首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The combination of magnetotelluric survey and laboratory measurements of electrical conductivity is a powerful approach for exploring the conditions of Earth’s deep interior. Electrical conductivity of hydrous silicate melts and aqueous fluids is sensitive to composition, temperature, and pressure, making it useful for understanding partial melting and fluid activity at great depths. This study presents a review on the experimental studies of electrical conductivity of silicate melts and aqueous fluids, and introduces some important applications of experimental results. For silicate melts, electrical conductivity increases with increasing temperature but decreases with pressure. With a similar Na+ concentration, along the calc-alkaline series electrical conductivity generally increases from basaltic to rhyolitic melt, accompanied by a decreasing activation enthalpy. Electrical conductivity of silicate melts is strongly enhanced with the incorporation of water due to promoted cation mobility. For aqueous fluids, research is focused on dilute electrolyte solutions. Electrical conductivity typically first increases and then decreases with increasing temperature, and increases with pressure before approaching a plateau value. The dissociation constant of electrolyte can be derived from conductivity data. To develop generally applicable quantitative models of electrical conductivity of melt/fluid addressing the dependences on temperature, pressure, and composition, it requires more electrical conductivity measurements of representative systems to be implemented in an extensive P-T range using up-to-date methods.  相似文献   

2.
High pressure experiments using the sink/float method have bracketed the density of hydrous iron-rich ultrabasic silicate melt from 1.35 to 10.0 GPa at temperatures from 1400 to 1860 °C. The silicate melt composition was a 50–50 mixture of natural komatiite and synthetic fayalite. Water was added in the form of brucite Mg(OH)2 and was present in the experimental run products at 2 wt.% and 5 wt.% levels as confirmed by microprobe analyses of total oxygen. Buoyancy marker spheres were olivines and garnets of known composition and density. The density of the silicate melt with 5 wt.% water at 2 GPa and 1500 °C is 0.192 g cm? 3 less than the anhydrous form of this melt at the same P and T. This density difference gives a partial molar volume of water in silicate melt of ~ 7 cm3 mol? 1, which is similar to previous studies at high pressure. The komatiite–fayalite liquids with 0 and 2 wt.% H2O, have extrapolated density crossovers with equilibrium liquidus olivine at 8 and 9 GPa respectively, but there is no crossover for the liquid with 5 wt.% H2O. These results are consistent with the hypothesis that dense hydrous melts could be gravitationally stable atop the 410 km discontinuity in the Earth. The results also support the notion that equilibrium liquidus olivine could float in an FeO-rich hydrous martian magma ocean. Extrapolation of the data suggests that FeO-rich hydrous melt could be negatively buoyant in the Earth's D″-region or atop the core–mantle-boundary (CMB), although experiments at higher pressure are needed to confirm this prediction.  相似文献   

3.
Although the bulk moduli (KT0) of silicate melts have a relatively narrow range of values, the pressure derivatives of the isothermal bulk modulus (KT0) can assume a broad range of values and have an important influence on the compositional dependence of the melt compressibility at high pressure. Based on the melt density data from sink/float experiments at high pressures in the literature, we calculate KT0 using an isothermal equation of state (EOS) (e.g., Birch–Murnaghan EOS and Vinet EOS) with the previously determined values of room-pressure density (ρ0) and room-pressure bulk modulus (KT0). The results show that best estimates of KT0 vary considerably from ~ 3 to ~ 7 for different compositions. KT0 is nearly independent of Mg # (molar Mg/(Mg + Fe)), but decreases with SiO2 content. Hydrous melts have anomalously small KT0 leading to a high degree of compression at high pressures. For anhydrous melts, KT0 is ~ 7 for peridotitic melts, ~ 6 for picritic melts, ~ 5 for komatiitic melts, and ~ 4 for basaltic melts.  相似文献   

4.
Although vigorous mantle convection early in the thermal history of the Earth is shown to be capable of removing several times the latent heat content of the core, we are able to construct a thermal evolution model of the Earth in which the core does not solidify. The large amount of energy removed from the model Earth's core by mantle convection is supplied by the internal energy of the core which is assumed to cool from an initial high temperature given by the silicate melting temperature at the core-mantle boundary. For the smaller terrestrial planets, the iron and silicate melting temperatures at the core-mantle boundaries are more comparable than for the Earth, and the cores of these planets may not possess enough internal energy to prevent core solidification by mantle convection. Our models incorporate temperature-dependent mantle viscosity and radiogenic heat sources in the mantle. The Earth models are constrained by the present surface heat flux and mantle viscosity. Internal heat sources produce only about 55% of the Earth model's present surface heat flow.  相似文献   

5.
碳酸盐化橄榄岩的电性研究   总被引:3,自引:1,他引:2       下载免费PDF全文
为进一步探讨上地幔的高导层成因,了解碳酸盐在上地幔电性方面的作用并估算上地幔高导层的碳酸盐含量,本文对不同碳酸盐含量的橄榄岩及玄武岩样品在2~3 GPa、300~1300℃的条件下进行了电性实验研究.研究初步发现:碳酸盐熔体显著增强橄榄岩、玄武岩样品的导电能力;单纯用含硅酸盐熔体的橄榄岩或单纯用含水橄榄岩可能难以解释上地幔某些区域的异常高导现象;同样,单纯用碳酸盐化的橄榄岩可能也难以解释上地幔某些区域的高导现象;上地幔的高导区很可能是碳酸盐熔体、硅酸盐熔体及水的共存区域.  相似文献   

6.
The solubility of Au in silicate melts and fluids governs the enrichment and migration of Au during the formation of magmatic-hydrothermal Au deposits. Large Au deposits require vast amounts of Au to migrate from the upper mantle-lower crust to the shallow crust, and high Au solubility in magma and hydrothermal fluid facilitates the formation of Au-rich magma and fluid in the crust and mantle source and efficient transport. This paper reviews recent high-pressure and high-temperature experimental studies on Au species in magmas and hydrothermal fluids, the partitioning behavior of Au between silicate melts and fluids, and the effects of temperature, pressure, oxygen fugacity, sulfur fugacity, silicate melt composition, and volatiles(H_2O, CO_2, chlorine, and sulfur) on the solubility of Au in magma. We show that the solubility of Au in magma is largely controlled by the volatiles in the magma: the higher the content of reduced sulfur(S~(2-) and HS~-) in the magma, the higher the solubility of Au. Under high-temperature, high-pressure, H_2O-rich, and intermediate oxygen fugacity conditions, magma can dissolve more reduced sulfur species, thus enhancing the ability of the magma to transport Au. If the ore-forming elements of the Au deposits in the North China Craton originate from mantle-derived magmas and fluids, we can conclude, in terms of massive Au migration, that these deep Au-rich magmas might have been generated under H2 O-rich and moderately oxidized conditions(S~(2-) coexists with S~(6+)). The big mantle wedge beneath East Asia was metasomatized by melts and fluids from the dehydration of the Early Cretaceous paleo-Pacific stagnant slab, which not only caused thinning of the North China Craton, but also created physicochemical conditions favorable for massive Au migration.  相似文献   

7.
Liquid metal-liquid silicate partitioning of Fe, Ni, Co, P, Ge, W and Mo among a carbon-saturated metal and a variety of silicate melts (magnesian-tholeiitic-siliceous-aluminous-aluminosiliceous basalts) depends modestly to strongly upon silicate melt structure and composition. Low valency siderophile elements, Fe, Ni and Co, show a modest influence of silicate melt composition on partitioning. Germanium shows a moderate but consistent preference for the depolymerized magnesian melt. High valency siderophile elements, P, Mo, and W, show more than an order of magnitude decrease in metal-silicate partition coefficients as the silicate melt becomes more depolymerized. Detailed inspection of our and other published W data shows that polymerization state, temperature and pressure are more important controls on W partitioning than oxidation state. For this to be true for a high and variable valence element implies a secondary role in general for oxidation state, even though some role must be present. Equilibrium core segregation through a magma ocean of ‘ultrabasic’ composition can provide a resolution to the ‘excess’ abundances of Ge, P, W and Mo in the mantle, but the mantle composition alone cannot explain the excess abundances of nickel and cobalt in chondritic proportions.  相似文献   

8.
Deeply subducted carbonate rocks from the Kokchetav massif (Northern Kazakhstan) recrystallised within the diamond stability field (P = 4.5–6.0 GPa; T  1000 °C) and preserve evidence for ultra high-pressure carbonate and silicate melts. The carbonate rocks consist of garnet and K-bearing clinopyroxene embedded in a dolomite or magnesian calcite matrix. Polycrystalline magnesian calcite and polyphase carbonate–silicate inclusions occurring in garnet and clinopyroxene show textural features of former melt inclusions. The trace element composition of such carbonate inclusions is enriched in Ba and light rare earth elements and depleted in heavy rare earth elements with respect to the matrix carbonates providing further evidence that the inclusions represent trapped carbonate melt. Polyphase inclusions in garnet and clinopyroxene within a magnesian calcite marble, consisting mainly of a tight intergrowth of biotite + K-feldspar and biotite + zoisite + titanite, are interpreted to represent two different types of K-rich silicate melts. Both melt types show high contents of large ion lithophile elements but contrasting contents of rare earth elements. The Ca-rich inclusions display high REE contents similar to the carbonate inclusions and show a general trace element characteristic compatible with a hydrous granitic origin. Low SiO2 content in the silicate melts indicates that they represent residual melts after extensive interaction with carbonates. These observations suggest that hydrous granitic melts derived from the adjacent metapelites reacted with dolomite at ultra high-pressure conditions to form garnet, clinopyroxene – a hydrous carbonate melt – and residual silicate melts. Silicate and carbonate melt inclusions contain diamond, providing evidence that such an interaction promotes diamond growth. The finding of carbonate melts in deeply subducted crust might have important consequences for recycling of trace elements and especially C from the slab to the mantle wedge.  相似文献   

9.
Fractionation between the metal and silicate components of objects in the inner solar system has long been recognized as a necessity in order to explain the observed density variations of the terrestrial planets and the H-group, L-group dichotomy of the ordinary chondrites. This paper discusses the densities of the terrestrial planets in light of current physical and chemical models of processes in the solar nebula. It is shown that the observed density trends in the inner solar system need not be the result of special fractionation processes, and that the densities of the planets may be direct results of simultaneous application of both physical and chemical restraints on the structure of the nebula, most notably the variation of temperature with heliocentric distance. The density of Mercury is easily attributed to accretion at temperatures so high that MgSiO3 is only partially retained but Fe metal is condensed. The densities of the other terrestrial planets are shown to be due to different degrees of retention of S, O and H as FeS, FeO and hydrous silicates produced in chemical equilibrium between condensates and solar-composition gases. It is proposed that Mercury and Venus Have cores of Fe0, Earth has a core of Fe0 containing substantial amounts of FeS, and Mars has a quite small core of FeS with more FeO in its mantle than in Earth's. Geophysical and geochemical consequences of these conclusions are discussed.  相似文献   

10.
Nickel partitioning between forsterite and aluminosilicate melt of fixed bulk composition has been determined at 1300°C to 20 kbar pressure. The value of the forsterite-liquid nickel partition coefficient is lowered from >20 at pressures equal to or less than 15 kbar to <10 at pressures above 15 kbar.Published data indicate that melts on the join Na2O-Al2O3-SiO2 become depolymerized in the pressure range 10–20 kbar as a result of Al shifting from four-coordination at low pressure to higher coordination as the pressure is increased. This coordination shift results in a decreasing number of bridging oxygens in the melt. It is suggested that the activity coefficient of nickel decreases with this decrease in the number of bridging oxygens. As a result, the nickel partition coefficient for olivine and liquid is lowered.Magma genesis in the upper mantle occurs in the pressure range where the suggested change in aluminum coordination occurs in silicate melts. It is suggested, therefore, that data on nickel partitioning obtained at low pressure are not applicable to calculation of the nickel distribution between crystals and melts during partial melting in the upper mantle. Application of high-pressure experimental data determined here for Al-rich melts to the partial melting process indicates that the melts would contain about twice as much nickel as indicated by the data for the low-pressure experiments. If, as suggested here, the polymerization with pressure is related to the Al content of the melt, the difference in the crystal-liquid partition coefficient for nickel at low and high pressure is reduced with decreasing Al content of the melt. Consequently, the change ofDNiol-andesite melt is greater than that ofDNiol-basalt melt, for example.  相似文献   

11.
Despite its importance to questions of lunar origin, the chemical composition of the Moon is not precisely known. In recent years, however, the isotopic composition of lunar samples has been determined to high precision and found to be indistinguishable from the terrestrial mantle despite widespread isotopic heterogeneity in the Solar System. In the context of the giant-impact hypothesis, this level of isotopic homogeneity can evolve if the proto-lunar disk and post-impact Earth undergo turbulent mixing into a single uniform reservoir while the system is extensively molten and partially vaporized. In the absence of liquid–vapor separation, such a model leads to the lunar inheritance of the chemical composition of the terrestrial magma ocean. Hence, the turbulent mixing model raises the question of how chemical differences arose between the silicate Earth and Moon. Here we explore the consequences of liquid–vapor separation in one of the settings relevant to the lunar composition: the silicate vapor atmosphere of the post-giant-impact Earth. We use a model atmosphere to quantify the extent to which rainout can generate chemical differences by enriching the upper atmosphere in the vapor, and show that plausible parameters can generate the postulated enhancement in the FeO/MgO ratio of the silicate Moon relative to the Earth's mantle. Moreover, we show that liquid–vapor separation also generates measurable mass-dependent isotopic offsets between the silicate Earth and Moon and that precise silicon isotope measurements can be used to constrain the degree of chemical fractionation during this earliest period of lunar history. An approach of this kind has the potential to resolve long-standing questions on the lunar chemical composition.  相似文献   

12.
Infrared and X-ray radiation data indicate that the effect of pressure on Na-Al-Si-O quenched melt is to change the coordination number of trivalent aluminum ions from four to six. This conclusion is based upon an observed decrease in the intensity of the infrared vibration involving a “bridging” oxygen in the polymer structure and a shift in both Al Kα (7 × 10?4Å) and Al Kβ (20 × 10?4Å) radiation. The amount of AlIV or AlVI seems to be a continuous function of the pressure at which the melt was formed and is thus independent of the coordination change effected at high pressure in solids crystallized from the NaAlSi2O6 composition used in this study. The importance of the continuous shift of coordination number of aluminum ions in silicate melts at high pressure is discussed. The change in coordination of Al would also be expected in natural silicate melts (magmas) at high pressures.  相似文献   

13.
The activity of a silicate liquid component in a melt at an elevated liquidus temperature and pressure may be expressed analytically in terms of the 1-bar liquidus temperature activity and functions of the partial molar volume and partial molar enthalpy of mixing. Alternatively, the activity of the elevated (i.e. higherP-T) liquidus may be expressed in terms of the difference of heat content, heat capacity, entropy and volume of the component in the crystalline form and in the melt. Equating these two expressions, the partial molar enthalpy of mixing and there-from the partial molar entropy of mixing may be determined, provided the liquidus temperatures of the phase in question at both 1 bar and higher pressure and at a constant melt composition are known. Several such retrievals for CaMgSi2O6, Mg2SiO4, NaAlSi3O8, and TiO2 from experimental phase equilibrium data are presented. It is argued that as the partial molar enthalpy of mixing generally has large values, the regular solution formulation on the basis of a constant function of the activity coefficient would lead to erroneousP-T estimates for ascending magmas.  相似文献   

14.
为了观测含碳酸盐地幔岩部分熔融过程中电导率的变化,厘清碳酸盐熔体在金伯利岩岩浆形成过程中所起的作用,并探讨Slave克拉通中部Lac de Gras地区约80~120km深处的高导成因,我们利用DS 3600t六面顶压机和Solartron 1260阻抗/增益-相位分析仪在1.0~3.0GPa、673~1873K温压条件下分别测量了含碳酸钠(Na_2CO_3)、碳酸钙(CaCO_3)和大洋中脊玄武岩(MORB)的地幔岩样品的电导率.实验结果表明,地幔岩样品的电导率主要受到温度和组分的影响,而压力对其影响较小.在温度低于1023K时,含Na_2CO_3地幔岩样品的电导率明显高于含同比重CaCO_3和MORB的;温度达到1023K时,含Na_2CO_3地幔岩样品开始熔融;但在之后的200K温度区间内,该部分熔融样品的电导率随温度的增加几乎不发生变化.这一现象或许揭示:地幔深部的碳酸质岩浆在快速上升过程中会同化吸收岩石圈地幔中的斜方辉石(Opx),进而形成金伯利岩岩浆,期间岩浆的电导率几乎不发生变化.含CaCO_3和MORB的地幔岩样品分别在1723K和1423K开始熔融,其部分熔融样品的电导率随温度的增加而快速增加.依据前人的研究结果和我们的实验结果,我们认为可以用含碳酸盐的部分熔融样品来解释Slave克拉通中部Lac de Gras地区约80~120km深处的异常高导现象,并推测熔体中碳酸盐的熔体比例小于2wt.%.  相似文献   

15.
The experiments in the model system CaMgSi2O6–(Na2CO3, CaCO3)–KCl are performed at 5 GPa and 1400–1600 °C in order to study the phase relations, including liquid immiscibility, in the chloride–carbonate–silicate systems with application to alkali and chlorine-rich liquids preserved in kimberlitic diamonds. Experiments in the boundary joins of the system demonstrated that both the carbonate–silicate and chloride–carbonate melts are homogeneous; while high-temperature (above 1800 °C) liquid immiscibility is assumed for the chloride–silicate join of the above system. Addition of silicate component into the chloride–carbonate melts and chloride component into the carbonate–silicate melts results in splitting of the homogeneous liquids into the immiscible chloride–carbonate brine and carbonate–silicate melt. Carbonate–silicate and chloride–carbonate branches of the miscibility gap converge within the carbonate-rich region of the system. Regular temperature evolution of the shape and size of the miscibility gap is deduced. With decreasing temperature, the convergence point moves toward more Si-rich compositions, expanding fields of homogeneous chloride–carbonate silica-saturated melts. This effect is governed by the precipitation of the silicate phases even from silica-bearing chloride–carbonate melts. In addition, experiments revealed regular evolution of both Cl-bearing carbonate–silicate melt and Si-bearing chloride–carbonate brine toward the low-temperature chlorine–bearing carbonatitic liquid with decreasing temperature. These trends are similar to the evolution of the melt and brine inclusions in some diamonds from Botswana, Brazil, Canada, and Yakutia, indicating their growth during cooling. The model for interaction of the chloride–carbonate brine with the mantle rocks is developed on the basis of the present experimental data. This model is applied to the chlorine-enriched kimberlites of the Udachnaya–East pipe.  相似文献   

16.
The equations of state (EOSs) of MgO produced by two independent scale-free methods, (1) the simultaneous elastic wave velocity and in situ synchrotron X-ray measurements (Kono et al., 2010; Li et al., 2006) and (2) the first-principles calculations (Wu et al., 2008), agree well with each other to at least 150 GPa and 2000 K. Furthermore, the EOS from first-principles calculations also agrees well with shock wave data, another pressure-scale-free data. These agreements strongly support that these EOSs provide reliable absolute pressure scales. Here we evaluate Au and Pt EOSs based on the EOS of Wu et al. (2008) using the simultaneously measured volume data of MgO, Au, and Pt from the literature. The primary pressure scales developed by Tange et al. (2009) and Yokoo et al. (2009) using only pressure-scale-free experimental data of MgO, Au, and Pt produce internal consistent pressure and agree with EOS of Wu et al. (2008). The Au EOS by Tsuchiya (2003) works well at room temperature but underestimates pressure at high temperature. The Au EOS by Fei et al. (2007) can well describe thermal pressure. The EOSs of Pt by Holmes et al. (1989) and Ono et al. (2011) work well at both room temperature and high temperature. The results also suggest that the discrepancy between bulk modulus of iron from experiments (Mao et al., 1990) and those from Earth’s core (Dziewonski and Anderson, 1981) is not originated from the overestimation of pressure by the EOS of Holmes et al. (1989). At high pressure and temperature, pressure uncertainty resulted from volume error becomes similarly important as the accuracy of the pressure scale.  相似文献   

17.
Constraints on melting and magma production in the crust   总被引:10,自引:0,他引:10  
Major intrusions of granitic rocks are found in several tectonic settings and, in all cases, crustal melts may contribute to the volumes of granitic magma. High-grade metamorphism and partial melting of the crust take place predominantly under fluid-absent conditions. We present a model for calculating the amounts of melt that may be formed by fluid-absent breakdown of micas and amphiboles in common crustal rock types (pelitic, quartzofeldspathic, intermediate and mafic). Melt proportions depend mainly on the kind of source rock, the pressure at which melting takes place, the temperature and the hydrous mineral (H2O) content of the source. As a consequence of the pressure dependence of water solubility in silicate melts, any given source rock will produce more melt, by a given fluid-absent reaction, at lower pressure. At a given pressure, higher-temperature reactions can produce more melt from a given source rock. Based on a survey of the compositions of common rock types, we show that the amounts of melt can vary from < 10to> 50vol.%. Thus, crustal rocks vary widely in their “fertility” as magma sources, depending on the types and amounts of hydrous phases they contain. In general, muscovite breakdown in pelites will yield only small quantities of melt and lead to migmatite formation. Biotite breakdown in pelites occurs at higher temperature and, because most high-grade pelites (below granulite grade) are biotite-rich, can yield up to about 50 vol.% of granitoid melt. Rocks of intermediate composition and hornblende-rich mafic rocks are potentially highly fertile magma sources also, provided that the high temperatures necessary for biotite and hornblende breakdown are realized. Pyroxene-rich mafic rocks and quartzofeldspathic rocks are much less potentially fertile. Data suggest that mechanisms exist for the efficient segregation of melt and restite in systems with < 30and probably< 20vol.% melt. The pressure-temperature history of a region can greatly influence crustal source fertility through its control over the occurrence of subsolidus dehydration and melting equilibria.  相似文献   

18.
The connectivity of molten Fe-S in peridotite has been experimentally investigated by means of in situ electrical conductivity measurements at high temperatures and 1 GPa. Starting materials were powdered mixtures of peridotite KLB-1 with various amounts (0, 3, 6, 13, 19, 24 vol.%) of the 1 GPa eutectic composition in the Fe-FeS binary system. At temperatures above the eutectic point in the Fe-FeS system (∼980 °C) and below the solidus of KLB1 (∼1200 °C), molten Fe-S in a solid silicate matrix interconnects when the volume fraction is over ∼5%. Conductivity-temperature paths indicate that in the presence of partial silicate melting the connectivity of molten Fe-S in a peridotite matrix is inhibited. Based on observations of retrieved samples, the percolation threshold of Fe-S melts in the presence of low to moderate degrees of silicate melt is estimated at 13±2 vol.%. These results indicate that if the volume fraction of Fe-alloy in a planetesimal was initially greater than 5%, and if early heating by decay of radionuclides raised the temperature of the interior above the Fe-alloy melting point, initial metal segregation was controlled by permeable flow of molten iron alloy in a solid silicate matrix. These conditions were likely met by many terrestrial objects in the early solar nebula. Efficient removal of residual Fe-alloy (5 vol.%) from silicate requires high-degree melting of silicate so that metal can segregate as droplets. Giant impacts during the final stage of accretion of large planetary objects could supply the energy required for high-degrees of melting. Alternatively, if initial metal segregation were delayed until a planetary object grew to large size (∼1000 km in diameter), release of gravitational potential energy due to metal segregation could contribute enough heat to form a magma ocean.  相似文献   

19.
Water plays a crucial role in the melting of Earth’s mantle. Mantle magmatisms mostly occur at plate boundaries (including subduction zones and mid-ocean ridges) and in some intraplate regions with thermal anomaly. At oceanic subduction zones, water released by the subducted slab may induce melting of the overlying mantle wedge or even the slab itself, giving rise to arc magmatism, or may evolve into a supercritical fluid. The physicochemical conditions for the formation of slab melt and supercritical fluid are still under debate. At mid-ocean ridges and intraplate hot zones, water and CO2 cause melting of the upwelling mantle to occur at greater depths and in greater extents. Low degree melting of the mantle may occur at boundaries between Earth’s internal spheres, including the lithosphere-asthenosphere boundary (LAB), the upper mantletransition zone boundary, and the transition zone-lower mantle boundary, usually attributed to contrasting water storage capacity across the boundary. The origin for the stimulating effect of water on melting lies in that water as an incompatible component has a strong tendency to be enriched in the melt (i.e., with a mineral-melt partition coefficient much smaller than unity), thereby lowering the Gibbs free energy of the melt. The partitioning of water between melt and mantle minerals such as olivine, pyroxenes and garnet has been investigated extensively, but the effects of hydration on the density and transport properties of silicate melts require further assessments by experimental and computational approaches.  相似文献   

20.
High-Mg (Mg#>45) andesites (HMA) within cratons attract great attention from geologists. Their origin remains strongly debated. In order to examine and provide direct evidence for previous assumptions about HMA’s genesis inferred from petrological and geochemical investigations, we performed reaction experiments between tonalitic melt and mantle olivine on a six-anvil apparatus at high-temperature of 1250–1400°C and high-pressure of 2.0–5.0 GPa. Our experiments in this work simulated the interaction between the tonalitic melt derived from partial melting of eclogitized lower crust foundering into the Earth’s mantle and mantle peridotite. The experimental results show that the reacted melts have very similar variations in chemical compositions to the HMAs within the North China Craton. Therefore, this interaction is probably an important process to generate the HMAs within crations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号