首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
全球主要地震区中源和深源大地震的18.6年轮回   总被引:7,自引:1,他引:7       下载免费PDF全文
分析全球中源和深源大地震与月球交点运动的关系,确定了15个地区的中源和深源大地震有明显的18.6a地震轮回。在这15个地区中,除兴都库什地区外,其余地区的边界与俯冲带的分段性有密切关系。这一发现进一步证实了岩浆潮致上涌可调制地震活动的岩浆潮假设,并表明岩浆潮致上涌的影响范围在深部和浅部明显不同,中源和深源地震的发生很可能和岩浆上涌有关。  相似文献   

2.
In this paper,we discuss (1) whether a significant change in dominant creep mechanism will occur at 400 km discontinuity in some subducting slabs as a result of olivine-spinel phase transition;(2) could the result influence phase boundary strength and deep seismicity? Through this study,we noticed that a transition of creep mechanism from dislocation to diffusion (or superplasticity) could occur at the olivine-spinel phase boundary where temperature effect on phase transition dominates over pressure,which will result in a weakening phase boundary.Triggered by this phase transition weakening,a deep strong earthquake might be generated in the relatively strengthening region above the phase boundary so that the phase boundary is naturally the ceasing boundary of deep seismicity.Contrasting to this,the transition of the creep mechanism from dislocation glide to dislocation climb may be common at the phase boundary where pressure effect on phase transition dominates over temperature.In this case,olivine-spin  相似文献   

3.
Thermal models of subduction zones often base their slab–wedge geometry from seismicity at mantle depths and, consequently, cannot be used to evaluate the relationship between seismicity and structure. Here, high-resolution seismic observations from the recent Broadband Experiment Across the Alaska Range (BEAAR) constrain, in a rare instance, the subducting slab geometry and mantle wedge temperature independent of seismicity. Receiver functions reveal that the subducting crust descends less steeply than the Wadati-Benioff Zone. Attenuation tomography of the mantle wedge reveals a high Q and presumably cold region where the slab is less than 80 km deep. To understand these two observations, we generate thermal models that use the improved wedge geometry from receiver functions and that incorporate temperature- and strain-rate-dependent olivine rheology. These calculations show that seismicity within the subducting crust falls in a narrow belt of pressure–temperature conditions, illuminating an effective Clapeyron slope of 0.1 K/MPa at temperatures of 450–750 °C. These conditions typify the breakdown of high-pressure hydrous minerals such as lawsonite and suggest that a single set of dehydration reactions may trigger intermediate-depth seismicity. The models also require that the upper, cold nose of the mantle wedge be isolated from the main flow in the mantle wedge in order to sustain the cold temperatures inferred from the Q tomography. Possibly, sufficient mechanical decoupling occurs at the top of the downgoing slab along a localized shear zone to 80 km depth, considerably deeper than inferred from thrust zone seismicity.  相似文献   

4.
A sequence of 98 teleseismically recorded earthquakes occurred off the east coast of Kamchatka at depths between 10-90 km around latitude 52.5°N and longitude 160°E on May 16–23, 2013. The swarm occurred along the northern limit of the rupture area of the 1952 Mw 9.0 great Kamchatka earthquake, the fifth largest earthquake in the history of seismic observations. On May 24, 2013 the strongest deep earthquake ever recorded of Mw 8.3 occurred beneath the Sea of Okhotsk at a depth of 610 km in the Pacific slab of the Kamchatka subduction zone, becoming the northernmost deep earthquake in the region. The deep Mw 8.3 earthquake occurred down-dip of the shallow swarm in a transition zone between the southern deep and northern shallow segments of the Pacific slab. Several deep aftershocks followed, covering a large, laterally elongated part of the slab. We suppose that the two described earthquake sequences, the May 16–23 shallow earthquake swarm and the May 24–28 deep mainshock-aftershock series, represent a single tectonic event in the Pacific slab having distinct properties at different depth levels. A low-angle underthrusting of the shallow part of the slab recorded by the shallow earthquake swarm activated the deep part; this process induced the deep mainshock-aftershock series only three days after the swarm. The domain of the subducting slab activated by the May 2013 earthquake occurrence was extraordinarily large both down-dip and along-strike.  相似文献   

5.
Influence of fluids and magma on earthquakes: seismological evidence   总被引:3,自引:0,他引:3  
In this paper, we present seismological evidence for the influence of fluids and magma on the generation of large earthquakes in the crust and the subducting oceanic slabs under the Japan Islands. The relationship between seismic tomography and large crustal earthquakes (M=5.7-8.0) in Japan during a period of 116 years from 1885 to 2000 is investigated and it is found that most of the large crustal earthquakes occurred in or around the areas of low seismic velocity. The low-velocity zones represent weak sections of the seismogenic crust. The crustal weakening is closely related to the subduction process in this region. Along the volcanic front and in back-arc areas, the crustal weakening is caused by active volcanoes and arc magma resulting from the convective circulation process in the mantle wedge and dehydration reactions in the subducting slab. In the forearc region of southwest Japan, fluids are suggested in the 1995 Kobe earthquake source zone, which have contributed to the rupture nucleation. The fluids originate from the dehydration of the subducting Philippine Sea slab. The recent 2001 Geiyo earthquake (M=6.8) occurred at 50 km depth within the subducting Philippine Sea slab, and it was also related to the slab dehydration process. A detailed 3D velocity structure is determined for the northeast Japan forearc region using data from 598 earthquakes that occurred under the Pacific Ocean with hypocenters well located with SP depth phases. The results show that strong lateral heterogeneities exist along the slab boundary, which represent asperities and results of slab dehydration and affect the degree and extent of the interplate seismic coupling. These results indicate that large earthquakes do not strike anywhere, but only anomalous areas which can be detected with geophysical methods. The generation of a large earthquake is not a pure mechanical process, but is closely related to physical and chemical properties of materials in the crust and upper mantle, such as magma, fluids, etc.  相似文献   

6.
分析了大华北浅源地震与日本海西部及我国东北深震的关系,认为本世纪来日本海西部—我国东北深震经历了5个相对活跃期,大华北各地震区相应经历这5个活跃期的影响期。根据大华北M≧6级浅源地震与深震活动的相关性,建立了太平洋板块楔形俯冲带端部重大深震事件导致大华北浅源M≧6级地震发生的板块俯冲模型,应变波传播速度约94km/年,地表视速度约100km/年。重大深震事件突出、模型稳定性强,预测实验表明模型公式可做大华北地震监测参考。用本模型可以解释浅源地震迁移、各地震区地震与深震活动相关等现象。  相似文献   

7.
— Numerical simulation of recurring large interplate earthquakes in a subduction zone is conducted to explore the effects of aseismic sliding on the variation of stresses and the activity of small earthquakes. The frictional force obeying a rate- and state-dependent friction law is assumed to act on the plate interface in a 2-D model of uniform elastic half-space. The simulation results show that large earthquakes repeatedly occur at a constant time interval on a shallow part of the plate interface and that aseismic sliding migrates from the upper aseismic zone as well as from the lower aseismic zone into the central part of the seismogenic zone before the occurrence of a large interplate earthquake. This spatiotemporal variation of aseismic sliding significantly perturbs the stresses in the overriding plate and in the subducting oceanic plate, leading to the precursory seismic quiescence in the overriding plate and the activation of the intermediate-depth earthquakes of down-dip tension type. After the occurrence of a large interplate earthquake, the activity of the intermediate-depth earthquakes of down-dip compression type in the subducting slab is expected to increase and migrate downward. This is because the downward propagation of postseismic sliding causes the downward migration of compressional-stress increase in the down-dip direction of the plate interface. The simulation result further indicates that episodic events of aseismic sliding may occur when the spatial distributions of friction parameters are significantly nonuniform. The variation of stresses due to episodic sliding is expected to cause seismicity changes.  相似文献   

8.
A subset of 2660 shallow earthquakes (0–50 km) that occurred from 1988 to 1996 in south central Alaska between 155°W and 145°W and 59°N and 63°N was relocated using the joint hypocenter determination (JHD) method. Both P- and S-wave observations recorded by the regional seismic network were used. Events were relocated in twenty different groups based on their geographic location and depth using two velocity models. As a result of the relocation, the majority of the hypocenters shifted downward, while the epicenter locations did not change significantly. The distribution of the shallow subduction zone earthquakes indicates the existence of two seismically independent blocks, with one block occupying the northeastern part and the other occupying the central and western parts of the study area. The boundary between the blocks is marked by a 15 to 20 km wide seismicity gap to the southeast of 149.5°W and 62°N. The analysis of the fault plane solutions for shallow subduction zone earthquakes shows that an overwhelming majority of the solutions represent normal, oblique-normal or strike-slip faulting with predominant WNW-ESE orientation of T-axes. This indicates a down-dip extensional regime for the subducting slab at shallow depths. Very few earthquakes yielded fault plane solutions consistent with thrusting on a contact zone between the overriding and subducting plates. This result may be an indication that currently either the strain energy is not released at the contact zone or it is associated with aseismic motion.  相似文献   

9.
本研究基于Global CMT提供的1196个1976年11月—2017年1月MW4.6地震矩心矩张量解,对西北太平洋俯冲带日本本州至中国东北段的应力场进行反演计算,得到了从浅表到深部俯冲带应力状态的完整分布.结果显示:俯冲带浅表陆壳一侧应力场呈现水平挤压、垂向拉伸状态,洋壳一侧的应力状态则相反,即近水平拉张、近垂向压缩.沿着俯冲板片向下,应力主轴逐渐向俯冲板片轮廓靠拢,其中位于双地震层(120km深度附近)之上的部分,主张应力轴沿俯冲板片轮廓展布而又比其更为陡倾;双地震层内的应力模式同典型I型双层地震带内的应力模式一致,即上层沿俯冲板片轮廓压缩、下层沿俯冲板片轮廓拉伸;双地震层之下,应力模式逐步转变为主压应力轴平行于俯冲板片轮廓.通观所研究的整个俯冲系统,水平面内主压和主张应力轴基本保持了与西北太平洋板片俯冲方向上的一致性,同经典俯冲板片的应力导管模型所预言的俯冲带应力模式相符;而主张应力轴在俯冲板片表面之下的中源地震深度范围内转向海沟走向,或许同研究区域横跨日本海沟与千岛海沟结合带,改变的浅部海沟形态致使完整俯冲板片下部产生横向变形有关.  相似文献   

10.
We present a combined method, using sP depth-phase data and double-difference arrival times, to determine the precise hypocenter locations of earthquakes that occur under the Pacific Ocean outside of the area covered by the land-based seismic network. We assess the effectiveness of the combined method using a data set of P- and S-wave arrival times and sP depth phase from suboceanic earthquakes recorded by both land-based seismic stations and offshore seismic stations (OFS). The hypocenters of the offshore earthquakes relocated using the combined method are consistent with those determined using the standard location method and OFS data. The differences in the hypocenters relocated by the two methods are less than 4 km. We applied the method to the subduction region that underlies the Kanto district, central Japan, and located a large number of earthquakes that occurred beneath the Pacific Ocean. We then determined the detailed 3D seismic velocity structure by inverting a large number of arrival times of P- and S-waves and sP depth phase from the relocated earthquakes in the study region. High-velocity anomalies related to the cold subducting Pacific slab and low-velocity anomalies related to the hot mantle wedge are clearly imaged. Beneath active volcanoes, low-velocity zones are visible from the surface to a depth of 100 km, reflecting fluids released by dehydration of the subducting Pacific slab. Strong lateral heterogeneities are revealed on the upper boundary of the Pacific slab beneath the forearc region. The low-velocity areas under the offshore region are associated with low seismicity and weak interplate coupling. A low-velocity layer is imaged along the upper boundary of the Philippine Sea slab in the northern part of Kanto district, which may reflect dehydration of the slab. Our tomographic images indicate that the overlaying Philippine Sea plate has effects on the spatial distribution of active volcanoes related to the subducting Pacific slab in the study region.  相似文献   

11.
西南太平洋板块与澳大利亚板块之间的汤加—克马德克俯冲带,是研究地球动力学最重要的区域之一.本文研究根据MIT-P08地震数据,结合板块构造边界、地震活动分布、海岸地形数据等,基于GOCAD软件平台建立三维地震层析成像,对西南太平洋板块的汤加—克马德克俯冲板片进行三维解释.地震层析成像显示汤加—斐济地区地幔至少存在三个"高速"异常体.早期汤加—克马德克俯冲板片穿过地幔转换带,并进入下地幔,最大深度达1600 km.三维构造模型揭示了汤加—克马德克板片在深度600~800 km处存在断折形变,该俯冲板片去褶皱恢复后,测量其俯冲的最大位移达2600 km.汤加—克马德克板片开始快速俯冲的时间至少在30 Ma之前,平均移动速率约为68~104 mm /a.俯冲板片三维构造重建和恢复,可以有效揭示俯冲板片几何学、运动学,为研究深源地震成因、地球深部变化过程和动力学机制提供约束.  相似文献   

12.
We apply a forward-modeling approach to high-quality arrival time data from 23 deep earthquakes greater than 400 km depth to investigate the detailed structure of the subducting Pacific slab beneath the Japan Sea. Our results show that a finger-like anomaly exists within the subducting Pacific slab below 400 km depth, which has a P-wave velocity 5% lower than the surrounding slab velocity (or 3% lower than that of the normal mantle), suggesting the existence of a metastable olivine wedge (MOW) in the slab. The MOW top and bottom depths are 400 and 560 km, respectively. The MOW is estimated to be about 50 km wide at 400 km depth and close to the slab upper boundary. At 560 km depth the MOW is located at about 25 km below the slab upper boundary. Most of the deep earthquakes are located in the MOW. Our results favor transformational faulting as the mechanism for deep earthquakes.  相似文献   

13.
中国东北的深源地震波形匹配检测及定位   总被引:1,自引:0,他引:1       下载免费PDF全文
中国东北珲春周边地区位于环太平洋地震带上,也是中国唯一存在的深源地震带.较大地震发生后常会有若干震级较小的余震发生,但在相同的地震震级情况下深源地震的余震一般比浅源地震的余震数量要少1~3个数量级,且在全球不同深震区的深震余震数量也存在显著差异.针对国际地震中心(ISC)2010年7月至2014年12月目录中给出的中国东北附近27次震源深度超过300 km的深源地震,我们首先利用区域固定地震台及NECsaids流动地震台阵的连续波形数据,选取已知地震事件作为模板,采用Match&Locate及Matched Filter方法进行波形互相关叠加分析来检测微小深震事件;然后对1966至2017年ISC目录中的东北地区深源地震进行双差重定位以提高震源位置的准确性,进一步分析深震活动与俯冲板片的关系.研究结果显示除ISC目录中给出的深震事件,我们未能检测出作为模板的深源地震的前震或余震活动,证明东北深源地震余震活动较少并不是由于台站分布有限而造成的漏检结果;重定位后震源延伸的角度与西太平洋板片在410~660 km地幔转换带内的俯冲角度较为一致,并且大部分深震震源位置位于俯冲板片中的亚稳态橄榄岩楔形区内部.结合双差定位结果、b值分析及前人研究成果,我们认为东北深源地震应不属于与俯冲非直接相关的"孤立地震",而是与西太平洋板块俯冲直接相关.  相似文献   

14.
The results of detailed investigation into the geometry of distribution of earthquakes around and below the volcanoes Korovin, Cleveland, Makushin, Yake-Dake, Oshima, Lewotobi, Fuego, Sangay, Nisyros and Montagne Pelée at convergent plate margins are presented. The ISC hypocentral determinations for the period 1964-1999, based on data of global seismic network and relocated by Engdahl, van der Hilst and Buland, have been used.The aim of this study has been to contribute to the solution of the problem of location of source regions of primary magma for calc-alkaline volcanoes spatially and genetically related to the process of subduction. Several specific features of seismicity pattern were revealed in this context. (i) A clear occurrence of the intermediate-depth aseismic gap (IDAG) in the Wadati-Benioff zone (WBZ) below all investigated active volcanoes. We interpret this part of the subducted slab, which does not contain any teleseismically recorded earthquake with magnitude greater than 4.0, as a partially melted domain of oceanic lithosphere and as a possible source of primary magma for calc-alkaline volcanoes. (ii) A set of earthquakes in the shape of a seismically active column (SAC) seems to exists in the continental wedge below volcanoes Korovin, Makushin and Sangay. The seismically active columns probably reach from the Earth surface down to the aseismic gap in the Wadati-Benioff zone. This points to the possibility that the upper mantle overlying the subducted slab does not contain large melted domains, displays an intense fracturing and is not likely to represent the site of magma generation. (iii) In the continental wedge below the volcanoes Cleveland, Fuego, Nisyros, Yake-Dake, Oshima and Lewotobi, shallow seismicity occurs down to the depth of 50 km. The domain without any earthquakes between the shallow seismically active column and the aseismic gap in the Wadati-Benioff zone in the depth range of 50-100 km does not exclude the melting of the mantle also above the slab. (iv) Any earthquake does not exist in the lithospheric wedge below the volcano Montagne Pelée. The source of primary magma could be located in the subducted slab as well as in the overlying mantle wedge. (v) Frequent aftershock sequences accompanying stronger earthquakes in the seismically active columns indicate high fracturing of the wedge below active volcanoes. (vi) The elongated shape of clusters of epicentres of earthquakes of seismically active columns, as well as stable parameters of the available fault plane solutions, seem to reflect the existence of dominant deeply rooted fracture zones below volcanoes. These facts also favour the location of primary magma in the subducting slab rather than in the overlying wedge.We suppose that melts advancing from the slab toward the Earth surface may trigger the observed earthquakes in the continental wedge that is critically pre-stressed by the process of subduction. However, for definitive conclusions it will be necessary to explain the occurrence of earthquake clusters below some volcanoes and the lack of seismicity below others, taking into account the uncertainty of focal depth determination from global seismological data in some regions.  相似文献   

15.
On April 9, 2001 a M w 6.7 earthquake occurred offshore of the Chilean coast close to the intersection of the subducting Juan Fernández Ridge (JFR) and the trench near 33°S. The mainshock as well as an unprecedented number of aftershocks were recorded on regional broad-band and short-period seismic networks. We obtained a regional moment tensor solution of the mainshock that indcates a tensional focal mechanism consistent with the Harvard CMT solution. Based on waveform modeling and relocation, the depth of the mainshock was found to be 10–12 km. We relocated 142 aftershocks, which are strongly clustered and restricted to 10–30 km in depth. The seismicity distribution indicates a conjugate normal fault system extending into the lithospheric mantle that correlates with ridge-parallel fractures observed by previous seismic and bathymetric surveys. In conjunction with the historic regional distribution of outer-rise and large interplate seismicity, our results indicate that, with the exception of anomalously large thrust events, preexisting fractures associated with large bathymetric features like ridges have to exist to allow the generation of outer-rise seismicity along the Chilean margin. Hence, flexural bending and time-dependent interplate earthquakes can locally affect the nucleation of outer-rise events. The occurrence of the outer-rise seismicity in the oceanic mantle suggests the existence of lithospheric scale faults which might act as conduits to hydrate the subducting slab.Robert Fromm-Rhim passed away July 31st, 2004.  相似文献   

16.
In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical valueT cr.Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650–700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth.Our results imply that no barrier to slab penetration at a depth of 650–700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.  相似文献   

17.
Universality of the Seismic Moment-frequency Relation   总被引:1,自引:0,他引:1  
—We analyze the seismic moment-frequency relation in various depth ranges and for different seismic regions, using Flinn-Engdahl's regionalization of global seismicity. Three earthquake lists of centroid-moment tensor data have been used the Harvard catalog, the USGS catalog, and the Huang et al. (1997) catalog of deep earthquakes. The results confirm the universality of the β-values and the maximum moment for shallow earthquakes in continental regions, as well as at and near continental boundaries. Moreover, we show that although fluctuations in earthquake size distribution increase with depth, the β-values for earthquakes in the depth range of 0–500 km exhibit no statistically significant regional variations. The regional variations are significant only for deep events near the 660 km boundary. For declustered shallow earthquake catalogs and deeper events, we show that the worldwide β-values have the same value of 0.60 ± 0.02. This finding suggests that the β-value is a universal constant. We investigate the statistical correlations between the numbers of seismic events in different depth ranges and the correlation of the tectonic deformation rate and seismic activity (the number of earthquakes above a certain threshold level per year). The high level of these correlations suggests that seismic activity indicates tectonic deformation rate in subduction zones. Combined with the universality of the β-value, this finding implies little if any variation in maximum earthquake seismic moment among various subduction zones. If we assume that earthquakes of maximum size are similar in different depth ranges and the seismic efficiency coefficient, χ, is close to 100% for shallow seismicity, then we can estimate χ for deeper earthquakes for intermediate earthquakes χ≈ 5%, and χ≈ 1% for deep events. These results may lead to new theoretical understanding of the earthquake process and better estimates of seismic hazard.  相似文献   

18.
We present a study of the lateral structure and mode of deformation in the transition between the Kuril and Honshu subduction zones. We begin by examining the source characteristics of the January 19, 1969, intermediate depth earthquake north of Hokkaido in the framework of slab-tearing, which for the December 6, 1978 event has been well documented by previous studies. We use a least-squares body wave inversion technique, and find that its focal mechanism is comparable to the 1978 event. To understand the cause of these earthquakes, which in the case of the 1978 event occurred on a vertical tear fault but does not represent hinge faulting, we examine the available International Seismological Centre [ISC] hypocenters and Harvard centroid-moment tensor [CMT] solutions to determine the state of stress, and lateral structure and segmentation in the Kuril and northern Honshu slabs. These data are evaluated in the framework of two models. Model (A) requires the subducting slab at the Hokkaido corner to maintain surface area. Model (B) requires slab subduction to be dominated by gravity, with material subducting in the down-dip direction. The distribution of ICS hypocenters shows a gap in deep seismicity down-dip of the Hokkaido corner, supporting model (B). From the CMT data set we find that three types of earthquake focal mechanisms occur. The first (type A) represents dip-slip mechanisms consistent with down-dip tension or compression in the slab in a direction normal to the strike of the trench. These events occur throughout the Honshu and Kuril slabs with focal mechanisms beneath Hokkaido showing NNW plungingP andT axes consistent with the local slab geometry. The second (type B) occurs primarily at depths over 300 km in the southern part of the Kuril slab with a few events in the northern end of the Honshu deep seismicity. These earthquakes have focal mechanisms with P axes oriented roughly E-W, highly oblique to the direction of compression found in the type A events, with which they are spatially interspersed. The third (type C) group of earthquakes are those events which do not fit in either of the first two groups and consist of either strike-slip focal mechanisms, such as the tearing events, or oddly oriented focal mechanisms. Examination of the stress axes orientations for these three types reveals that the compressional axes of the type C events are consistent with those of type B. The slab tearing events are just differential motion reflecting the E-W compressive states of stress which is responsible for the type B family of events. There is no need to invoke down-dip extension which does not fit the slab geometry. We conclude that these two states of stress can be explained as follows: 1) The type A events and the seismicity distribution support model (B). 2) The type B and C events upport model (A). The solution is that the slab subducts according to model (B), but the flow in the mantle maintains a different trajectory, possibly induced by the plate motions, which produces the second state of E-W compressive stress.  相似文献   

19.
We explain the global variation of Benioff zone seismicity with depth and the orientation of stress axes of deep and intermediate earthquakes using numerical models of subducting slabs. Models that match the seismicity and stress require a barrier to flow at the 670 km seismic discontinuity. The barrier may be a viscosity increase of at least an order of magnitude or a chemical discontinuity. Instantaneous flow is subparallel to the slabs for models with a viscosity increase but contorted for models with a chemical barrier. Log N (number of earthquakes) decreases linearly to 250–300 km depth and increases thereafter. Stress magnitude in our models shows the same pattern, in accord with experiments showing N proportional to e, with k a constant and σ stress magnitude. The models predict downdip compression in the slabs at depths below 300–400 km, as observed for earthquake stress axes.  相似文献   

20.
1994年第一季度,全球地震活动仍为中等水平,三个月内共发生三次7级以上浅源地震。秘鲁-玻利维亚边界发生大深震。美国加州又发生强烈地震。大洋岛弧地震带本季度地震活跃。伊朗发生三次6级地震。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号