首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent discovery of gravitational-wave burst GW150914 marks the coming of a new era of gravitational-wave astronomy, which provides a new window to study the physics of strong gravitational field, extremely massive stars, extremely high energy processes, and extremely early universe. In this article, we introduce the basic characters of gravitational waves in the Einstein's general relativity, their observational effects and main generation mechanisms, including the rotation of neutron stars, evolution of binary systems, and spontaneous generation in the inflation universe. Different sources produce the gravitational waves at quite different frequencies, which can be detected by different methods. In the lowest frequency range (f < 10?15 Hz), the detection is mainly dependent of the observation of B-mode polarization of cosmic microwave background radiation. In the middle frequency range (10?9 < f < 10?6 Hz), the gravitational waves are detected by analyzing the timing residuals of millisecond pulsars. And in the high frequency range (10 ? 4 < f < 104 Hz), they can be detected by the space-based and ground-based laser interferometers. In particular, we focus on the main features, detection methods, detection status, and the future prospects for several important sources, including the continuous sources (e.g., the spinning neutron stars, and stable binary systems), the burst sources (e.g., the supernovae, and the merge of binary system), and the stochastic backgrounds generated by the astrophysical and cosmological process. In addition, we forecast the potential breakthroughs in gravitational-wave astronomy in the near future, and the Chinese projects which might involve in these discoveries.  相似文献   

2.
We consider a network of telescopes capable of scanning all the observable sky each night and targeting Near-Earth objects (NEOs) in the size range of the Tunguska-like asteroids, from 160 m down to 10 m. We measure the performance of this telescope network in terms of the time needed to discover at least 50% of the impactors in the considered population with a warning time large enough to undertake proper mitigation actions. The warning times are described by a trimodal distribution and the telescope network has a 50% probability of discovering an impactor of the Tunguska class with at least one week of advance already in the first 10 yr of operations of the survey. These results suggest that the studied survey would be a significant addition to the current NEO discovery efforts.  相似文献   

3.
Using kilometric arrays of air Cherenkov telescopes at short wavelengths, intensity interferometry may increase the spatial resolution achieved in optical astronomy by an order of magnitude, enabling images of rapidly rotating hot stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial pulsations across stellar surfaces. Intensity interferometry (once pioneered by Hanbury Brown and Twiss) connects telescopes only electronically, and is practically insensitive to atmospheric turbulence and optical imperfections, permitting observations over long baselines and through large airmasses, also at short optical wavelengths. The required large telescopes (~10 m) with very fast detectors (~ns) are becoming available as the arrays primarily erected to measure Cherenkov light emitted in air by particle cascades initiated by energetic gamma rays. Planned facilities (e.g., CTA, Cherenkov Telescope Array) envision many tens of telescopes distributed over a few square km. Digital signal handling enables very many baselines (from tens of meters to over a kilometer) to be simultaneously synthesized between many pairs of telescopes, while stars may be tracked across the sky with electronic time delays, in effect synthesizing an optical interferometer in software. Simulated observations indicate limiting magnitudes around mV = 8, reaching angular resolutions ~30 μarcsec in the violet. The signal-to-noise ratio favors high-temperature sources and emission-line structures, and is independent of the optical passband, be it a single spectral line or the broad spectral continuum. Intensity interferometry directly provides the modulus (but not phase) of any spatial frequency component of the source image; for this reason a full image reconstruction requires phase retrieval techniques. This is feasible if sufficient coverage of the interferometric (u, v)-plane is available, as was verified through numerical simulations. Laboratory and field experiments are in progress; test telescopes have been erected, intensity interferometry has been achieved in the laboratory, and first full-scale tests of connecting large Cherenkov telescopes have been carried out. This paper reviews this interferometric method in view of the new possibilities offered by arrays of air Cherenkov telescopes, and outlines observational programs that should become realistic already in the rather near future.  相似文献   

4.
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent a series of upgrades, involving the exchange of the MAGIC-I camera and its trigger system, as well as the upgrade of the readout system of both telescopes. We use observations of the Crab Nebula taken at low and medium zenith angles to assess the key performance parameters of the MAGIC stereo system. For low zenith angle observations, the standard trigger threshold of the MAGIC telescopes is ∼ 50  GeV. The integral sensitivity for point-like sources with Crab Nebula-like spectrum above 220 GeV is (0.66 ± 0.03)% of Crab Nebula flux in 50 h of observations. The angular resolution, defined as the σ of a 2-dimensional Gaussian distribution, at those energies is ≲ 0.07°, while the energy resolution is 16%. We also re-evaluate the effect of the systematic uncertainty on the data taken with the MAGIC telescopes after the upgrade. We estimate that the systematic uncertainties can be divided in the following components: < 15% in energy scale, 11%–18% in flux normalization and ± 0.15 for the energy spectrum power-law slope.  相似文献   

5.
Here I present a survey of magnetic fields in large objects, from the interstellar supershells (10 pc) up to the edge of the Universe (near a redshift z of 10), with an emphasis on discoveries made in the last decade, be they through particle astronomy or electromagnetic astronomy.For each type of object, the basic observational properties are summarized, and the best theoretical scenario which accounts for the large body of observations is discussed.The strength of these large-scale fields can vary from mGauss to μGauss. Magnetism acts as a tracer of the dynamical histories of cosmological and intracluster events, it guides the motion of the interstellar ionised gas, and it aligns the charged dust particles.  相似文献   

6.
The most significant aspect of the general circulation of the atmosphere of Venus is its retrograde super-rotation. A complete characterization of this dynamical phenomenon is crucial for understanding its driving mechanisms. Here we report on ground-based Doppler velocimetry measurements of the zonal winds, based on high resolution spectra from the UV–Visual Echelle Spectrograph (UVES) instrument at ESO’s Very Large Telescope. Under the assumption of predominantly zonal flow, this method allows the simultaneous direct measurement of the zonal velocity across a range of latitudes and local times in the day side. The technique, based on long slit spectroscopy combined with the high spatial resolution provided by the VLT, has provided the first ground-based characterization of the latitudinal profile of zonal wind in the atmosphere of Venus, the first zonal wind field map in the visible, as well as new constraints on wind variations with local time. We measured mean zonal wind amplitudes between 106 ± 21 and 127 ± 14 m/s at latitudes between 18°N and 34°S, with the zonal wind being approximately uniform in 2.6°-wide latitude bands (0.3 arcsec at disk center). The zonal wind profile retrieved is consistent with previous spacecraft measurements based on cloud tracking, but with non-negligible variability in local time (longitude) and in latitude. Near 50° the presence of moderate jets is apparent in both hemispheres, with the southern jet being stronger by ~10 m/s. Small scale wind variations with local time are also present at low and mid-latitudes.  相似文献   

7.
8.
The Thirty Meter Telescope (TMT) will be the first truly global ground-based optical/infrared observatory. It will initiate the era of extremely large (30-meter class) telescopes with diffraction limited performance from its vantage point in the northern hemisphere on Mauna Kea, Hawaii, USA. The astronomy communities of India, Canada, China, Japan and the USA are shaping its science goals, suite of instrumentation and the system design of the TMT observatory. With large and open Nasmyth-focus platforms for generations of science instruments, TMT will have the versatility and flexibility for its envisioned 50 years of forefront astronomy. The TMT design employs the filled-aperture finely-segmented primary mirror technology pioneered with the W.M. Keck 10-meter telescopes. With TMT’s 492 segments optically phased, and by employing laser guide star assisted multi-conjugate adaptive optics, TMT will achieve the full diffraction limited performance of its 30-meter aperture, enabling unprecedented wide field imaging and multi-object spectroscopy. The TMT project is a global effort of its partners with all partners contributing to the design, technology development, construction and scientific use of the observatory. TMT will extend astronomy with extremely large telescopes to all of its global communities.  相似文献   

9.
The abundance of HDO above the clouds in the dayside atmosphere of Venus was measured by ground-based 2.3 μm spectroscopy over 4 days. This is the first HDO observation above the clouds in this wavelength region corresponding to a new height region. The latitudinal distributions found show no clearly defined structure. The disk-averaged mixing ratio is 0.22 ± 0.03 ppm for a representative height region of 62–67 km. This is consistent with measurements found in previous studies. Based on previous H2O measurements, the HDO/H2O ratio is found to be 140 ± 20 times larger than the telluric ratio. This lies between the ratios of 120 ± 40 and 240 ± 25, respectively, reported for the 30–40 km region by ground-based nightside spectroscopy and for the 80–100 km region by solar occultation measurement on board the Venus Express.  相似文献   

10.
11.
γ-ray is a unique probe for extreme events in the universe. Detecting the γ-ray provides an important opportunity to understand the composition of universe, the evolution of stars, the origin of cosmic rays, etc. γ-ray astronomy involves in various frontier scientific issues, and the observed energy spectrum spans over a wide range from a few hundreds of keV to a few hundreds of TeV. Different γ-ray telescopes are in need for different scientific goals and spectral bands. In this work, 5 kinds of space- and ground-based γ-ray observing techniques were summarized, including the Coded-aperture telescopes, Compton telescopes, Pair-production telescopes, Imaging Atmospheric Cherenkov Telescopes, and Extensive Air Shower Arrays. The progress in γ-ray astronomy in the past 70 years, motivated by the observation capability, was reviewed. Great achievements have been made in the high-energy domain and very-high-energy domain, while because of the limited missions conducted, as well as a lower sensitivity comparing with other domains, discoveries in low- and medium-energy are few, and due to the high observation difficulty, as well as the late start, relevant scientific yields in ultra- and extremely-high energy are limited. Moreover, the future planned missions and capabilities of the γ-ray telescopes and their possible scientific outputs were discussed. Among these missions, low- and medium-energy space telescopes e-ASTROGAM (enhanced-ASTROGAM), AMEGO (All-sky Medium Energy Gamma-ray Observatory), and very-high-energy ground-based arrays LHAASO (Large High Altitude Air Shower Observatory) and CTA (Cherenkov Telescope Array) greatly improve sensitivity than their corresponding last generation, thus expect very likely to further expand our knowledge on the γ-universe.  相似文献   

12.
Phase angle and temperature are two important parameters that affect the photometric and spectral behavior of planetary surfaces in telescopic and spacecraft data. We have derived photometric and spectral phase functions for the Asteroid 4 Vesta, the first target of the Dawn mission, using ground-based telescopes operating at visible and near-infrared wavelengths (0.4–2.5 μm). Photometric lightcurve observations of Vesta were conducted on 15 nights at a phase angle range of 3.8–25.7° using duplicates of the seven narrowband Dawn Framing Camera filters (0.4–1.0 μm). Rotationally resolved visible (0.4–0.7 μm) and near-IR spectral observations (0.7–2.5 μm) were obtained on four nights over a similar phase angle range. Our Vesta photometric observations suggest the phase slope is between 0.019 and 0.029 mag/deg. The G parameter ranges from 0.22 to 0.37 consistent with previous results (e.g., Lagerkvist, C.-I., Magnusson, P., Williams, I.P., Buontempo, M.E., Argyle, R.W., Morrison, L.V. [1992]. Astron. Astrophys. Suppl. Ser. 94, 43–71; Piironen, J., Magnusson, P., Lagerkvist, C.-I., Williams, I.P., Buontempo, M.E., Morrison, L.V. [1997]. Astron. Astrophys. Suppl. Ser. 121, 489–497; Hasegawa, S. et al. [2009]. Lunar Planet. Sci. 40. ID 1503) within the uncertainty. We found that in the phase angle range of 0° < α ? 25° for every 10° increase in phase angle Vesta’s visible slope (0.5–0.7 μm) increases 20%, Band I and Band II depths increase 2.35% and 1.5% respectively, and the BAR value increase 0.30. Phase angle spectral measurements of the eucrite Moama in the lab show a decrease in Band I and Band II depths and BAR from the lowest phase angle 13° to 30°, followed by possible small increases up to 90°, and then a dramatic drop between 90° and 120° phase angle. Temperature-induced spectral effects shift the Band I and II centers of the pyroxene bands to longer wavelengths with increasing temperature. We have derived new correction equations using a temperature series (80–400 K) of HED meteorite spectra that will enable interpretation of telescopic and spacecraft spectral data using laboratory calibrations at room temperature (300 K).  相似文献   

13.
In this paper, we study multiwavelength observations of an M6.4 flare in Active Region NOAA 11045 on 7 February 2010. The space- and ground-based observations from STEREO, SoHO/MDI, EIT, and Nobeyama Radioheliograph were used for the study. This active region rapidly appeared at the north-eastern limb with an unusual emergence of a magnetic field. We find a unique observational signature of the magnetic field configuration at the flare site. Our observations show a change from dipolar to quadrapolar topology. This change in the magnetic field configuration results in its complexity and a build-up of the flare energy. We did not find any signature of magnetic flux cancellation during this process. We interpret the change in the magnetic field configuration as a consequence of the flux emergence and photospheric flows that have opposite vortices around the pair of opposite polarity spots. The negative-polarity spot rotating counterclockwise breaks the positive-polarity spot into two parts. The STEREO-A 195 Å and STEREO-B 171 Å coronal images during the flare reveal that a twisted flux tube expands and erupts resulting in a coronal mass ejection (CME). The formation of co-spatial bipolar radio contours at the same location also reveals the ongoing reconnection process above the flare site and thus the acceleration of non-thermal particles. The reconnection may also be responsible for the detachment of a ring-shaped twisted flux tube that further causes a CME eruption with a maximum speed of 446 km/s in the outer corona.  相似文献   

14.
Kathryn Volk  Renu Malhotra 《Icarus》2012,221(1):106-115
The Haumea family is currently the only identified collisional family in the Kuiper belt. We numerically simulate the long-term dynamical evolution of the family to estimate a lower limit of the family’s age and to assess how the population of the family and its dynamical clustering are preserved over Gyr timescales. We find that the family is not younger than 100 Myr, and its age is at least 1 Gyr with 95% confidence. We find that for initial velocity dispersions of 50–400 m s?1, approximately 20–45% of the family members are lost to close encounters with Neptune after 3.5 Gyr of orbital evolution. We apply these loss rates to two proposed models for the formation of the Haumea family, a graze-and-merge type collision between two similarly sized, differentiated KBOs or the collisional disruption of a satellite orbiting Haumea. For the graze-and-merge collision model, we calculate that >85% of the expected mass in surviving family members within 150 m s?1 of the collision has been identified, but that one to two times the mass of the known family members remains to be identified at larger velocities. For the satellite-break-up model, we estimate that the currently identified family members account for ~50% of the expected mass of the family. Taking observational incompleteness into account, the observed number of Haumea family members is consistent with either formation scenario at the 1σ level, however both models predict more objects at larger relative velocities (>150 m s?1) than have been identified.  相似文献   

15.
An indoor and an outdoor radio frequency survey was conducted in Universiti Malaya, Malaysia, as a test site, for the purpose of developing radio astronomy research in Malaysia. This is the first radio astronomical survey of any such done in Malaysia. Observation and analysis were done in the radio frequency spectrum between 1 MHz and 2060 MHz. In this paper, the experimental setup and procedure of surveying are outlined and the measured data are interpreted. The eight radio astronomical windows were investigated from a 24 h observation, with the emphasis on two of the most important radio astronomical windows which are protected by the Malaysian Communications and Multimedia Commission (MCMC). Some intermittent observations were also done for referencing purposes. The radio frequency interferences (RFIs) are found to be relatively low. The overall relative Interference-to-Noise ratio (INR) at this test site ranges between 5.72% and 11.74%. The average strength of RFI in the eight focused radio astronomical windows at this site ranges between ?100 dBm and ?90 dBm (equivalently between 9.23 × 104 Jy and 93.29 × 104 Jy at resolution bandwidth of 125 kHz).  相似文献   

16.
Confirmed observations of meteoroids from the Leonid stream impacting the Moon in 1999 and 2001 have opened up new opportunities in observational and theoretical astronomy. These opportunities could help bridge the gap between the ground-based (atmospheric) sampling of the smallest meteoroids and the larger objects observable with ground-based telescopes. The Moon provides a laboratory for the study of hypervelocity impacts, with collision velocities not yet possible in ground-based laboratories. Development of automatic detection software removes the time-intensive activity of laboriously reviewing data for impact event signatures, freeing the observer to engage in other activities. The dynamics of professional-amateur astronomer collaboration have the promise of advancing the study of lunar meteoritic phenomenon considerably. These three factors will assist greatly in the development of a systematic, comprehensive program for monitoring the Moon for meteoroid impacts and determining the physical nature of these impacts.  相似文献   

17.
The discovery of the Crab Nebula as the first source of TeV gamma rays in 1989, using the technique of ground-based imaging air Cherenkov telescope, has marked the birthday of observational gamma astronomy in very high energy range. The team led by Trevor Weekes, after twenty years of trial and error, success and misfortune, step-by-step improvements in both the technique and understanding of gamma shower discrimination methods, used the 10 m diameter telescope on Mount Hopkins in Arizona, and succeeded measuring a 9σ signal from the direction of Crab Nebula. As of today over 160 sources of gamma rays of very different types, of both galactic and extra-galactic origin, have been discovered due to this technique. This is a really fast evolving branch in science, rapidly improving our understanding of the most violent and energetic sources and processes in the sky.The study of these sources provides clues to many basic questions in astrophysics, astro-particle physics, physics of cosmic rays and cosmology. Today’s telescopes, despite the young age of the technique, offer a solid performance. The technique is still maturing, leading to the next generation large instrument. This article is devoted to outlining the milestones in a long history that step-by-step have made this technique emerge and have brought about today’s successful source hunting.  相似文献   

18.
Determining the optical constants of Titan aerosol analogues, or tholins, has been a major concern for the last three decades because they are essential to constrain the numerical models used to analyze Titan’s observational data (albedo, radiative transfer, haze vertical profile, surface contribution, etc.). Here we present the optical constant characterization of tholins produced with an RF plasma discharge in a (95%N2–5%CH4) gas mixture simulating Titan’s main atmospheric composition, and deposited as a thin film on an Al–SiO2 substrate. The real and imaginary parts, n and k, of the tholin complex refractive index have been determined from 370 nm to 900 nm wavelength using spectroscopic ellipsometry. The values of n decrease from n = 1.64 (at 370 nm) to n = 1.57 (at 900 nm) as well as the values of k which feature two behaviors: an exponential decay from 370 nm to 500 nm, with k = 12.4 × e?0.018λ (where λ is expressed in nm), followed by a plateau, with k = (1.8 ± 0.2) × 10?3. The trends observed for the PAMPRE tholins optical constants are compared to those determined for other Titan tholins, as well as to the optical constants of Titan’s aerosols retrieved from observational data.  相似文献   

19.
We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ∼2.4 km by ∼5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.  相似文献   

20.
We suggest that planets, brown dwarfs, and even low mass stars can be formed by fragmentation of protoplanetary disks around very massive stars (M ? 100 M). We discuss how fragmentation conditions make the formation of very massive planetary systems around very massive stars favorable. Such planetary systems are likely to be composed of brown dwarfs and low mass stars of ~0.1–0.3 M, at orbital separations of ~ few × 100–104 AU. In particular, scaling from solar-like stars suggests that hundreds of Mercury-like planets might orbit very massive stars at ~103 AU where conditions might favor liquid water. Such fragmentation objects can be excellent targets for the James Webb Space Telescope and other large telescopes working in the IR bands. We predict that deep observations of very massive stars would reveal these fragmentation objects, orbiting in the same orbital plane in cases where there are more than one object.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号