首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 535 毫秒
1.
利用RogueSNR─8CGPS卫星接收机进行电离层总电子含量(TEC)的观测。介绍了基本分析方法以及在新乡和南宁两地初步测量结果。结果表明,新乡的TEC特性反映了中纬地区电离层的变化特征,而南宁的TEC特性则反映了电离层的赤道异常的某些特征,显示了赤道异常峰的南北向移动的特点。  相似文献   

2.
利用GPS计算TEC的方法及其对电离层扰动的观测   总被引:36,自引:8,他引:28  
在总结用GPS研究电离层电子总量TEC的数据处理方法基础上,分析了利用伪距观测量和载波相位观测量计算电离层TEC的特点及误差来源.在处理过程中考虑了卫星的硬件延迟偏差,分析了应用IRI模型进行接收机硬件延迟偏差修正的可能性,发现利用少量GPS数据和IRI模型修正接收机硬件延迟偏差有一定的困难.最后,利用一些GPS观测数据有针对性地研究了电离层对若干次扰动事件的响应.包括一次大的太阳耀斑期间的电离层TEC变化、一次较典型的电离层行扰以及日食期间的电离层TEC的相对变化等电离层物理问题.结果表明,利用该方法计算TEC的精度可满足电离层扰动现象的研究.  相似文献   

3.
本文尝试结合非相干散射雷达和GPS TEC观测数据提取等离子体层总电子含量(PTEC).我们首先描述所用的技术方法,然后具体利用了Millstone Hill台站的观测数据研究该地区上空等离子体层总电子含量(PTEC)的变化情况.我们采用变化标高的Chapman函数对非相干散射雷达测得的电子浓度剖面数据进行拟合,然后通过对剖面积分得到100 km到1000 km高度范围的电离层总电子含量.GPS提供的TEC数据为高度达20200 km的总电子含量,两者之差可近似看成等离子体层的电子含量.本文分别选取太阳活动高年(2000, 2002年)和太阳活动低年(2005,2008年)Millstone Hill台站的静日数据进行研究.结果表明,等离子体层电子含量及其所占GPS TEC的比例具有明显的周日变化.PTEC含量在白天高于夜间,而所占GPS TEC的百分比,夜间明显高于白天.太阳活动高年所选月份等离子体层电子含量在4~14 TECU (1TECU=1016el/m2) 范围内变化,夜间所占比例可达60%左右.太阳活动低年所选月份等离子体层电子含量在3~7 TECU范围内变化,所占比例夜间最高可达80%左右.我们所得到的结果与前人基于其它观测手段所得结果在变化趋势上一致,在量级上也大致相当.因此,这从一个侧面证明了我们所用方法的可靠性.非相干散射雷达能够探测包括F2层峰值以下及以上高度的电子浓度,利用这一设备所观测得到的资料来推算电离层电子含量将比前人基于电离层垂测仪观测资料进行的推算更具真实性,由此得到的等离子体层电子含量也将更为接近真实情况.  相似文献   

4.
本文利用武昌站(30.5°N,114.4°E)电离层测高仪和ETS-Ⅱ同步卫星信标法拉第旋转仪的同时观测记录,初步分析了电离层峰以上和峰以下电子含量之间的统计联系,并讨论了这种联系在电离层模式研究与电离层上部扰动研究以及电离层上部电子含量预测等方面的可能应用。  相似文献   

5.
利用1988~1999年欧洲非相干散射EISCAT(European Incoherent Scatter)雷达观测数据,对不同太阳活动周相、不同季节的极光椭圆区电离层F区电子密度进行统计分析,研究其气候学特征,并与IRI 2001模式比较.EISCAT观测到的电子密度显示出显著的太阳活动高年“冬季异常”和太阳活动低年半年变化等现象.EISCAT实测电子密度随时间和高度的平均二维分布和500 km高度以下总电子含量TEC,从总体来看与IRI 2001模式预测结果符合较好.但高年在TEC达到最大值前后,IRI 2001模式预测的电子密度高度剖面与EISCAT观测结果有显著差别:F2峰以上IRI 2001模式预测的电子密度过大,造成TEC明显高于雷达观测值.另外,在太阳活动下降相,EISCAT观测显示出明显的半年周期季节变化特征,但IRI 2001模式未能预测出此下降相季节变化.  相似文献   

6.
利用两颗伴飞的Swarm A/C卫星搭载的双频GPS接收机获取的TEC数据,在两个卫星轨道平面同时对顶部电离层电子密度进行层析成像,实现对顶部电离层电子密度的三维观测.为了能够重现扰动期间电离层电子密度的空间变化特征,在正则化求解过程中,我们引入了水平矩阵H和垂直矩阵V刻画电子密度的空间变化特征,引入整体约束矩阵C以调节不同空间对电子密度相对变化的权重.数值验证结果表明我们的算法对常见的观测误差具有较强的包容性,反演计算出的电子密度平均偏差优于10%.在不同地磁活动条件下,与第三方观测数据的对比,验证了本文反演算法的可靠性.实测数据反演结果表明我们的算法不仅能够较好地重现顶部电离层子午向百公里级别的不规则结构,还能有效分辨纬向相隔~150 km的两个卫星轨道平面的电子密度差异.  相似文献   

7.
大气掩星反演误差特性初步分析   总被引:8,自引:5,他引:8       下载免费PDF全文
GPS大气掩星探测技术可以获得全球大气折射率、气压、密度、温度和水汽压等气象参数,该技术基本原理是基于几何光学近似的Abel积分反演.地球扁率、电离层传播时间延迟、大气大尺度水平梯度、多路径传播现象等因素在某些高度范围影响大气反演的精度.本文采用模拟的方法,分析其中地球扁率及电离层对反演结果的影响,并讨论局部圆弧修正及电离层修正的效果.利用CHAMP掩星实测轨道数据和有关电离层和大气经验模式、采用三维射线追踪方法模拟计算几种情形下的GPS掩星观测附加相位数据,对模拟数据进行反演,将反演气象参量剖面与模拟时给定模式剖面进行比较,得到了0~60 km高度范围内的反演误差.误差统计分析结果表明,局部圆弧中心的修正以及电离层修正,对于高精度的GPS掩星反演是非常重要的;电离层修正残差仍是制约30~60 km高度范围内反演精度的重要因素,进一步完善和优化大气掩星反演需要发展新的电离层修正算法.  相似文献   

8.
用单流体和双流体MHD近似,研究了近磁尾位形不稳定性(NETC).分析表明,NETC可能存在两种漂移不稳定情况C1和C2与卫星观测资料对比显示,C2较容易在亚暴膨胀相前夕出现,它可以解释亚暴膨胀相期间磁场和等离子体扰动的特征周期、尾向传播速度、磁场扰动和等离子体压强扰动之间的位相关系,场向电流的周期性结构,西向涌浪头部的电子沉降和极光隆起等观测特性和现象.薄电流片的极端情况(Rc≈ri)不在本文的讨论范围之内.  相似文献   

9.
用单流体和双流体MHD近似,研究了近磁尾位形不稳定性(NETC).分析表明,NETC可能存在两种漂移不稳定情况C1和C2与卫星观测资料对比显示,C2较容易在亚暴膨胀相前夕出现,它可以解释亚暴膨胀相期间磁场和等离子体扰动的特征周期、尾向传播速度、磁场扰动和等离子体压强扰动之间的位相关系,场向电流的周期性结构,西向涌浪头部的电子沉降和极光隆起等观测特性和现象.薄电流片的极端情况(Rc≈ri)不在本文的讨论范围之内.  相似文献   

10.
本文利用经验正交函数(Empirical Orthogonal Function,简称EOF)方法分析了Millstone Hill非相干散射雷达(Incoherent Scatter Radar,简称ISR)近三个太阳黑子周期(1976年2月~2006年4月)的实测电离层160~700 km的电子浓度剖面资料,并分别用Chapman-α函数拟合了平均电子浓度剖面和带有均值的前三阶EOF级数.结果表明:电子浓度剖面的EOF级数的第一阶项主要控制F2层峰值浓度NmF2,第二阶项同时控制F2层的峰高hmF2和等效标高Hm,第三阶项主要控制等效标高Hm.进一步分析了对应的EOF系数的周日变化、季节变化和太阳活动周期变化,这些变化反映了NmF2,hmF2,Hm的气候学变化规律,例如电离层的冬季异常、半年异常等.EOF方法在级数展开方面收敛速度快,很少数低阶项即能反映电子浓度剖面的主要变化,因此可用于提取出电子浓度剖面的主要分布特征及其周日变化与气候学变化特性,并可用于进一步构建相应的经验模式.  相似文献   

11.
Variations of the upper boundary of the ionosphere (UBI) are investigated based on three sources of information: (i) ionosonde-derived parameters: critical frequency foF2, propagation factor M3000F2, and sub-peak thickness of the bottomside electron density profile; (ii) total electron content (TEC) observations from signals of the Global Positioning System (GPS) satellites; (iii) model electron densities of the International Reference Ionosphere (IRI*) extended towards the plasmasphere. The ionospheric slab thickness is calculated as ratio of TEC to the F2 layer peak electron density, NmF2, representing a measure of thickness of electron density profile in the bottomside and topside ionosphere eliminating the plasmaspheric slab thickness of GPS-TEC with the IRI* code. The ratio of slab thickness to the real thickness in the topside ionosphere is deduced making use of a similar ratio in the bottomside ionosphere with a weight Rw. Model weight Rw is represented as a superposition of the base-functions of local time, geomagnetic latitude, solar and magnetic activity. The time-space variations of domain of convergence of the ionosphere and plasmasphere differ from an average value of UBI at ∼1000 km over the earth. Analysis for quiet monthly average conditions and during the storms (September 2002, October–November 2003, November 2004) has shown shrinking UBI altitude at daytime to 400 km. The upper ionosphere height is increased by night with an ‘ionospheric tail’ which expands from 1000 km to more than 2000 km over the earth under quiet and disturbed space weather. These effects are interposed on a trend of increasing UBI height with solar activity when both the critical frequency foF2 and the peak height hmF2 are growing during the solar cycle.  相似文献   

12.
本文基于IRI模型、地面数字测高仪和GNSS TEC数据,提出了一种利用经验正交函数(Empirical Orthogonal Function,简称EOF)估算顶部电离层电子密度剖面的方法,并将其应用于美国Millstone Hill测高仪和GNSS数据以估算顶部电离层电子密度剖面.通过将估算的临界频率、峰值高度、400km以上电子密度分别与测高仪实测临界频率、测高仪实测峰值高度以及非相干散射雷达实测400km以上电子密度作对比以对方法的有效性进行验证.统计结果显示估算临界频率、峰值高度与测高仪实测数据基本一致,400km以上估算电子密度相较于非相干散射雷达实测的绝对误差平均值仅是测高仪推算400km以上电子密度绝对误差平均值的一半左右.所以本文提出的方法可以更加精确地估算顶部电离层电子密度.  相似文献   

13.
Geomagnetism and Aeronomy - A method is proposed to determine the total height profiles of the electron density in the ionosphere with the use of topside satellite ionograms containing traces of...  相似文献   

14.
We apply a model-assisted technique to construct the topside electron density profile based on Digisonde measurements. This technique uses the Topside Sounder Model (TSM), which provides the plasma scale height, O+-H+ transition height, and their ratio Rt = H T /h T , derived from topside sounder data of Alouette and ISIS satellites. The Topside Sounder Model Profiler (TSMP) incorporates TSM and uses the model quantities as anchor points for the construction of topside density profiles. TSMP provides its model ratios with transition height and plasmaspheric scale height. The analysis carried out indicates that Digisonde derived F-region topside scale height Hm is systematically lower than one derived from topside sounder profiles. To construct topside profiles by using Hm, a correction factor of around 3 is needed to multiply the neutral scale height in the α-Chapman formula. It was found that the plasmaspheric scale height strongly depends on latitude and its ratio with the F-region scale height expresses large day-to-day variability.  相似文献   

15.
本文利用DMSP F13和F15卫星观测数据,对2001—2005年58个磁暴(-472 nT≤Min.Dst≤-71 nT)期间高纬顶部电离层离子整体上行特征进行了统计研究.观测表明,磁暴期间,顶部电离层离子上行主要发生在极尖区和夜间极光椭圆区.在北半球,磁正午前,高速的离子上行(≥500 m·s-1)多集中在65° MLat以上;午后,高速离子上行区向低纬度扩展,上行速度要略高于午前;在南半球,磁午夜前,DMSP卫星在考察区域内几乎所有的纬度上都观测到了高速上行的离子;午夜后,各纬度上观测到上行离子的速度明显降低.离子上行期间,DMSP卫星在极区顶部电离层高度上也频繁地观测到电子/离子增温,且电子增温发生的频率要远高于离子增温.O+密度变化分析显示,DMSP卫星磁暴期间观测到的上行离子更多地源于顶部电离层高度.这些结果表明电子增温在驱动暴时电离层离子整体上行过程中起着重要作用.  相似文献   

16.
The changing state of the ionosphere is generally monitored by networks of vertical ionosondes that provide us with regular ionospheric sounding. Many ionospheric applications require determination of the true-height electron density profiles. Therefore, ionograms must be further inverted into real-height electron density profiles. The paper presents the comparison study of the true-height electron density profiles inverted from ionograms using two different methods POLAN (Titheridge, 1985) and NHPC (Huang and Reinish, 1996; Reinish et al., 2005), widely used by the ionospheric research community. Our results show significant systematic differences between electron density profiles calculated by these two inversion methods. pkn@ufa.cas.cz  相似文献   

17.
This paper summarizes the results of more than 10 years spent by the authors studying the variations in the ionosphere over seismically active regions several days or hours before strong earthquakes. The physical mechanisms of such variations established by the authors and published previously are submitted in the references. This article is aimed mainly at determining the major characteristic parameters of the observed effects (temporal and spatial variations, range in amplitude, etc.) to provide the means to separate the seismogenic effects from other forms of ionospheric variability. Data obtained by ground-based ionosondes and by topside vertical sounding from satellites are used in conjunction with local probe measurements. The topside vertical profiles of the electron concentration are analyzed. It is shown that the most characteristic effect is that of scale height changes in the vertical distribution of ions and electrons implying a decrease in the mean ion mass within the F-layer due to seismogenic effects. This result is supported by direct mass-spectrometer measurements. Differences between magnetic storm ionospheric disturbances and seismogenic variations within the ionosphere are also discussed.  相似文献   

18.
北京地区电离层Chapman标高的统计分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用F2层峰值处的Chapman标高Hm可以构建电离层顶部的电子浓度剖面.本文通过对北京站(40.3°N,116.2°E)从2010年1月到2014年5月的电离层频高图人工度量后获得了F2层峰值处的Chapman标高Hm,分析研究了Hm随周日、季节和太阳活动变化,并探讨了Hm与F2层特征参数foF2、hmF2以及IRI底部厚度参数B0的相关性.研究表明,(1)北京地区标高Hm的周日变化明显,在正午左右有最大值,夏季和春秋季的最小值出现在午夜左右,而冬季有两个谷值,在日出后和20:00LT左右; Hm在日出前有较小的增加,但不是很明显;(2)白天标高Hm有明显的季节变化,夏季最强,冬季最弱,而夜间的季节变化较小;(3)Hm随太阳活动的增强而增大,地磁扰动会引起Hm偏离正常水平;(4)Hm与hmF2相关性很弱,但白天和夜间各自的相关性较强,并且夜间大于白天;Hm与B0有很强的相关性;(5)由IRI2012给出的B0与Hm在冬季的相关性很小,表明IRI模式还需要进一步改进.  相似文献   

19.
F-lacuna是高纬极区电离层测高仪频高图上经常出现的一种F层回波描迹部分或全部消失的现象,直接影响电离层参数的标定,其表征的电离层物理过程尚未定论.利用南极中山站测高仪频高图数据,本文统计分析了Flacuna在不同太阳风速度水平下的发生频率,主要对2012年2月15日一次F2-lacuna观测实例的粒子沉降及电离层特性进行了分析.观测特征表明,F2-lacuna发生期间,电离层电子总含量TEC明显减小,昭和站SuperDARN高频雷达观测到的中山站上空电离层Bragg后向散射增强,但对应来自磁层的电子和离子沉降并不明显.这可能是由磁层亚暴引起的极区电离层电流体系扰动,触发电离层F-B不稳定性,产生沿场向排列的小尺度不规则体,其热效应导致F2层密度减小,F2-lacuna出现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号