首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock and phase bias corrections with a precision of better than 2 cm.  相似文献   

2.
卫星频间钟差偏差(Inter-Frequency Clock Bias, IFCB)变化特性的分析对其模型化、卫星钟稳定性的评估具有重要的意义。采用北斗(COMPASS) 2012年1月的三频数据,解算了GEO卫星的IFCB并分析了其时序特性。为了削弱粗差对解算结果的影响,采用了抗差估计算法。针对GEO卫星IFCB的特性,提出了GEO卫星IFCB的经验模型。结果表明,二次曲线函数能较好的描述GEO卫星的IFCB,并达到71%以上的改正效果。  相似文献   

3.
Soil moisture estimation from satellite earth observation has emerged effectively advantageous due to the high temporal resolution, spatial resolution, coverage, and processing convenience it affords. In this paper, we present a study carried out to estimate soil moisture level at every location within Enugu State Nigeria from satellite earth observation. Comparative analysis of multiple indices for soil moisture estimation was carried out with a view to evaluating the robustness, correlation, appropriateness and accuracy of the indices in estimating the spatial distribution of soil moisture level in Enugu State. Results were correlated and validated with In-Situ soil moisture observations from multi-sample points. To achieve this, the Topographic Wetness Index (TWI), based on digital elevation data, the Temperature Vegetation Dryness Index (TVDI) and an improved TVDI (iTVDI) incorporating air temperature and a Digital Elevation Model (DEM) were calculated from ASTER global DEM and Landsat images. Possible dependencies of the indices on land cover type, topography, and precipitation were explored. In-Situ soil moisture data were used to validate the derived indices. The results showed that there was a positive significant relationship between iTVDI versus TVDI (R = 0.53, P value < 0.05), while in iTVDI versus TWI (R = 0.00, P value > 0.05) and TVDI versus TWI (R = ?0.01, P value > 0.05) no significant relationship existed. There was a strong relationship between iTVDI and topography, land cover type, and precipitation than other indices (TVDI, TWI). In situ measured soil moisture values showed negative significant relationship with TVDI (R = ?0.52, P value < 0.05) and iTVDI (R = ?0.63, P value < 0.05) but not with TWI (R = ?0.10, P value > 0.05). The iTVDI outperformed the other two index; having a stronger relationship with topography, precipitation, land cover classes and soil moisture. It concludes that although iTVDI outperformed other indices (TVDI, TWI) in soil moisture estimation, the decision of which index to apply is dependent on available data, the intent of usage and spatial scale.  相似文献   

4.
The initial acquisition of direct-sequence spread-spectrum (DSSS) signal transmitted in bursts by ground terminals at satellite-borne receiver poses an engineering challenge. We propose a low-complexity acquisition algorithm that is capable of capturing extremely weak DSSS signal in the presence of large Doppler dynamics. The algorithm uses fast Fourier transform (FFT)-based frequency-domain techniques to implement circular correlations between the received signal and the local pseudo-random noise (PRN) code, and it coherently accumulates the correlation results across multiple PRN code periods, to achieve a sufficient signal–noise ratio for reliable acquisition. We invoke another FFT procedure to perform the coherent accumulation and the fine compensation for the residual Doppler frequency offset. To highlight the advantage of the proposed algorithm, we make a complexity comparison among the proposed algorithm and two other benchmark strategies, namely the modified double block zero padding (MDBZP) and two-dimensional exhaustive search (2D-ES). It is shown that the proposed algorithm has the lowest complexity, which is particularly desirable for satellite-borne receivers where the computational resource is limited. The acquisition performance of the proposed algorithm is verified by theoretical analysis and Monte Carlo simulations and compared with that of MDBZP and 2D-ES. Moreover, we have carried out extensive tests on a hardware verification system, and we show the claimed tradeoff between performance and cost is indeed attainable with the suggested algorithm. Numerically, it is found the proposed algorithm can achieve a detection rate of 0.9 and a false alarm rate of \(10^{ - 5}\) at C/N 0 = 29.5 dBHz over a Doppler frequency offset range of \(\left[ { - 7.5\,{\text{kHz}},7.5\,{\text{kHz}}} \right]\) in floating-point simulation, which coincides with the analytical results. The same performance is achieved at C/N 0 = 31 dBHz in fixed-point simulation and at C/N 0 = 31.5 dBHz on a hardware system.  相似文献   

5.
It has been noted that the satellite laser ranging (SLR) residuals of the Quasi-Zenith Satellite System (QZSS) Michibiki satellite orbits show very marked dependence on the elevation angle of the Sun above the orbital plane (i.e., the \(\beta \) angle). It is well recognized that the systematic error is caused by mismodeling of the solar radiation pressure (SRP). Although the error can be reduced by the updated ECOM SRP model, the orbit error is still very large when the satellite switches to orbit-normal (ON) orientation. In this study, an a priori SRP model was established for the QZSS Michibiki satellite to enhance the ECOM model. This model is expressed in ECOM’s D, Y, and B axes (DYB) using seven parameters for the yaw-steering (YS) mode, and additional three parameters are used to compensate the remaining modeling deficiencies, particularly the perturbations in the Y axis, based on a redefined DYB for the ON mode. With the proposed a priori model, QZSS Michibiki’s precise orbits over 21 months were determined. SLR validation indicated that the systematic \(\beta \)-angle-dependent error was reduced when the satellite was in the YS mode, and better than an 8-cm root mean square (RMS) was achieved. More importantly, the orbit quality was also improved significantly when the satellite was in the ON mode. Relative to ECOM and adjustable box-wing model, the proposed SRP model showed the best performance in the ON mode, and the RMS of the SLR residuals was better than 15 cm, which was a two times improvement over the ECOM without a priori model used, but was still two times worse than the YS mode.  相似文献   

6.
Assessment of area under agroforestry in Tehri district of North Western Himalaya, Uttarakhand, India has been done using GIS and remote sensing technology. The study district characterized by hilly terrain with varying elevations from 288 m to more than 2800 m and generally gentle slopes, valleys, flat land covers and agricultural terraces. High-resolution satellite imageries (spatial resolution 5.8 m) were used in this study for land uses and land covers classification. According to unsupervised classification, highest area was found under forest class (65.22%) followed by cropland (20.41%). Considerable area was also found under snow cover (9.45%) in the district. Area under agroforestry was estimated to be 5572.26 ha (1.53%) by this method, whereas it was estimated to be 7029.06 ha (1.93%) by supervised classification. Estimated cropland area comes out to be about 20.0%. An accuracy of 86.5% was found in this classification for agroforestry class. Highest area under agroforestry of 3707.36 ha was obtained in 1200–2000 m elevations followed by 2231.26 ha in 288–1200 m elevations. Negligible area was found on high elevation zones of more than 2800 m. The major agroforestry systems of dominated by Grewia oppositifolia (Bhimal), Celtis australis (Kharik) and Quercus leucotrichophora (Banj) were identified and mapped and remaining systems were grouped as others class. Estimated area under G. oppositifolia, C. australis and Q. leucotrichophora based systems come out to be 2330.82, 1456.80 and 1129.10 ha, respectively. These systems are multiple usufructs are food, fuelwood, fodder, fiber and small timber. It has been observed from the accuracy assessment that the estimates of area under agroforestry obtained under this study are reliable.  相似文献   

7.
GOCE gravitational gradiometry   总被引:16,自引:6,他引:10  
GOCE is the first gravitational gradiometry satellite mission. Gravitational gradiometry is the measurement of the second derivatives of the gravitational potential. The nine derivatives form a 3 × 3 matrix, which in geodesy is referred to as Marussi tensor. From the basic properties of the gravitational field, it follows that the matrix is symmetric and trace free. The latter property corresponds to Laplace equation, which gives the theoretical foundation of its representation in terms of spherical harmonic or Fourier series. At the same time, it provides the most powerful quality check of the actual measured gradients. GOCE gradiometry is based on the principle of differential accelerometry. As the satellite carries out a rotational motion in space, the accelerometer differences contain angular effects that must be removed. The GOCE gradiometer provides the components V xx , V yy , V zz and V xz with high precision, while the components V xy and V yz are of low precision, all expressed in the gradiometer reference frame. The best performance is achieved inside the measurement band from 5 × 10–3 to 0.1 Hz. At lower frequencies, the noise increases with 1/f and is superimposed by cyclic distortions, which are modulated from the orbit and attitude motion into the gradient measurements. Global maps with the individual components show typical patterns related to topographic and tectonic features. The maps are separated into those for ascending and those for descending tracks as the components are expressed in the instrument frame. All results are derived from the measurements of the period from November to December 2009. While the components V xx and V yy reach a noise level of about \({10\;\rm{\frac{mE}{\sqrt{Hz}}}}\), that of V zz and V xz is about \({20\; \rm{\frac{mE}{\sqrt{Hz}}}}\). The cause of the latter’s higher noise is not yet understood. This is also the reason why the deviation from the Laplace condition is at the \({20 \;\rm{\frac{mE}{\sqrt{Hz}}}}\) level instead of the originally planned \({11\;\rm{\frac{mE}{\sqrt{Hz}}}}\). Each additional measurement cycle will improve the accuracy and to a smaller extent also the resolution of the spherical harmonic coefficients derived from the measured gradients.  相似文献   

8.
The inter-frequency bias of PRN25 was noticed by the scientific community and considered to be caused by thermal variations. The inter-frequency bias leads to an apparent inter-frequency clock bias (IFCB), which could be obtained using the difference of two ionosphere-free phase combinations (L1/L2 and L1/L5). We present an efficient approach derived from the epoch-differenced strategy for fast estimation of IFCBs for Block IIF satellites. For the analysis, data from 32 stations from the IGS network spanning 10 months (DOY 213, 2011–153, 2012) are processed. The processing times show that the epoch-differenced method is more efficient than the undifferenced one. In order to study the features of IFCB, a harmonic analysis is performed by using a FFT (fast Fourier transformation), and significant periodic variations with the periods of 12, 6 and 8 h are noticed. The fourth-order period is determined by comparing the performances of the model with different periods. After determination, a harmonics-based function of order 4 is used to model the IFCB, and the single-day amplitudes and phases are estimated for the 10 months from a least squares fit. Based on the estimated results, the characterization of IFCB is discussed. The algorithm is incorporated into the MGPSS software developed at SHAO (Shanghai Astronomical Observatory, Chinese Academy of Sciences) and used to monitor the IFCB variations of GPS and COMPASS systems in near real time.  相似文献   

9.
The structure of road networks has been investigated in accordance with the development of GIScience. By classifying road networks into wide and narrow ones, we can define the route as the path from the route’s origin (also called the root) on a wide road network to a narrow road segment which consists of the sequence of narrow road segments arranged by ascending order of the number of steps of adjacency to its root. The length of the route can be defined with the following geometric and topological terms: the route distance, measuring the length along the route and the depth, counting the number of road segments on the route. The depth plays the important role of being a substitute for the route distance in modelling road networks as a planar graph. Since road networks clearly exhibit irregular patterns and road segment lengths are non-uniform, it is considered appropriate to adopt a stochastic approach rather than a deterministic one to analyse the route distance. However, the relationship between the route distance and its depth has not been sufficiently investigated stochastically. Therefore, the research question is how can we estimate the route distance from its depth? Based on an empirical study in the Tokyo metropolitan region, it was found that (1) the statistical distribution of the route distance can be formulated as an Erlang distribution whose parameters are its depth and the inverse of the mean length of narrow road segments, and (2) this length is constant and close to 40 m. Therefore, we can estimate the route distance from only one parameter, the depth. Also, as a practical application, accessibility to the kth depth link in terms of firefighting was evaluated because the maximum length of the extension of fire hoses is approximately 200 m. It was found that (1) even if k?≤?5, the probability that the route distance to the kth depth link is equal to or longer than 200 m ranges from 0 to 0.45; and (2) if k?≥?8, the probability is approximately 1. These indicate the limitation of the deterministic approach because, on the basis of complete grid patterns (with intervals of 40 m between intersections), k?=?5 corresponds to a distance of 200 m from wide road networks and the route to the 5th depth link can be covered with fire hoses. Moreover, it was found that the connectivity of wide road networks is higher than that of narrow ones in terms of the smaller ratio of cul-de-sacs and the larger ratio of four-way intersections. These answers contribute substantially not only to constructing a science of cities that provides a simple model and specifies the most important parameter, but also to our understanding of the structure of narrow road networks within several hundred metres of wide road networks.  相似文献   

10.
The features and differences of various GPS differential code bias (DCB)s are discussed. The application of these biases in dual- and triple-frequency satellite clock estimation is introduced based on this discussion. A method for estimating the satellite clock error from triple-frequency uncombined observations is presented to meet the need of the triple-frequency uncombined precise point positioning (PPP). In order to evaluate the estimated satellite clock error, the performance of these biases in dual- and triple-frequency positioning is studied. Analysis of the inter-frequency clock bias (IFCB), which is a result of constant and time-varying frequency-dependent hardware delays, in ionospheric-free code-based (P1/P5) single point positioning indicates that its influence on the up direction is more pronounced than on the north and east directions. When the IFCB is corrected, the mean improvements are about 29, 35 and 52% for north, east and up directions, respectively. Considering the contribution of code observations to PPP convergence time, the performance of DCB(P1–P2), DCB(P1–P5) and IFCB in GPS triple-frequency PPP convergence is investigated. The results indicate that the DCB correction can accelerate PPP convergence by means of improving the accuracy of the code observation. The performance of these biases in positioning further verifies the correctness of the estimated dual- and triple-frequency satellite clock error.  相似文献   

11.
To ensure the consistent use of the current GPS precise satellite clock products, the inter-frequency clock bias (IFCB) should be carefully considered for triple-frequency precise point positioning (PPP). It is beneficial to investigate the modeling of the IFCB for multi-frequency PPP, especially for real-time users suffering from difficulties in real-time IFCB estimations. Our analysis is based on datasets from 129 stations spanning a whole year. A harmonic analysis is performed for all single-day IFCB time series, and periodic IFCB variations with periods of 12, 8, 6, 4.8, 4 and 3 h are identified. An empirical model composed of a sixth-order harmonic function and a linear function is presented to describe daily variations in the IFCB, and the modeling accuracy is 4 mm. A least squares fit is adopted to estimate the single-day harmonic coefficients phase and amplitude. The prediction accuracy of the IFCB models degrades from 7.2 to 12.3 mm when the time span of prediction is increased from a day to a week. When using IFCB models of the previous day to obtain the IFCB correction values, the positioning accuracy of triple-frequency PPP is improved by 21, 11 and 16% over the triple-frequency PPP neglecting the IFCB in the post-processing mode in the east, north and up directions, respectively. As to the real-time triple-frequency PPP, the corresponding accuracy improvement is 24, 9 and 10% in the three directions, respectively.  相似文献   

12.
Applying a one-step integrated process, i.e. by simultaneously processing all data and determining all satellite orbits involved, a Terrestrial Reference Frame (TRF) consisting of a geometric as well as a dynamic part has been determined at the observation level using the EPOS-OC software of Deutsches GeoForschungsZentrum. The satellite systems involved comprise the Global Positioning System (GPS) as well as the twin GRACE spacecrafts. Applying a novel approach, the inherent datum defect has been overcome empirically. In order not to rely on theoretical assumptions this is done by carrying out the TRF estimation based on simulated observations and using the associated satellite orbits as background truth. The datum defect is identified here as the total of all three translations as well as the rotation about the z-axis of the ground station network leading to a rank-deficient estimation problem. To rectify this singularity, datum constraints comprising no-net translation (NNT) conditions in x, y, and z as well as a no-net rotation (NNR) condition about the z-axis are imposed. Thus minimally constrained, the TRF solution covers a time span of roughly a year with daily resolution. For the geometric part the focus is put on Helmert transformations between the a priori and the estimated sets of ground station positions, and the dynamic part is represented by gravity field coefficients of degree one and two. The results of a reference solution reveal the TRF parameters to be estimated reliably with high precision. Moreover, carrying out a comparable two-step approach using the same data and models leads to parameters and observational residuals of worse quality. A validation w.r.t. external sources shows the dynamic origin to coincide at a level of 5 mm or better in x and y, and mostly better than 15 mm in z. Comparing the derived GPS orbits to IGS final orbits as well as analysing the SLR residuals for the GRACE satellites reveals an orbit quality on the few cm level. Additional TRF test solutions demonstrate that K-Band Range-Rate observations between both GRACE spacecrafts are crucial for accurately estimating the dynamic frame’s orientation, and reveal the importance of the NNT- and NNR-conditions imposed for estimating the components of the dynamic geocenter.  相似文献   

13.
Absolute orientation is a basic technical work in digital image geologic logging of underground coal mine. Traditional control-point-based absolute orientation method requires setting object space control points of the known three-dimensional coordinates, which may lead to low efficiency. Therefore, this paper proposed a point-free close-range photogrammetry absolute orientation algorithm, which utilized direction line segments including plumb line segments and line segments with known directions and lengths to identify the dimensional orientation of a stereoscopic model. Experiment results show that the precision of the orientation results is favorable. σ X and σ Y are as high as 0.5 mm, and σ Z is 0.3 mm. Finally, this paper introduced the application of the proposed algorithm in rapid geological logging of coal mine roadway, which was fast and reliable, convenient and feasible.  相似文献   

14.
The estimated yaw angles of the BeiDou I06 satellite demonstrated that the satellite experienced midnight- or noon-turn maneuvers when the sun elevation angle above the orbital plane (β angle) was in the range of [??3°, +?3°] and the orbital angle was in the range of approximately [??6°, 6°] or [174°, 186°]. The behavior of yaw attitude maneuvers in the vicinity of the midnight and noon points was identical. An alternative yaw attitude model similar to that used for the Galileo Full-Operation-Capacity (FOC) satellites was developed on the basis of the estimated BeiDou I06 yaw angles with an accuracy of approximately 3.4° to reproduce the yaw attitude behaviors. However, a discrepancy in the form of a reversal in yaw direction during the midnight-turn maneuver was observed for BeiDou I06 when the β angle was extremely small (<?0.1°). The derived yaw attitude model was proved to model the yaw attitude of the BeiDou-3 experimental satellites, and reduces the observation residuals in the vicinity of the midnight and noon points to normal levels, and facilitates continuous satellite clock estimation during eclipse periods. Compared to the yaw attitude model developed by the European Space Operations Centre (ESOC), a similar performance has been achieved with maximum yaw differences up to 9.2° when the β angle is close to 0°. The average agreement between the models is about 1°. However, the ESOC model was developed based on a patented eclipsing model, the developed model in this study is open access.  相似文献   

15.
Cotton aphid (Aphis gossypii) is considered as one of the most important agriculture pest for the cotton production. However, it is generally labor-intensive and time-consuming to obtain some information of Cotton aphid with conventional methods through direct measurement by sampling in the field. This study explores the potential of using a new method to obtain information of the Cotton aphid rapidly. In our study, the cotton canopy spectral indices (NDVI, VI_2, REDrefc, NIRrefc) and chlorophyll concentration, obtained from hand-held high spectrometer GreenSeeker and chlorophyll meter SPAD-502 and Cotton aphid amount derived from the artificial field-based survey were used to uncover the relationship between Cotton aphid amount and canopy spectral index and SPAD value of the cotton in city of Shihezi, China. The results showed that NDVI and NIRrefc were negatively related to Cotton aphid amount. VI_2 content had a significant and positive relationship with its amount. The non-linear three cubic models with alate Aphid amount as independent variables have been established between VI_2 value and alatae Aphid amount, which could explain 92.37 % of VI_2 value variance. SPAD values were also significantly and negatively correlated to the Aphid amount. The non-linear logarithm model with wingless Aphid amount as independent variables was the best for uncovering the relationship between SPAD value and wingless Aphid amount, which could explain 85.48 % of SPAD value variance. The results demonstrate the establishment of the function model provides a theoretical basis and techniques for indirect and rapid monitoring and management of Cotton aphid.  相似文献   

16.
The correlation between the rate of TEC index (ROTI) and scintillation indices S 4 and σ Φ for low-latitude region is analyzed in this study, using data collected from a Global Positioning System (GPS) scintillation monitoring receiver installed at the south of Hong Kong for the periods June–August of 2012 and May 2013 and July–December of 2013. The analysis indicates that the correlation coefficient between ROTI and S 4/σ Φ is about 0.6 if data from all GPS satellites are used together. If each individual satellite is considered, the correlation coefficients are above 0.6 on average and sometimes above 0.8. The analysis also shows that the ratio of ROTI and S 4 varies between 1 and 4. The ratio ROTI/σ Φ, varies between 2 and 9. In addition, it is also found that there is a good consistency between the temporal variations of ROTI with scintillation activity under different ionospheric conditions. ROTI has a high correlation relationship with scintillation indices on geomagnetically disturbed days or in solar active months. Moreover, the data observed at low elevation angles have weak correlation between ROTI and scintillation indices. These results demonstrate the feasibility of using ROTI derived from GPS observations recorded by common non-scintillation GPS receivers to characterize ionospheric scintillations.  相似文献   

17.
Ionospheric sporadic-E (Es) activity and global morphology were studied using the 50 Hz signal-to-noise ratio amplitude and excess phase measurements from the FormoSat-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) GPS radio occultation (RO) observations. The results are presented for data collected during the last sunspot cycle from mid-2006 to the end of 2017. The FS3/COSMIC generally performed more than 1000 complete E-region GPS RO observations per day, which were used to retrieve normalized L1-band amplitude standard deviation (SDL1) and relative electron density (Ne) profiles successfully. More or less 31% of those observations were identified as Es events based on SDL1 and peak SDL1 altitude criteria. We found that the peak Es-event i values are approximately proportional to the logarithms of the corresponding peak Ne differences. Five major geographical zones were identified, in which the seasonal and diurnal Es occurrence patterns are markedly different. These five zones include the geomagnetic equatorial zone (??5°?<?magnetic latitude (ML)?<?5°), two extended geomagnetic mid-latitude zones (15°?<?ML?<?55°, and ??55°?<?ML < ??15°), and two auroral zones (70°?<?ML, and ML < ??70°). The Es climatology, namely its variations with each identified zone, altitude, season, and local time has been documented.  相似文献   

18.
We address the problem of estimating the carrier-to-noise ratio (C/N0) in weak signal conditions. There are several environments, such as forested areas, indoor buildings and urban canyons, where high-sensitivity global navigation satellite system (HS-GNSS) receivers are expected to work under these reception conditions. The acquisition of weak signals from the satellites requires the use of post-detection integration (PDI) techniques to accumulate enough energy to detect them. However, due to the attenuation suffered by these signals, estimating their C/N0 becomes a challenge. Measurements of C/N0 are important in many applications of HS-GNSS receivers such as the determination of a detection threshold or the mitigation of near-far problems. For this reason, different techniques have been proposed in the literature to estimate the C/N0, but they only work properly in the high C/N0 region where the coherent integration is enough to acquire the satellites. We derive four C/N0 estimators that are specially designed for HS-GNSS snapshot receivers and only use the output of a PDI technique to perform the estimation. We consider four PDI techniques, namely non-coherent PDI, non-quadratic non-coherent PDI, differential PDI and truncated generalized PDI and we obtain the corresponding C/N0 estimator for each of them. Our performance analysis shows a significant advantage of the proposed estimators with respect to other C/N0 estimators available in the literature in terms of estimation accuracy and computational resources.  相似文献   

19.
Chlorophyll fluorescence is an indicator of plant photosynthetic activity and has been used to monitor the health status of vegetation. Several studies have exploited the application of red/far-red chlorophyll fluorescence ratio in detecting the impact of various types of stresses in plants. Recently, sunlight-induced chlorophyll fluorescence imaging has been used to detect and discriminate different stages of mosaic virus infection in potted cassava plants with a multi-spectral imaging system (MSIS). In this study, the MSIS is used to investigate the impact of drought and herbicide stress in field grown crop plants. Towards this control and treatment groups of colocasia and sweet potato plants were grown in laterite soil beds and the reflectance images of these crop plants were recorded up to 14-days of treatment at the Fraunhofer lines of O2 B at 687 nm and O2 A at 759.5 nm and the off-lines at 684 and 757.5 nm. The recorded images were analyzed using the Fraunhofer Line Discrimination technique to extract the sunlight-induced chlorophyll fluorescence component from the reflectance images of the plant leaves. As compared to the control group, the chlorophyll fluorescence image ratio (F 687/F 760) in the treatment groups of both the plant varieties shows an increasing trend with increase in the extent of stress. Further, the F 687/F 760 ratio was found to correlate with the net photosynthetic rate (Pn) and stomatal conductance (gs) of leaves. The correlation coefficient (R 2) for the relationship of F 687/F 760 ratio with Pn were found to be 0.78, 0.79 and 0.78, respectively for the control, herbicide treated and drought treated colocasia plants, while these were 0.77, 0.86 and 0.88, respectively for sweet potato plants. The results presented show the potential of proximal remote sensing and the application F 687/F 760 fluorescence image ratio for effective monitoring of stress-induced changes in field grown plants.  相似文献   

20.
The development and numerical values of the new absolute phase-center correction model for GPS receiver and satellite antennas, as adopted by the International GNSS (global navigation satellite systems) Service, are presented. Fixing absolute receiver antenna phase-center corrections to robot-based calibrations, the GeoForschungsZentrum Potsdam (GFZ) and the Technische Universität München reprocessed more than 10 years of GPS data in order to generate a consistent set of nadir-dependent phase-center variations (PCVs) and offsets in the z-direction pointing toward the Earth for all GPS satellites in orbit during that period. The agreement between the two solutions estimated by independent software packages is better than 1 mm for the PCVs and about 4 cm for the z-offsets. In addition, the long time-series facilitates the study of correlations of the satellite antenna corrections with several other parameters such as the global terrestrial scale or the orientation of the orbital planes with respect to the Sun. Finally, completely reprocessed GPS solutions using different phase-center correction models demonstrate the benefits from switching from relative to absolute antenna phase-center corrections. For example, tropospheric zenith delay biases between GPS and very long baseline interferometry (VLBI), as well as the drift of the terrestrial scale, are reduced and the GPS orbit consistency is improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号