Ridge is capped by Quaternary deposits underlain by consolidated carbonate sediment of at least Middle Eocene age. The faunal assemblages of the Mid-Eocene samples are the product of normal accumulation in a shallow shelf environment.

The dredging results coupled with previously published seismic reflection and refraction data, suggest that the 5.4–5.7 km/sec crust is composed of a layer of basalt and diabase which outcrops below 2,300 m, on a fault-generated escarpment that was produced in the Late Cretaceous-Early Tertiary. The shallow shelf samples of Eocene age indicate that the Beata Ridge was higher in the Early Tertiary and has subsided subsequently to its present depth.  相似文献   


20.
An analysis is presented of the mechanisms of tectonic evolution of the southern part of the Urals between 48N and 60N in the Carboniferous–Triassic. A low tectonic activity was typical of the area in the Early Carboniferous — after closure of the Uralian ocean in the Late Devonian. A nappe, ≥10–15 km thick, overrode a shallow-water shelf on the margin of the East European platform in the early Late Carboniferous. It is commonly supposed that strong shortening and thickening of continental crust result in mountain building. However, no high mountains were formed, and the nappe surface reached the altitude of only ≤0.5 km. No high topography was formed after another collisional events at the end of the Late Carboniferous, in the second half of the Early Permian, and at the start of the Middle Triassic. A low magnitude of the crustal uplift in the regions of collision indicates a synchronous density increase from rapid metamorphism in mafic rocks in the lower crust. This required infiltration of volatiles from the asthenosphere as a catalyst. A layer of dense mafic rocks, 20 km thick, still exists at the base of the Uralian crust. It maintains the crust, up to 60 km thick, at a mean altitude 0.5 km. The mountains, 1.5 km high, were formed in the Late Permian and Early Triassic when there was no collision. Their moderate height precluded asthenospheric upwelling to the base of the crust, which at that time was 65–70 km thick. The mountains could be formed due to delamination of the lower part of mantle root with blocks of dense eclogite and/or retrogression in a presence of fluids of eclogites in the lower crust into less dense facies.

The formation of foreland basins is commonly attributed to deflection of the elastic lithosphere under surface and subsurface loads in thrust belts. Most of tectonic subsidence on the Uralian foreland occurred in a form of short impulses, a few million years long each. They took place at the beginning and at the end of the Late Carboniferous, and in the Late Permian. Rapid crustal subsidence occurred when there was no collision in the Urals. Furthermore, the basin deepened away from thrust belt. These features preclude deflection of the elastic lithosphere as a subsidence mechanism. To ensure the subsidence, a rapid density increase was necessary. It took place due to metamorphism in the lower crust under infiltration of volatiles.

The absence of flexural reaction on the Uralian foreland on collision in thrust belt together with narrow-wavelength basement deformations under the nappe indicate a high degree of weakening of the lithosphere. Such deformations took also place on the Uralian foreland at the epochs of rapid subsidences when there was no collision in thrust belt. Weakening of the lithosphere can be explained by infiltration of volatiles into this layer from the asthenosphere and rapid metamorphism in the mafic lower crust. Lithospheric weakening allowed the formation of the Uralian thrust belt under convergent motions of the plates which were separated by weak areas.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号