首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica, exhibit a sequence of reaction textures that have been used to elucidate their retrograde P–T path. The highest temperature recorded in the calc-silicates is represented by the wollastonite- and scapolite-bearing assemblages which yield at least 760°C at 6 kbar based on experimental results. The calc-silicates have partially re-equilibrated at lower temperatures (down to 450°C) as evidenced by the successive reactions: (1) wollastonite + scapolite + calcite = garnet + CO2, (2) wollastonite + CO2= calcite + quartz, (3) wollastonite + plagioclase = garnet + quartz, (4) scapolite = plagioclase + calcite + quartz, (5) garnet + CO2+ H2O = epidote + calcite + quartz, and (6) clinopyroxene + CO2+ H2O = tremolite + calcite + quartz.
The reaction sequence observed indicates that a CO2 was relatively low in the wollastonite-bearing rocks during peak metamorphic conditions, and may have been further lowered by local infiltration of H2O from the surrounding migmatitic gneisses on cooling. Fluid activities in the Bolingen calc-silicates were probably locally variable during the granulite facies metamorphism, and large-scale CO2 advection did not occur.
A retrograde P–T path, from the sillimanite stability field ( c. 760°C at 6 kbar) into the andalusite stability field ( c. 450°C at <3 kbar), is suggested by the occurrence of secondary andalusite in an adjacent cordierite–sillimanite gneiss in which sillimanite occurs as inclusions in cordierite.  相似文献   

2.
Abstract Scapolite, wollastonite, calcite, diopside, grossular-andradite garnet and sphene occur in calc-silicate rocks in the granulite terrain of the Arunta Block, central Australia. This assemblage buffers the CO2 activity at a low value, so that any coexisting fluid phase must be H2O rich and CO2 poor ( X co2 = 0.2-0.3). In contrast, the H2O activity in the surrounding felsic and mafic granulites was low. Thus fluid activities during granulite facies metamorphism were locally buffered in various rock units and fluid flow appears to have been restricted or fluid may have been absent. Late retrograde rims of garnet and garnet-quartz separate phases formed in the high-grade stage. Formation of these rims would have required either an influx of water-rich fluid or a decrease in pressure. Evidence from the surrounding granulites shows that in one locality, the calc-silicate rocks had undergone late isobaric hydration; in another locality, minor uplift had occurred soon after peak P-T conditions. In both, scapolite had partly broken down to plagioclase-calite. A calc silicate rock from the granulite terrain of Enderby Land, Antarctica, contains scapolite, wollastonite, calcite, diopside, quartz and sphene; this assemblage also indicates low CO2 activities. In this rock, wollastonite has broken down to calcite-quartz, to indicate isobaric cooling without influx of hydrous fluid.  相似文献   

3.
A sequence of regional metamorphic isograds indicating a range from prehnite-pumpellyite to lower amphibolite facies was mapped in metabasites near Flin Flon, Manitoba. The lowest grade rocks contain prehnite + pumpellyite and are cut by younger brittle faults containing epidote + chlorite + calcite. Isobaric temperature- X CO2 and pressure-temperature (constant X CO2) diagrams were calculated to quantify the effects of CO2 in the metamorphic fluid on the stability of prehnite-pumpellyite facies minerals in metabasites containing excess quartz and chlorite. Prehnite and, to a lesser extent, pumpellyite are stable only in fluids with X co2 <0.002. For X co2>0.002, epidote + chlorite + calcite assemblages are stable. Our calculated phase relations are consistent with regional metamorphism in the Flin Flon area in the presence of an H2O-rich fluid and a more CO2-rich fluid in the later fault zones. We believe that the potential effects of small amounts of CO2 in the metamorphic fluid should be assessed when considering the pressure-temperature implications of mineral assemblages in low-grade metabasites.  相似文献   

4.
Calcsilicate granulites of probable Middle Proterozoic age ( c .1000–1100  Ma) in the vicinity of Battye Glacier, northern Prince Charles Mountains, East Antarctica, contain prograde metamorphic assemblages comprising various combinations of wollastonite, scapolite, clinopyroxene, An-rich plagioclase, calcite, quartz, titanite and, rarely, orthoclase, ilmenite, phlogopite and graphite. Comparison of the prograde assemblages with calculated and experimentally determined phase relations in the simple CaO–Al2O3–SiO2–CO2–H2O system suggests peak metamorphism at ≥835 °C in the presence (in wollastonite-bearing assemblages at least) of a CO2-bearing fluid ( X CO≥0.3) at a probable pressure of 6–7  kbar.
Well-preserved retrograde reaction textures represent: (1) breakdown of scapolite to anorthite+calcite±quartz; (2) formation of grossular–andradite garnet and, locally, (3) epidote, both principally by reactions involving scapolite breakdown products and clinopyroxene; (4) local coupled replacement of clinopyroxene and ilmenite by hornblende and titanite, respectively; and finally (5) local sericitization of prograde and retrograde plagioclase. These retrograde reactions are interpreted to be the result of cooling and variable infiltration by H2O-rich fluids, possibly derived from crystallizing pegmatitic intrusions and segregations that may be partial melts, which are common throughout the area.  相似文献   

5.
Scapolite–wollastonite–grossular bearing calc-silicate rocks from the Vellanad area in the Kerala Khondalite Belt (KKB) of Southern India preserve a number of reaction textures which help to deduce their PT–fluid history. Textures include calcite+plagioclase±quartz symplectites after scapolite, grossular+quartz coronas between wollastonite and plagioclase, grossular coronas between wollastonite and plagioclase+calcite that replace former scapolite, and grossular blebs replacing anorthite+calcite+quartz pseudomorphs of scapolite. Garnet coronas are also observed between clinopyroxene and wollastonite or scapolite or plagioclase. The reactions, apart from those involving clinopyroxene, can be modelled in the simple CaO–Al2O3–SiO2–CO2 system and interpreted using partial reaction grids constructed for the activities of end-members in the analysed phases. The reaction topologies produced are good approximations for the peak as well as retrograde mineral assemblages and reaction textures. For the compositions of the phases present in this study, the medium pressure calc-silicate assemblages are defined by the stable pseudo-invariant points [Qtz], [Mei] and [Grs]. The textural features interpreted using these activity-corrected grids indicate a phase of isobaric cooling from about 835°C to 750°C at 6 kbar in the Vellanad area. This is inconsistent with earlier studies on other lithologies from the KKB, most of which imply a post-peak PT path involving near-isothermal decompression. However, as the temperatures obtained for the KKB from the calc-silicates are higher than those previously deduced from metapelites and garnet–orthopyroxene assemblages, the phase of near-isobaric cooling reported here is inferred to have proceeded prior to the onset of the decompression documented from studies of other rock types.  相似文献   

6.
Batu Hijau is a world-class gold-rich porphyry copper deposit, situated in Sumbawa Island, Indonesia. Deep drilling indicates that several intervals of calc-silicate rock were intersected, where they are apparently interbedded with volcaniclastic rocks. The calc-silicate rocks occur at the contact with copper-gold-bearing tonalite porphyries. The rocks are fine-grained and granular with green, reddish-brown and white layers. The green layers consist mostly of fine-grained clinopyroxene (diopside and hedenbergite) and the reddish-brown layers consist mostly of garnet (andradite), whereas the white layers are commonly composed of calcite and zeolite (chabazite). The calc-silicate rocks were formed by contact metasomatism of andesitic volcaniclastic rocks, as it is calcic in composition. Paragenesis study reveals at least two stages of calc-silicate mineralization. Stage 1 (prograde) is characterized by the presence of garnet (andradite), clinopyroxene (diopside and hedenbergite), anorthite and quartz at 340–360 C (high salinity 35–45 NaCl wt percentage eqn.). Stage 2 (retrograde) is characterized by chlorite and rare epidote at 280–300 C (low salinity 1–10 NaCl wt% eqn.). Late calcite ± quartz veinlets and calcite + chabazite veins/veinlets may also be related to this stage and cross cut the oldest mineral assemblages. Mineralization (magnetite, chalcopyrite and pyrite) may occur during the retrograde stage. Clinopyroxene and garnet were modified by Fe-rich hydrothermal fluid (oxidizing condition) indicated by increase of Fe from core to rim of both the cogenetic minerals. The presence of the calc-silicate rocks associated with massive magnetite-chalcopyrite-pyrite assemblage indicates the occurrence of calcic-exoskarn surrounding the Batu Hijau porphyry copper-gold deposit.  相似文献   

7.
Abstract The Rockley Volcanics from near Oberon, New South Wales occur within the aureole of the Carboniferous Bathurst Batholith and have been contact metamorphosed at P ∼ 100 ± 50MPa (10.5kbar) and a maximum T ∼ 565°C in the presence of a C–O–H fluid. Prior to contact metamorphism the volcanics were regionally metamorphosed and altered with the extensive development of actinolite, chlorite, plagioclase, quartz and calcite. The contact metamorphosed equivalents of these rocks have been subdivided into: Ca-poor (cordierite + gedrite), Mg-rich (amphibole + olivine + spinel), mafic (amphibole + plagioclase) and Ca-rich (amphibole + garnet + diopside; diopside + plagioclase; garnet + diopside + wollastonite) rocks.
The chemistry of the minerals in the hornfelses was controlled by the bulk rock chemistry and fluid composition. Pargasites and hastingsites as well as an unusual phlogopite with blue green pleochroism, are found in Ca-rich hornfelses. A comparison of the assemblages with experimentally derived equilibria suggests that the fluid phase associated with the Ca-rich hornfelses was water-rich (Xco2= 0.1 to 0.3) while that associated with the Mg-rich hornfelses was enriched in CO2 (Xco2 > 0.7). The different hornfels types have reacted to contact metamorphism independently in both their solid and fluid chemistries.  相似文献   

8.
V. Mathavan  G. W. A. R. Fernando   《Lithos》2001,59(4):217-232
Grossular–wollastonite–scapolite calc–silicate granulites from Maligawila in the Buttala klippe, which form part of the overthrusted rocks of the Highland Complex of Sri Lanka, preserve a number of spectacular coronas and replacement textures that could be effectively used to infer their P–T–fluid history. These textures include coronas of garnet, garnet–quartz, and garnet–quartz–calcite at the grain boundaries of wollastonite, scapolite, and calcite as well as calcite–plagioclase and calcite–quartz symplectites or finer grains after scapolite and wollastonite respectively. Other textures include a double rind of coronal scapolite and coronal garnet between matrix garnet and calcite. The reactions that produced these coronas and replacement textures, except those involving clinopyroxene, are modelled in the CaO–Al2O3–SiO2–CO2 system using the reduced activities. Calculated examples of TXCO2 and PXCO2 projections indicate that the peak metamorphic temperature of about 900–875 °C at a pressure of 9 kbar and the peak metamorphic fluid composition is constrained to be low in XCO2 (0.1<XCO2<0.30). Interpretation of the textural features on the basis of the partial grids revealed that the calc–silicate granulites underwent high-temperature isobaric cooling, from about 900–875 °C to a temperature below 675 °C, following the peak metamorphism. The late-stage cooling was accompanied by an influx of hydrous fluids. The calc–silicate granulites provide evidence for high-temperature isobaric cooling in the meta-sediments of the Highland Complex, earlier considered by some workers to be confined exclusively to the meta-igneous rocks. The coronal scapolite may have formed under open-system metasomatism.  相似文献   

9.
Mineral assemblages, rock and mineral chemistry, and mineral reactions, in calc-silicate rocks from Koduru area, Andhra Pradesh, India are discussed. Mineralogical and bulk chemical differences indicate 3 calc-silicate rock types — type I with K feldspar+calcite+wollastonite+quartz+scapolite+diopsidess +andraditess+sphene, has relatively high rock oxidation ratios. Type II is a highly calcic variety with high rock MgFe ratios, and has K feldspar+calcite+wollastonite+quartz+scapolite + diopsidess±grossularitess+sphene+zoisite. Type III has K feldspar +calcite+wollastonite+quartz+scapolite+diopsidess +sphene+hornblende+magnetite, and has relatively low oxidation ratio and low MgFe ratio. The 3 calc-silicate rock types have originated as mixtures of limestone/dolomite/marl.Diopside was produced by a reaction involving Ca-amphibole +calcite+quartz, and reversed during retrogression. Andraditess in type I rocks was produced at the expense of hedenbergitic component of pyroxene in a continuous reaction as a consequence of increase in the oxygen content of the original sediment relative to type III. Calcite+quartz reacted to give wollastonite. During cooling an influx of water caused scapolite to alter to zoisite.  相似文献   

10.
Abstract The Llano Uplift in central Texas is a Grenville aged (c. 1.1 Ga) metamorphic terrane consisting predominantly of amphibolite facies mineral assemblages. The formation of these assemblages has been attributed to the emplacement of relatively late granite plutons throughout the area. Two types of granitic intrusion have previously been recognized: (1) Town Mountain Granites, which occur as relatively large, circular-shaped bodies of coarse-grained granite, and (2) Younger Granites which are present as smaller and more irregular bodies of finer-grained granite. In the central part of the uplift, wollastonite-bearing calc-silicate rocks occur within the Valley Spring Gneiss. The development of these calc-silicate rocks has been linked to infiltrating fluids presumably derived from spatially associated Younger Granites. The stability of coexisting quartz, calcite, wollastonite, grossular and anorthite and coexisting quartz, calcite, wollastonite, andradite and hedenbergite shows that the calc-silicate rocks equilibrated under H2O-rich conditions with χCO2 <0.10. Fluid inclusions present within the calc-silicate minerals are H2O-rich with salinities of <17 wt% equivalent NaCl. The absence of any detectable CO2 in the fluid inclusions may indicate entrapment of the inclusions at lower pressures and more H2O-rich conditions compared to the stability of the peak metamorphic mineral assemblage. Homogenization temperatures, measured for texturally primary inclusions, range from 360 to 368° C corresponding to a density range from 0.53 to 0.82 g/cm3. Isochores for these fluid inclusions, when combined with the stability of the solid-solid equilibria Grs + Qtz = Wo + An, yield formation conditions of 500–550° C at 1–2 kbar. This indicates that the granitic intrusions involved in the formation of the Blount Mountain calc-silicates were emplaced at a pressure of at least 1–2 kbar.  相似文献   

11.
Abstract Nearly pure CO2 fluid inclusions are abundant in migmatites although H2O-rich fluids are predicted from the phase equilibria. Processes which may play a role in this observation include (1) the effects of decompression on melt, (2) generation of a CO2-bearing volatile phase by the reaction graphite + quartz + biotite + plagioclase = melt + orthopyroxene + CO2-rich vapour, (3) selective leakage of H2O from CO2+ H2O inclusions when the pressure in the inclusion exceeds the confining pressure during decompression, and (4) enrichment of grain-boundary vapour in CO2 by subsolidus retrograde hydration reactions.  相似文献   

12.
Abstract The hornblende-bearing basic gneisses in the Uvete area, central Kenya, were metamorphosed under a narrow range of P and T (6.5 ± 0.5kbar and 530 ± 40°C) of the staurolitekyanite zone in the Mozambique metamorphic belt. They show a wide variety of divariant and trivariant mineral assemblages consisting of hornblende, cumminatonite, gedrite, anthophyllite, chlorite, garnet, epidote, clinopyroxene, plagio-clase and quartz. The bulk and mineral chemistries and the graphical representation of phase relations show that each mineral assemblage approaches chemical equilibrium and defines a unique composition volume in the A'(Al + Fe3+− (13/7)Na)-F(Fe2+)-M'(Mg)-C'(Ca-(3/7)Na) tetrahedron. The composition volumes are distributed quite regularly and do not overlap each other.
The phase relations in the Uvete area are in contrast with those in the staurolite-kyanite zone amphibolites in the Mt. Cube quadrangle, Vermont. The amphibolites there contain low-variance mineral assemblages formed under different values of μH2O and μCO2. These assemblages define overlapping composition volumes in the A'-F'-M'-C'tetrahedron.
The mineral assemblages in the Uvete area are interpreted as having formed in equilibrium with fluid at a high and nearly constant μH2O value. Such a fluid composition was externally controlled by the supply of H2O-rich fluid expelled from the surrounding pelitic and psammitic rocks. The body size of the basic gneisses in the Uvete area (less than 400m in thickness) was small enough for the fluid to migrate completely.  相似文献   

13.
A ternary solid solution model for omphacite with the end-members jadeite (NaAlSi2O6), diopside (CaMgSi2O6) and hedenbergite (CaFeSi2O6) was derived from experimental data from the literature. The subregular solution model, fitted by linear programming, is best suited to omphacites with very little aegirine component in common eclogites. Applying this solution model to the calculation of equilibrium phase diagrams of eclogites from the Adula nappe (Central Alps, Switzerland) results in large stability fields for common eclogite assemblages (garnet+omphacite+quartz+H2O±kyanite). Within this field the compositions of garnet and omphacite show very little variation. A precise determination of the peak-pressure and temperature is not possible. The occurrence of amphibole, overgrowing the peak-pressure assemblage in fresh eclogite, suggests retrograde re-equilibration, still under eclogite facies conditions. The computation of isopleths for garnet and pyroxene end-members allows the estimation of the pressure and temperature conditions of this re-equilibration event (19–21  kbar, c .  700 °C).  相似文献   

14.
In this work, the factors controlling the formation and preservation of high-pressure mineral assemblages in the metamorphosed orthopyroxene-bearing metagranitoids of the Sandmata Complex, Aravalli-Delhi Mobile Belt (ADMB), northwestern India have been modelled. The rocks range in composition from farsundite through quartz mangerite to opdalite, and with varying K2O, Ca/(Ca + Na)rock and FeOtot + MgO contents. A two stage metamorphic evolution has been recorded in these rocks.
An early hydration event stabilized biotite with or without epidote at the expense of magmatic orthopyroxene and plagioclase. Subsequent high-pressure granulite facies metamorphism (∼15 kbar, ∼800 °C) of these hydrated rocks produced two rock types with contrasting mineralogy and textures. In the non-migmatitic metagranitoids, spectacular garnet ± K-feldspar ± quartz corona was formed around reacting biotite, plagioclase, quartz and/or pyroxene. In contrast, biotite ± epidote melting produced migmatites, containing porphyroblastic garnet incongruent solids and leucosomes.
Applying NCKFMASHTO T–M (H2O) and P–T pseudosection modelling techniques, it is demonstrated that the differential response of these magmatic rocks to high-pressure metamorphism is primarily controlled by the scale of initial hydration. Rocks, which were pervasively hydrated, produced garnetiferous migmatites, while for limited hydration, the same metamorphism formed sub-solidus garnet-bearing coronae. Based on the sequence of mineral assemblage evolution and the mineral compositional zoning features in the two metagranitoids, a clockwise metamorphic P–T path is constrained for the high-pressure metamorphic event. The finding has major implications in formulating geodynamic model of crustal amalgamation in the ADMB.  相似文献   

15.
Low-pressure granulite facies metasedimentary gneisses exposed in MacRobertson Land, east Antarctica, include hercynitic spinel-bearing metapelitic gneisses. Peak metamorphic mineral assemblages include spinel + rutile + ilmenite + sillimanite + garnet, spinel + ilmenite + sillimanite + garnet + cordierite, ortho-pyroxene + magnetite + ilmenite + garnet, spinel + cordierite + biotite + ilmenite and orthopyroxene + cordierite + biotite, each with quartz, K-feldspar and melt. The presence of garnet + biotite- and cordierite + orthopyroxene-bearing assemblages implies crossing tie-lines in AFM projection for the K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH) system. This apparent contradiction, and the presence of spinel, rutile and ilmenite in the assemblages, is acounted for by using the KFMASH-TiO2-O2 system, i.e. AFM + TiO2+ Fe2O3. We derive a petrogenetic grid for this system, applicable to low-pressure granulite facies metamorphic conditions. Retrograde assemblages are interpreted from corona textures on hercynitic spinel and Fe-Ti oxides. The relative positions of the peak and retrograde metamorphic assemblages on the petrogenetic grid suggest that corona development occurred during essentially isobaric cooling.  相似文献   

16.
The occurrence of a charnockitised felsic gneiss adjacent to a marble/calc-silicate horizon at Nuliyam, southern India, has been cited in recent literature as a classic example of the dehydration of crustal rocks resulting from the advective infiltration of CO2-rich fluids generated from a local carbonate source. Petrographic study of the Nuliyam calc-silicate, however, reveals it to consist of abundant wollastonite and scapolite and contain locally discordant veins rich in wollastonite. At the pressure—temperature conditions proposed for charnockite formation in recent studies, 5 kbar and 725°C, this wollastonite-bearing mineral assemblage was stable in the presence of a fluid phase only if X CO2 was near 0.25 and could not have coexisted with the fluid causing biotite breakdown and charnockite development in adjacent rocks (X CO2>0.85). The stable coexistence of wollastonite and scapolite prohibits the calc-silicate from being a source for fluid driving charnockitisation at the required P-T conditions. Textural observations such as the limited replacement of wollastonite by calcite+quartz symplectites and mosaics, are consistent with late fluid infiltration into the calc-silicate. The extensive isotopic, chemical and mineral abundance data of Jackson and Santosh (1992) are re-interpreted and integrated with these observations to develop a model involving the infiltration of an externally derived CO2-rich fluid during high-temperature decompression. Increased charnockite development next to the calc-silicate has arisen because the calc-silicate acted as a relatively unreactive and impermeable barrier to fluid transport and caused fluid ponding beneath antiformal closures. The Nuliyam charnockite/calc-silicate locality is an example of a structural trap in a metamorphic setting rather than a site where charnockite formation can be attributed to local fluid sources.  相似文献   

17.
Magnesian metapelites of probable Archaean age from Forefinger Point, SW Enderby Land, East Antarctica, contain very-high-temperature granulite facies mineral assemblages, which include orthopyroxene (8–9.5 wt% Al2O3)–sillimanite ± garnet ± quartz ± K-feldspar, that formed at 10 ± 1.5 kbar and 950 ± 50°C. These assemblages are overprinted by symplectite and corona reaction textures involving sapphirine, orthopyroxene (6–7 wt% Al2O3), cordierite and sometimes spinel at the expense of porphyroblastic garnet or earlier orthopyroxene–sillimanite. These textures mainly pre-date the development of coarse biotite at the expense of initial mesoperthite, and the subsequent formation of orthopyroxene (4–6 wt% Al2O3)–cordierite–plagioclase rinds on late biotite.
The early reaction textures indicate a period of near-isothermal decompression at temperatures above 900°C. Decompression from 10 ± 1.5 kbar to 7–8 kbar was succeeded by biotite formation at significantly lower temperatures (800–850°C) and further decompression to 4.5 ± 1 kbar at 700–800°C.
The later parts of this P–T evolution can be ascribed to the overprinting and reworking of the Forefinger Point granulites by the Late-Proterozoic ( c . 1000 Ma) Rayner Complex metamorphism, but the age and timing of the early high-temperature decompression is not known. It is speculated that this initial decompression is of Archaean age and therefore records thinning of the crust of the Napier Complex following crustal thickening by tectonic or magmatic mechanisms and preceding the generally wellpreserved post-deformational near-isobaric cooling history of this terrain.  相似文献   

18.
Abstract Two Archaean synvolcanic stocks with contact aureoles occur in the Wawa greenstone belt near Wawa, Ontario, Canada. The Gutcher Lake and Jubilee stocks consist mainly of granitoid trondhjemite with feldspar laths mottled by white mica + calcite + epidote and rimmed by clear albite. Biotite is partly or wholly pseudomorphosed by chlorite + sphene; some epidote is partly altered to calcite + chlorite. The granitoid phase grades into a foliated phase of quartz + albite + white mica + calcite + chlorite near fracture zones traversing the stocks.
The alteration of the Gutcher Lake stock along its foliated margin involved addition of K2O, H2O + CO2, MnO, plus Rb; loss of CaO plus Sr; and a shift in Fe+2/Fet from 0.66 to 0.81. The alteration of the Jubilee stock along the Darwin Shear involved addition of H2O + CO2; loss of Sr; and no significant shift in Fe+2/Fet. The greenschist alteration also modified the contact aureoles bordering both stocks.
One interpretation is that regional metamorphism in the Archaean overprinted a greenschist assemblage on both stocks. The alteration was intense near fracture zones and sporadic remote from fractures. Lower integrated water to rock ratios along the Darwin Shear compared to the margin of the Gutcher Lake stock may explain the comparatively lower perturbation of the element abundances and redox state of iron.  相似文献   

19.
This study investigates marbles and calcsilicates in Central Dronning Maud Land (CDML), East Antarctica. The paleogeographic positioning of CDML as part of Gondwana is still unclear; however, rock types, mineral assemblages, textures and P–T conditions observed in this study are remarkably similar to the Kerala Khondalite Belt in India. The CDML marbles and calcsilicates experienced a Pan-African granulite facies metamorphism at c. 570 Ma and an amphibolite facies retrogression at c. 520 Ma. The highest grade assemblage in marbles is forsterite+spinel+calcite+dolomite, in calcsilicates the assemblages are diopside+spinel, diopside+garnet, scapolite+wollastonite+clinopyroxene±quartz, scapolite±anorthite±calcite+clinopyroxene+wollastonite. These assemblages constrain the peak metamorphic conditions to 830±20 °C, 6.8±0.5 kbar and X CO2>0.46. During retrogression, highly fluoric humite-group minerals (humite, clinohumite, chondrodite) replaced forsterite, and garnet rims formed at the expense of scapolite during reactions with wollastonite, calcite or clinopyroxene but without involvement of anorthite. Metamorphic conditions were about 650 °C, 4.5±0.7 kbar, 0.2< X CO2fluid<0.36, and the co-existence of garnet, clinopyroxene, wollastonite and quartz constrains fO2 to FMQ-1.5 log units. Mineral textures indicate a very limited influx of H2O-rich fluid during amphibolite facies retrogression and point to significant variations of fluid composition in mm-sized areas of the rock. Gypsum was observed in two samples; it probably replaced metamorphic anhydrite which appears to have formed under amphibolite facies conditions. The observed extensive anorogenic magmatism (anorthosites, A-type granitoids) and the character of metamorphism between 610 and 510 Ma suggest that the crustal thermal structure was characterized by a long-lived (50–100 Ma) rise of the crustal geotherm probably caused by magmatic underplating.  相似文献   

20.
The retrograde P-T trajectory of the eclogitic Fe-Ti-gabbros from the Ligurian Alps is constrained by the appearance of mineral parageneses post-dating the Na-clinopyroxene + garnet eclogitic assemblage and indicating the following sequence of metamorphic events: (1) amphibolitic stage— edenite/katophorite + plagioclase (An33–43) + oxides in symplectitic aggregates; (2) glaucophanic stage— a porphyroblastic glaucophanic amphibole has overgrown the symplectite, winchite also occurs as thin rims around glaucophane and both amphiboles are, sometimes, armoured by atoll garnets; (3) albite-amphibolite stage—barroisite/katophorite + albite + epidote + oxides ± chlorite overprint the glaucophanic stage minerals; (4) greenschist stage—represented by actinolite + albite + epidote + oxide paragenesis.
The metamorphic evolution is complex and the decompression path, on a P–T diagram, is significantly different from those defined in the literature for the Voltri eclogites. The main features inferred from the P–T path are the following: (1) the pressure climax does not match the thermal climax, the maximum temperature conditions are in fact achieved during the early stage of uplift; (2) a decrease in temperature, suggested by the appearance of glaucophane after the amphibolitic symplectite; (3) successive uplift, probably accompanied by an increase in temperature. The complexity of the P-T path drawn for the Voltri eclogites can be explained with a mechanism of successive underthrusts propagating from the innermost to the outermost sector of the Ligurian Alps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号