首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Four uniformly spaced regional gravity traverses and the available seismic data across the western continental margin of India, starting from the western Indian shield extending into the deep oceanic areas of the eastern Arabian Sea, have been utilized to delineate the lithospheric structure. The seismically constrained gravity models along these four traverses suggest that the crustal structure below the northern part of the margin within the Deccan Volcanic Province (DVP) is significantly different from the margin outside the DVP. The lithosphere thickness, in general, varies from 110–120 km in the central and southern part of the margin to as much as 85–90 km below the Deccan Plateau and Cambay rift basin in the north. The Eastern basin is characterised by thinned rift stage continental crust which extends as far as Laxmi basin in the north and the Laccadive ridge in the south. At the ocean–continent transition (OCT), crustal density differences between the Laxmi ridge and the Laxmi basin are not sufficient to distinguish continental as against an oceanic crust through gravity modeling. However, 5-6 km thick oceanic crust below the Laxmi basin is a consistent gravity option. Significantly, the models indicate the presence of a high density layer of 3.0 g/cm3 in the lower crust in almost whole of the northern part of the region between the Laxmi ridge and the pericontinental northwest shield region in the DVP, and also below Laccadive ridge in the southern part. The Laxmi ridge is underlain by continental crust upto a depth of 11 km and a thick high density material (3.0 g/cm3) between 11–26 km. The Pratap ridge is indicated as a shallow basement high in the upper part of the crust formed during rifting. The 15 –17 km thick oceanic crust below Laccadive ridge is seen further thickened by high density underplated material down to Moho depths of 24–25 km which indicate formation of the ridge along Reunion hotspot trace.  相似文献   

2.
About 16,000 km of multichannel seismic (MCS), gravity and magnetic data and 28 sonobuoys were acquired in the Riiser-Larsen Sea Basin and across the Gunnerus and Astrid Ridges, to study their crustal structure. The study area has contrasting basement morphologies and crustal thicknesses. The crust ranges in thickness from about 35 km under the Riiser-Larsen Sea shelf, 26–28 km under the Gunnerus Ridge, 12–17 km under the Astrid Ridge, and 9.5–10 km under the deep-water basin. A 50-km-wide block with increased density and magnetization is modeled from potential field data in the upper crust of the inshore zone and is interpreted as associated with emplacement of mafic intrusions into the continental margin of the southern Riiser-Larsen Sea. In addition to previously mapped seafloor spreading magnetic anomalies in the western Riiser-Larsen Sea, a linear succession from M2 to M16 is identified in the eastern Riiser-Larsen Sea. In the southwestern Riiser-Larsen Sea, a symmetric succession from M24B to 24n with the central anomaly M23 is recognized. This succession is obliquely truncated by younger lineation M22–M22n. It is proposed that seafloor spreading stopped at about M23 time and reoriented to the M22 opening direction. The seismic stratigraphy model of the Riiser-Larsen Sea includes five reflecting horizons that bound six seismic units. Ages of seismic units are determined from onlap geometry to magnetically dated oceanic basement and from tracing horizons to other parts of the southern Indian Ocean. The seaward edge of stretched and attenuated continental crust in the southern Riiser-Larsen Sea and the landward edge of unequivocal oceanic crust are mapped based on structural and geophysical characteristics. In the eastern Riiser-Larsen Sea the boundary between oceanic and stretched continental crust is better defined and is interpreted as a strike-slip fault lying along a sheared margin.  相似文献   

3.
Crustal seismic structures beneath the West Philippine Sea are determined by using explosive sources (0.5–108.6 kg) and ocean bottom seismometers to measure refracted compressional waves. Total crustal thicknesses are shown to be thinner in the eastern part of the ocean basin, approaching only 3.5 km. Crustal thinning toward the east is consistent with the Palau Kyushu Ridge being a remnant transform fault connecting the Central Basin Ridge and the Kula Pacific Ridge in the past. A velocity-depth inversion from the westernmost refraction profile indicates the upper transitional crust layer to have strong velocity gradients which gradually decrease with depth; the lower crust is characterized by a nearly constant velocity gradient. The western part of the ocean basin is also shown to have more typical oceanic thicknesses, as is found in deep ocean basins of the Pacific. Spectral energy models using WKBJ synthetic seismograms suggest that there is a sharp seismic discontinuity between the crust and moho in the western part of the basin. Predicted water depths for the West Philippine Basin using an age-depth relation and corrected for an isostatic response to the measured crustal thicknesses, are still 300 meters shallower than observed depths. The depth anomaly can not be fully reconciled by thinner crust in the eastern part of the basin. This observation implies that a deeper seated anomaly is present beneath the West Philippine Basin.  相似文献   

4.
The present-day basement depth of the seafloor in the absence of sediment loading was inferred along a traverse crossing the Southern Tyrrhenian Basin. A correction for sediment loading was proposed on the basis of density, seismic velocity and porosity data from selected deep boreholes. The empirical relation between sediment correction and seismic two-way travel time was extrapolated downward by applying the Nafe–Drake curve and a specific porosity–depth relation. The sediment loading response of the basement calculated for flexural isostasy is on average about one hundred meters lower than results for local isostasy. A pure lithosphere extensional model was then used to predict quantitatively the basement subsidence pattern on the margins of the basin. The basement depth is consistent with uniform extension model predictions only in some parts of the margins. The observed variability in the region of greatest thinning (transition from continental to oceanic crust) is attributable to the weakening effect caused by diffuse igneous intrusions. Subsidence of the volcanic Calabrian–Sicilian margin is partly accounted for by magmatic underplating. The comparison of the calculated subsidence with an oceanic lithosphere cooling model shows that subsidence is variable in some areas, particularly in the Marsili Basin. This argues for a typical back-arc origin for the Tyrrhenian Basin, as a result of subduction processes. By taking into account the geodynamic setting, stratigraphic data from the deepest hole and the terrestrial heat flow, we reconstructed the paleotemperatures of cover sediments. The results suggest that low temperatures generally have prevailed during sediment deposition and that the degree of maturation is expected not to be sufficient for oil generation processes.  相似文献   

5.
The northern parts of the Prathap and Laccadive Ridge system, eastern Arabian Sea, consist of three parallel basement ridge peaks at varied depths. The topographic highs are associated with either well-developed or subdued magnetic signatures. Model studies, constrained by seismic results, determine the varied nature and depth to the top of the causative basement bodies. Similarities of the geophysical signatures of the ridges and their structural resemblance perhaps point to their common origin. Hence we propose that the Prathap Ridge complex may be a part of the Chagos-Laccadive Ridge system and formed because of the Reunion hotspot activity.  相似文献   

6.
Magnetic profiles obtained during the Hesant 92/93 cruise with the R/V Hesperides show large amplitude anomalies (up to 1000 nT) along a 100 km wide band in the northern margin of the Powell Basin. The anomalies, which are also locally identified in the eastern and western margins, are attributed to the continuation of the two branches of the Antarctic Peninsula Pacific Margin Anomaly (PMA). Interactive modelling of two-dimensional bodies in four profiles oriented NNW-SSE allows us to determine the main features of the magnetic source bodies within the continental crust. These are elongated in a N60/degE trend, and their base is located at a depth exceeding 15 km. Equivalent magnetic susceptibilities mostly between 0.07 and 0.1 (SI) are obtained. These values are consistent with the hypothesis that remanent magnetisation of the magnetic source bodies is sub-parallel to the present geomagnetic field (norÍmally magnetised). The general trends of the bathymetry a nd the geometry of the acoustic basement on multichannel seismic profiles are consistent with the upper surface of magnetic bodies. In order to match the observed anomalies it is also necessary to consider a second tabular shaped body with induced magnetisation in almost all the profiles, which could represent layers 2 and 3 of the oceanic crust of the Powell Basin. Three different geometries of connection between the anomalies in the Powell Basin margins and the PMA branches are discussed. The most plausible one is the occurrence of two branches, although they are closer together than in the Bransfield Strait. The northern branch would continue along the fragments of continental crust of the South Scotia Ridge located at the northern boundary of the Powell Basin, whereas the southern branch would be located only in the eastern and western passive margins of the Powell Basin. The apparent splitting of the southern branch of the anomalous body indicates that it was emplaced before Oligo cene times, when the opening of this basin occurred, and that it was subsequently fragmented during the Cenozoic. A possible time of formation of the PMA body would be during the long Cretaceous normal polarity interval, which also coincides with a peak in magmatic activity along the Antarctic Peninsula.  相似文献   

7.
The geophysically unusual Laxmi Ridge (eastern basin, Arabian Sea) is associated with a prominent elongated negative gravity anomaly. A seismically and geodynamically constrained detailed 2D gravity modeling suggests an 11-km-thick normal oceanic crust and an asthenospheric upwarp to a depth of 35 km. We attribute the apparent thickening of the crust to a possible emplacement of an anomalous subcrustal low-density layer between 11 and 19 km depth. We hypothesize that a K-T boundary bolide impact near the Bombay offshore led to several geological events, including eruption of Deccan flood basalts. The spreading Carlsberg Ridge in the Indian Ocean and rifting associated with Deccan volcanism generated the compressive regime, which perhaps originated the Laxmi Ridge.  相似文献   

8.
To facilitate geological analyses of the Ulleung Basin in the East Sea (Japan Sea) between Korea and Japan, shipborne and satellite altimetry-derived gravity data are combined to derive a regionally coherent anomaly field. The 2-min gridded satellite altimetry-based gravity predicted by Sandwell and Smith [Sandwell DT, Smith WHF (1997) J Geophys Res 102(B5):10,039–10,054] are used for making cross-over adjustments that reduce the errors between track segments and at the cross-over points of shipborne gravity profiles. Relative to the regionally more homogeneous satellite gravity anomalies, the longer wavelength components of the shipborne anomalies are significantly improved with minimal distortion of their shorter wavelength components. The resulting free-air gravity anomaly map yields a more coherent integration of short and long wavelength anomalies compared to that obtained from either the shipborne or satellite data sets separately. The derived free-air anomalies range over about 140 mGals or more in amplitude and regionally correspond with bathymetric undulations in the Ulleung Basin. The gravity lows and highs along the basin’s margin indicate the transition from continental to oceanic crust. However, in the northeastern and central Ulleung Basin, the negative regional correlation between the central gravity high and bathymetric low suggests the presence of shallow denser mantle beneath thinned oceanic crust. A series of gravity highs mark seamounts or volcanic terranes from the Korean Plateau to Oki Island. Gravity modeling suggests underplating by mafic igneous rocks of the northwestern margin of the Ulleung Basin and the transition between continental and oceanic crust. The crust of the central Ulleung Basin is about a 14–15 km thick with a 4–5 km thick sediment cover. It may also include a relatively weakly developed buried fossil spreading ridge with approximately 2 km of relief.  相似文献   

9.
The paper presents the results of a study on the geomorphic structure, tectonic setting, and volcanism of the volcanoes and volcanic ridges in the deep Central Basin of the Sea of Japan. The ridges rise 500–600 m above the acoustic basement of the basin. These ridges were formed on fragments of thinned continental crust along deep faults submeridionally crossing the Central Basin and the adjacent continental part of the Primorye. The morphostructures of the basin began to submerge below sea level in the Middle Miocene and reached their contemporary positions in the Pliocene. Volcanism in the Central Basin occurred mostly in the Middle Miocene–Pliocene and formed marginal-sea basaltoids with OIB (ocean island basalt) geochemical signatures indicating the lower-mantle plume origin of these rocks. The OIB signatures of basaltoids tend to be expressed better in the eastern part of the Central Basin, where juvenile oceanic crust has developed. The genesis of this crust is probably related to rising and melting of the Pacific superplume apophyse.  相似文献   

10.
Aeromagnetic data collected over the Offshore Mahanadi Basin along the Eastern margin of India display high amplitude magnetic anomalies. The presence of a Cretaceous volcanic sequence masks the seismic response from the underlying basement and results in poor quality seismic data. In this study spectral analysis of the aeromagnetic data collected over this part of the Offshore Mahanadi Basin was carried out. Results of this analysis indicate the presence of a high density, highvelocity (6.45 km/s) mafic layer within the crystalline basement varying from 4–6 km depth. This intra-basement layer seems to have been affected by a number of lineaments, which have played a role in the evolution of the Mahanadi Offshore Basin. The western part of the offshore basin is affected by the volcanism related to the 85°E Ridge, whereas the intense anomaly band (900 nT) offshore Puri, Konark and Paradip is interpreted as a combined effect of crystalline Precambrian basement overlain (i) by Cretaceous volcanic rocks of variable thickness (25–860 m) and (ii) by a mafic layer within the basement.  相似文献   

11.
Since the stretching model appears to be not applicable to the subsidence of accretionary crust, basins located on this crust type may have an alternative origin. Examples of such basins are the West Siberia Basin and the North German Basin. Both basins showed intensive volcanism and magmatism during the initial phase of their development. Remarkably, the West Siberia Basin is closely located to the (hotspot related) Siberian flood basalts with a similar Permo-Triassic age, and the location of the North German Basin in Permian times is identical with the present day position of the Tibesti hotspot in Northern Africa. These two basins may have specific relations to hotspot heat sources of the Earth's underlying mantle. Due to these heat sources, thermal metamorphism within the lower layers of the (accretionary) crust may occur, resulting in rock density increase and subsequent shrinkage of the affected rock volumes. These shrinkage processes will lead to the development of topographic lows, their filling with sediments, and the subsequent start of an exponentially declining isostatic/metamorphic basin subsidence. In addition to the analyses of metamorphic processes, potential field anomalies, temperature fields, and histories of subsidence have been integrated into one single model that can explain the development of the North German Basin. Similarly, the East African Rift and Eifel Hotspots affected parts of the overriding continental plates. The East African Rift Hotspot can be traced back to the Afar flood basalts and the Dniepr–Donets Basin, whereas the Eifel Hotspot can be linked to the North Sea Basin. Continental drift templates, present day hotspot locations, flood basalt areas, metamorphic facies as function of temperature, and crust categories are taken as published in recent literature.  相似文献   

12.
Identification by Bhattacharya et al. (1994) of seafloor spreading type magnetic anomalies in the basin lying between Laxmi Ridge in the Arabian Sea and the Indian continent necessitates a change in plate tectonic reconstruction. Naini and Talwani (1982) named this basin the Eastern Basin and we will continue to use this term in this paper. Others, in the literature, have called this the Laxmi Basin. Previous reconstructions had assumed that the Eastern Basin is underlain by continental crust. The new reconstruction moves Seychelles' original location closer to India and ameliorates a space problem in the Mascarene Basin. A new rotation pole between anomaly 28 and 34 times avoids skipping of fracture zones resulting from rotation poles described earlier. The negative gravity anomaly over the Eastern Basin is a necessary consequence of a continental sliver lying between oceanic crust on either side. Seismic velocities that are slightly greater than 7 km s–1 under the Eastern need not be necessarily interpreted as material that underplates continental crust.  相似文献   

13.
This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Kn?legga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.  相似文献   

14.
The Jane Arc and Basin system is located at the eastern offshore prolongation of the Antarctic Peninsula, along the southern margin of the South Orkney Microcontinent. Three magnetic anomaly profiles orthogonal to the main tectonic and bathymetric trends were recorded during the SCAN97 cruise by the Spanish R/V Hespérides. In our profiles, chron C6n (19.5 Ma) was identified as the youngest oceanic crust of the Northern Weddell Sea, whose northern spreading branch was totally subducted. The profiles from the Jane Basin allow us to date, for the first time, the age of the oceanic crust using linear sea floor magnetic anomalies. The spreading in the Jane Basin began around the age of the oldest magnetic anomaly at 17.6 Ma (chron C5Dn), and ended about 14.4 Ma (chron C5ADn). The distribution of the magnetic anomalies indicate that the mechanism responsible for the development of Jane Basin was the subduction of the Weddell Sea spreading centre below the SE margin of the South Orkney Microcontinent, suggesting a novel mechanism for an extreme case of backarc development.  相似文献   

15.
针对沙捞越盆地盆地类型的不同观点,通过盆地区域构造背景、构造演化阶段、构造沉降曲线的分析以及构造地质事件的恢复,得到以下认识:①盆地的构造演化可划分为晚白垩世—晚始新世,拉让洋壳向婆罗洲基底俯冲,并在婆罗洲中部形成火山岛弧的俯冲增生期;渐新世—早中新世,拉让洋壳俯冲消减完毕,路科尼亚地块与婆罗洲碰撞,并俯冲于婆罗洲基底之下,形成周缘前陆盆地的前陆盆地期;中中新世至今,南中国海开启、婆罗洲碰撞抬升引起盆地稳定沉降的被动边缘期3个阶段。②盆地所选井的构造沉降曲线具有早期缓慢沉降、晚期快速沉降这一前陆盆地的典型特征。③盆地构造地质事件复原图表明,盆地晚期处于被动大陆边缘构造背景。由此,认为沙捞越盆地为复合型盆地,即早期为前陆盆地,晚期则转化为大陆边缘型盆地。  相似文献   

16.
A marine magnetic survey was carried out in and around the northern part of Socotra Basin, offshore Korea (31°42′32″–32°46′29″N and 123°56′26″–125°49′16″E), in order to better delineate its northern and eastern boundaries. Analyses of the observed magnetic field and estimation of the basement depth were used to assess these boundaries. The power spectrum and the three-dimensional analytical signal methods were used for depth estimation and to reconstruct basement configuration. Estimated depths resulting from the power spectrum method range from 1.5 to 6.0 km for deep sources (basement troughs), and from 0.3 to 1.7 km for shallower sources (basement peaks). An isopach map shows that the sedimentary sequence varies from 1.4 to 6.0 km in thickness. Estimated depths from the analytic signal method fluctuate in the range 1.2–6 km. The results of the observed field analysis and depth estimation indicate good agreement with the formerly proposed eastern boundary but disagreement with the northern boundary. The findings suggest either an extension of the Socotra Basin or the existence of other sub-basins possibly interconnected with the study area.  相似文献   

17.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   

18.
In this paper, we demonstrate the effectiveness of steerable filters as a method of delineating the boundaries of subsurface geological structures. Steerable filters, generally used for edge detection on 2-D images, have the properties of band pass filters with certain directions and are applied to many image processing problems. We first tested the method on synthetic data and then applied it to the aeromagnetic data of İskenderun Basin and adjacent areas.İskenderun Basin is located in the Northeastern Mediterranean where African–Arabian and Anatolian plates are actively interacting. The basin fill records a complex tectonic evolution since the Early Miocene, involving ophiolite emplacement, diachronous collision of Eurasian and Arabian plates and subsequent tectonic escape related structures and associated basin formation. Geophysical investigations of the tectonic framework of İskenderun Basin of Turkey provide important insights on the regional tectonics of the Eastern Mediterranean and Middle East. In this study we show geological structures, which are responsible for the magnetic anomalies in İskenderun Basin and enlighten the structural setting of the Northeastern Mediterranean triple junction using steerable filters. We obtained a magnetic anomaly map of the region from the General Directorate of Mineral Research and Exploration as raw data and then evaluated this by steerable filters. We determined the magnetic anomaly boundaries for İskenderun Basin by using various types of steerable filters and correlated these to drilling data and seismic profiles from the Turkish Petroleum Corporation. The result of the steerable filter analysis was a clarified aeromagnetic anomaly map of İskenderun Basin. The tectonic structure of İskenderun Basin is divided into regions by an N–S trending oblique-slip fault defined by the steerable filter outputs. We propose a new tectonic structure model of İskenderun Basin and modify the direction of the East Anatolian Fault Zone. In our model, East Anatolian Fault Zone cross-cuts the basin as a narrow fault zone and continues towards the Cyprus arc.  相似文献   

19.
The petrophysical properties of sediment drill core samples recovered from the Sardinian margin and the abyssal plain of the Southern Tyrrhenian Basin were used to estimate the downhole change in porosity and rates of deposition and mass accumulation. We calculated how the deposited material has changed its thickness as a function of depth, and corrected the thickness for the compaction. The corresponding porosity variation with depth for terrigenous and pelagic sediments and evaporites was modelled according to an exponential law. The mass accumulation rate for the Plio-Quaternary is on average 4.8×104 kg m−2 my−1 on the Sardinian margin and for the Pliocene in the abyssal plain. In the latter area, the Quaternary attains its greatest thickness and a mass accumulation rate of 11–40×104 kg m−2 my−1. The basement response to sediment loading was calculated with Airy-type backstripping. On the lower part of the Sardinian margin, the basement subsidence rate due to sediment loading has decreased from a value of 300 m my−1 in the Tortonian and during the Messinian salinity crisis (7.0–5.33 Ma) to about 5 m my−1 in the Plio-Quaternary. In contrast, on the abyssal plain this rate has changed from 8–50 m my−1 during the period 3.6–0.46 Ma, to 95–130 m my−1 since 0.46 Ma, with the largest values in the Marsili Basin. The correlation between age and the depth to the basement corrected for the loading of the sediment in the ocean domain of the Tyrrhenian Basin argues for a young age of basin formation.  相似文献   

20.
Analysis of multi-channel seismic data from the northern East China Sea Shelf Basin (ECSSB) reveals three sub-basins (Socotra, Domi, and Jeju basins), separated by structural highs (Hupijiao Rise) and faulted basement blocks. These sub-basins show a typical rift-basin development: faulted basement and syn-rift and post-rift sedimentation separated by unconformities. Four regional unconformities, including the top of acoustic basement, have been identified and mapped from multi-channel seismic data. Faults in the acoustic basement are generally trending NE, parallel to the regional structural trend of the area. The depths of the acoustic basement range from less than 1000 m in the northwestern part of the Domi Basin to more than 4500 m in the Socotra Basin and 5500 m in the Jeju Basin. The total sediment thicknesses range from less than 500 m to about 1500 m in the northwest where the acoustic basement is shallow and reach about more than 5500 m in the south.Interpretation of seismic reflection data and reconstruction of three depth-converted seismic profiles reveal that the northern ECSSB experienced two phases of rifting, followed by regional subsidence. The initial rifting in the Late Cretaceous was driven by the NW-SE crustal stretching of the Eurasian Plate, caused by the subduction of the Pacific Plate beneath the Eurasian Plate. Extension was the greatest during the early phase of basin formation; estimated rates of extension during the initial rifting are 2%, 6.5%, and 3.5% in the Domi, Jeju, and Socotra basins, respectively. A regional uplift terminated the rifting in the Late Eocene-Early Oligocene. Rifting and extension, although mild, resumed in the Early Oligocene; while fluvio-lacustrine deposition continued to prevail. The estimated rates of extension during the second phase of rifting are 0.7%, 0.8%, and 0.5% in the Domi, Jeju, and Socotra basins, respectively. A second phase of uplift in the Early Miocene terminated the rifting, marking the transition to the post-rift phase of regional subsidence. Regional subsidence dominated the study area between the Early Miocene and the Late Miocene. An inversion in the Late Miocene interrupted the post-rift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. Uplift and subsequent erosion were followed by regional subsidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号