首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Cangrejo and Bulkhead Shoals are areally extensive, Holocene biodetrital mud‐mounds in northern Belize. They encompass areas of 20 km2 and 35 km2 in distal and proximal positions, respectively, on a wide and shallow‐water, microtidal carbonate shelf where storms are the major process affecting sediment dynamics. Sediments at each mound are primarily biodetrital and comprise part of a eustatically forced, dominantly subtidal cycle with a recognizable deepening‐upward transgressive systems tract, condensed section and shallowing‐upward highstand systems tract. Antecedent topographic relief on Pleistocene limestone bedrock also provided marine accommodation space for deposition of sediments that are a maximum of 7·6 m thick at Cangrejo and 4·5 m thick at Bulkhead. Despite differences in energy levels and location, facies and internal sedimentological architectures of the mud‐mounds are similar. On top of Pleistocene limestone or buried soil developed on it are mangrove peat and overlying to laterally correlative shelly gravels. Deposition of these basal transgressive, premound facies tracked the rapid rate of sea‐level rise from about 6400–6500 years BP to 4500 years BP, and the thin basal sedimentation unit of the overlying mound‐core appears to be a condensed section. Following this, the thick and complex facies mosaic comprising mound‐cores represents highstand systems tract sediments deposited in the last ≈ 4500 years during slow and decelerating sea‐level rise. Within these sections, there is an early phase of progradationally offlapping catch‐up deposition and a later (and current) phase of aggradational keep‐up deposition. The mound‐cores comprise stacked storm‐deposited autogenic sedimentation units, the upper bounding surfaces of which are mostly eroded former sediment–water interfaces below which depositional textures have largely been overprinted by biogenic processes associated with Thalassia‐colonized surfaces. Vertical stacking of these units imparts a quasi‐cyclic architecture to the section that superficially mimics metre‐scale parasequences in ancient rocks. The locations of the mud‐mounds and the tidal channels transecting them have apparently been stable over the last 50 years. Characteristics that might distinguish these mud‐mounds and those mudbanks deposited in more restricted settings such as Florida Bay are their broad areal extent, high proportion of sand‐size sediment fractions and relatively abundant biotic particles derived from adjoining open shelf areas.  相似文献   

2.
Water quality and criculation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate densityThalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to −0.410 g CaCO3 m−2d−1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to −1.900 g CaCO3 m−2 night−1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average accumulation rate for Florida Bay of 8.7 cm 1000 yr−1 and suggests that sediment dissolution plays a more important role than sediment transport in loss of sediment from Florida Bay.  相似文献   

3.
Abstract In mid‐Middle Cambrian time, shallow‐water sedimentation along the Cordilleran passive margin was abruptly interrupted by the development of the deep‐water House Range embayment across Nevada and Utah. The Marjum Formation (330 m) in the central House Range represents deposition in the deepest part of the embayment and is composed of five deep‐water facies: limestone–argillaceous limestone rhythmites; shale; thin carbonate mud mounds; bioturbated limestone; and cross‐bedded limestone. These facies are cyclically arranged into 1·5 to 30 m thick parasequences that include rhythmite–mound, rhythmite–shale, rhythmite–bioturbated limestone and rhythmite–cross‐bedded limestone parasequences. Using biostratigraphically constrained sediment accumulation rates, the parasequences range in duration from ≈14 to 270 kyr. The mud mounds are thin (<2 m), closely spaced, laterally linked, symmetrical domes composed of massive, fenestral, peloidal to clotted microspar with sparse unoriented, poorly sorted skeletal material, calcitized bacterial(?) filaments/tubes and abundant fenestrae and stroma‐ tactoid structures. These petrographic and sedimentological features suggest that the microspar, peloids/clots and syndepositional micritic cement were precipitated in situ from the activity of benthic microbial communities. Concentrated growth of the microbial communities occurred during periods of decreased input of fine detrital carbonate transported offshore from the adjacent shallow‐water carbonate platform. In the neighbouring Wah Wah Range and throughout the southern Great Basin, coeval mid‐Middle Cambrian shallow‐water carbonates are composed of abundant metre‐scale, upward‐shallowing parasequences that record high‐frequency (104?105 years) eustatic sea‐level changes. Given this regional stratigraphic relationship, the Marjum Formation parasequences probably formed in response to high‐frequency sea‐level fluctuations that controlled the amount of detrital carbonate input into the deeper water embayment. During high‐frequency sea‐level rise and early highstand, detrital carbonate input into the embayment decreased as a result of carbonate factory retrogradation, resulting in the deposition of shale (base of rhythmite–shale parasequences) or thin nodular rhythmites, followed by in situ precipitated mud mounds (lower portion of rhythmite–mound parasequences). During the ensuing high‐frequency sea‐level fall/lowstand, detrital carbonate influx into the embayment increased on account of carbonate factory pro‐ gradation towards the embayment, resulting in deposition of rhythmites (upper part of rhythmite–mound parasequences), reworking of rhythmites by a lowered storm wave base (cross‐bedded limestone deposition) or bioturbation of rhythmites by a weakened/lowered O2‐minimum zone (bioturbated lime‐ stone deposition). This interpreted sea‐level control on offshore carbonate sedimentation patterns is unique to Palaeozoic and earliest Mesozoic deep‐water sediments. After the evolution of calcareous plankton in the Jurassic, the presence or absence of deeper water carbonates was influenced by a variety of chemical and physical oceanographic factors, rather than just physical transport of carbonate muds.  相似文献   

4.
Carbon, oxygen and clumped isotope (Δ47) values were measured from lacustrine and tufa (spring)‐mound carbonate deposits in the Lower Jurassic Navajo Sandstone of southern Utah and northern Arizona in order to understand the palaeohydrology. These carbonate deposits are enriched in both 18O and 13C across the basin from east to west; neither isotope is strongly sensitive to the carbonate facies. However, 18O is enriched in lake carbonate deposits compared to the associated spring mounds. This is consistent with evaporation of the spring waters as they exited the mounds and were retained in interdune lakes. Clumped isotopes (Δ47) exhibit minor systematic differences between lake and tufa‐mound temperatures, suggesting that the rate of carbonate formation under ambient conditions was moderate. These clumped isotope values imply palaeotemperature elevated beyond reasonable surface temperatures (54 to 86°C), which indicates limited bond reordering at estimated burial depths of ca 4 to 5 km, consistent with independent estimates of sediment thickness and burial depth gradients across the basin. Although clumped isotopes do not provide surface temperature information in this case, they still provide useful burial information and support interpretations of the evolution of groundwater locally. The findings of this study significantly extend the utility of combining stable isotope and clumped isotope methods into aeolian environments.  相似文献   

5.
四川盆地南部志留系碳酸盐灰泥丘成因与储集性   总被引:8,自引:0,他引:8  
灰泥丘与生物礁具有相似的地震反射特征,但两者的形成环境及内部组成完全不同。缓坡环境和较弱的水动力环境是灰泥丘形成的两个重要条件,灰泥丘主要由微生物所建造。川南志留系主要发育中—下志留统,自下而上划分为龙马溪组、石半栏组、韩家店组和秀山组,其中石牛栏组主要为碳酸盐岩,岩性较硬,上下地层相对为软岩层,构成“两软夹一硬”的地晏剖面结构。灰泥丘主要发育在石牛栏组,属于典型的开阔台地内缓坡泥丘。灰泥丘储层主要发育在丘翼和丘顶微相中,经历了胶结作用、重结晶作用、白云石化作用、压实作用和溶解作用等,其中胶结作用使丘翼储集物性变差,而白云石化作用使丘顶物性变好。因此丘翼灰岩被胶结后储集性能普遍较差,平均孔隙度1%~2%,渗透率(3~5)×10~(-3)μm~2;丘顶白云石化后储集物性普遍较好,孔隙度4%~5%,渗透率(6~8)×10~(-3)μm~2,构成了川南地区相对有利的天然气储层。  相似文献   

6.
Small mounds of peat rise several metres above the level of the water‐table at Melaleuca Inlet and Louisa Plains on the buttongrass plains in southwest Tasmania. Possible origins of the peat mounds have been explored by pollen analysis and radiocarbon dating of a set of samples taken from a vertical section of one peat mound at Melaleuca. The peat accumulation is entirely of Holocene age although the mound is underlain by sapric peats preserving a cold climate palynoflora of probable Late Pleistocene age. Peats at and near the base of the mound accumulated under a heath sedgeland during the earliest Holocene while after about 7630 a BP the peat‐forming vegetation was shrub‐dominated. The radiocarbon data indicate two main phases of overall peat accumulation, between 7630 and 5340 a BP (Middle Holocene) and between 4450 and 450 a BP (Late Holocene), that were interrupted by a wildfire which burnt into the surface peats. The maintenance of high surface and internal levels of moisture almost certainly was the critical factor behind the low incidence of in situ fires burning into the surface peats on the mound. The perennial influx of groundwater below the mound is a possible origin that fits well with our observations, although the expansion and contraction of soils cannot be discounted as an initiating factor. Enhanced nutrient input from birds may have helped promote growth in the peat‐forming communities. The data do not support the mounds being eroded remnants of a former blanket peat cover or being due to periglacial activity. The peat mounds of southwest Tasmania deserve maximum protection because of their rarity in the Australian landscape and, it seems, elsewhere.  相似文献   

7.
Cold‐water coral mound morphology and development are thought to be controlled primarily by current regime. This study, however, reveals a general lack of correlation between prevailing bottom current direction and mound morphology (i.e. footprint shape and orientation), as well as current strength and mound size (i.e. footprint area and height). These findings are based on quantitative analyses of a high‐resolution geophysical dataset collected with an Autonomous Underwater Vehicle from three cold‐water coral mound sites at the toe of slope of Great Bahama Bank. The three sites (80 km2 total) have an average of 14 mounds km?2, indicating that the Great Bahama Bank slope is a major coral mound region. At all three sites living coral colonies are observed on the surface of the mounds, documenting active mound growth. Morphometric analysis shows that mounds at these sites vary significantly in height (1 to 83 m), area (81 to 6 00 000 m2), shape (mound aspect ratio 0·1 to 1) and orientation (mound longest axis 0 to 180°). The Autonomous Underwater Vehicle measured bottom current data depict a north–south flowing current that reverses approximately every six hours. The tidal nature of this current and its intermittent deviations during reversals are interpreted to contribute to the observed mound complexity. An additional factor contributing to the variability in mound morphometrics is the sediment deposition rate that varies among and within sites. At most locations sedimentation rate lags slightly behind mound growth rate, causing mounds to develop into large structures. Where sedimentation rates are higher than mound growth rates, sediment partially or completely buries mounds. The spatial distribution and alignment of mounds can also be related to gravity mass deposits, as indicated by geomorphological features (for example, slope failure and linear topographic highs) in the three‐dimensional bathymetry. In summary, variability in sedimentation rates, current regime and underlying topography produce extraordinarily high variability in the distribution, development and morphology of coral mounds on the Great Bahama Bank slope.  相似文献   

8.
The Gulf of Cadiz is an area of mud volcanism and gas venting through the seafloor. In addition, several cold-water coral carbonate mounds have been discovered at the Pen Duick escarpment amidst the El Arraiche mud volcano field on the Moroccan margin. One of these mounds -named Alpha mound- has been studied to examine the impact of the presence of methane on pore-water geochemistry, potential sulphate reduction (SR) rate and dissolved inorganic carbon (DIC) budget of the mound in comparison with off-mound and off-escarpment locations. Pore-water profiles of sulphate, sulphide, methane, and DIC from the on-mound location showed the presence of a sulphate to methane transition zone at 350 cm below the sea floor. This was well correlated with an increase in SR activity. 13C-depleted DIC at the transition zone (−21.9‰ vs. Vienna Pee Dee Belemnite) indicated that microbial methane oxidation significantly contribute to the DIC budget of the mound. The Alpha mound thus represents a new carbonate mound type where the presence and anaerobic oxidation of methane has an important imprint on both geochemistry and DIC isotopic signature and budget of this carbonate mound.  相似文献   

9.
Cold-water coral carbonate mounds, owing their presence mainly to the framework building coral Lophelia pertusa and the activity of associated organisms, are common along the European margin with their spatial distribution allowing them to be divided into a number of mound provinces. Variation in mound attributes are explored via a series of case studies on mound provinces that have been the most intensely investigated: Belgica, Hovland, Pelagia, Logachev and Norwegian Mounds. Morphological variation between mound provinces is discussed under the premise that mound morphology is an expression of the environmental conditions under which mounds are initiated and grow. Cold-water coral carbonate mounds can be divided into those exhibiting “inherited” morphologies (where mound morphology reflects the morphology of the colonised features) and “developed” morphology (where the mounds assume their own gross morphology mainly reflecting dominant hydrodynamic controls). Finer-scale, surface morphological features mainly reflecting biological growth forms are also discussed.  相似文献   

10.
《Sedimentology》2018,65(4):1331-1353
The Faxe Quarry in south‐east Denmark offers excellent exposures of Early Palaeocene, Danian deep‐water intercalated coral and bryozoan mounds that form complexes at least 40 m thick and a few kilometres wide along and over submarine highs. The coexisting coral and bryozoan mounds represent two different biogenic carbonate factories with a highly dynamic interplay during growth. The sedimentary facies, mound geometries and the density, diversity and palaeoecology of the associated benthic invertebrates and nannofossils allow recognition of six successive growth units. Unit 1 represents an outer shelf bryozoan mound belt characterized by an oligotrophic cool‐water nannofossil assemblage. Unit 2 comprises a mixed faunal assemblage of bryozoans and octocorals with an initial sparse colonization of hexacorals. The nannofossil assemblage records a decrease in diversity and an increase in warm water forms. Unit 3 marks the onset of dense colonization of the scleractinian coral Dendrophyllia candelabrum with associated low‐diversity macrofauna and nannofossil assemblages. Unit 4 represents the main coral build‐up phase with frame‐building hexacorals of Dendrophyllia and Faxephyllia associated with a high‐diversity invertebrate fauna, and relatively low‐diversity nannofossil assemblages. Unit 5 represents the late coral mound phase showing extensive lateral distribution and finally death and erosion of the coral mounds. This event was contemporaneous with a warming trend in the pelagic environment. The succeeding Unit 6 marks the burial and overgrowth of the coral mound complex by bryozoan‐rich sediments. The coral mound complex in the Faxe Quarry initiated and terminated in global nannofossil zone NP 3 and regional nannofossil zones NNT p2G–3 suggesting a mound growth duration of ca 300 kyr and a mean vertical accretion of the coral mound of 13 cm kyr−1. The mound complex probably serves as the best‐exposed analogue to modern deep and cold‐water coral mounds in the North Atlantic.  相似文献   

11.
12.
Stromatactis‐bearing mud‐mounds remain an enigmatic reef type despite being common in Palaeozoic ramp settings. Two well preserved Upper Devonian (Frasnian) mud‐mounds in the Mount Hawk Formation crop out side by side in the southern Rocky Mountains of west‐central Alberta and provide an opportunity to develop a new case study that can be compared with the other coeval examples, such as those well‐known ones in southern Belgium, as well as evaluate competing hypotheses for mud‐mound formation. The southern mud‐mound is 46·2 m thick and 38·6 m wide at the base, whilst the northern one is 53·3 m thick and 72·2 m wide at the base, and they exhibit three or four growth stages indicated by interfingering and onlapping geometries with flanking strata. The biota is diverse, but fossils only occupy 10·7% by volume, among which sponge spicules, echinoderms, ostracods, brachiopods and calcimicrobes belonging to Girvanella and Rothpletzella are the most common. Five microfacies are discriminated in the mud‐mounds: biomicrite, clotted micrite, spiculite, stromatolite and laminite, with clotted micrite comprising the largest proportion. There is no internal vertical or lateral palaeoecological zonation, and the presence of calcimicrobes and calcareous algae throughout indicates accretion entirely within the photic zone, in a deeper ramp setting seaward of a large carbonate platform to the east. Stromatactis is abundant and the cavities were mostly due to excavation by currents rather than physical collapse of spiculate siliceous sponges. Formation of lime mud involved a combination of multiple organisms, mechanisms and processes. Cyanobacteria were integral to mud‐mound frame‐building and accretion because they stabilized the surface, often permineralized to form Girvanella and provided organic matter that was decomposed by bacteria. This induced precipitation of micrite, forming early indurated rigid masses, evidenced by the presence of intraclasts, stromatactis cavities, isopachous marine cements, absence of bioturbation and rare synsedimentary brittle deformation. The same microbial components, invertebrate biota and clotted micrite occur in underlying strata, suggesting that there was a protracted period of potential mud‐mound initiation before the exact conditions arose to trigger it. The ramp setting, antecedent sea floor topography and relative sea‐level likely contributed together to control this. This study indicates that mud‐mound formation was controlled by a combination of processes, but they are essentially a microbial buildup.  相似文献   

13.
The process of organomineralization is increasingly well understood with respect to modern carbonate sediments accumulating adjacent to tropical reef atolls and reef caves. Mineralization related to non-living organic substrates results in autochthonous micrite production (‘automicrites’). ‘Automicrites’ are the main constructive element of Lower Cretaceous (Albian) carbonate mud mounds in northern Spain. These slope mud mounds occur within transgressive and early highstand system tracts encompassing several macrobenthic ecological zones. They are clearly separated from the biocalcifying carbonate factory (Urgonian carbonate platforms), in both space and time. Within these build-ups, most ‘automicrites’ were initially indurated and accreted to form a medium-relief growth framework. ‘Automicrites’ have a uniform, presumably high-Mg-calcite precursor mineralogy. They show an inorganic stable-isotope signature (?13C around +3·3‰) within the range of early marine cements, and skeletal compounds lacking major vital effects. Epifluorescence microscopy shows that they have facies-specific fluorescence, which is similar to skeletal compounds of Acanthochaetetes, but clearly different from allomicritic sediment and cements, which are mostly non-fluorescent. The EDTA-soluble intracrystalline organic fraction (SIOF) of Albian automicrites shows an amino acid spectrum that is similar to shallow subsurface samples from their modern counterparts. Gel electrophoresis of the SIOF demonstrates an exclusively acidic character, and a mean molecular size range between 20 and 30 kDa. Experiments in vitro (inhibition tests) indicate that the SIOF has a significant Ca2+-binding capacity. Fluorescence and chemical characteristics of SIOF point to a main substance class, such as humic and fulvic acids, compounds that form from pristine organic matter during early diagenesis. Biomarker analyses provide evidence for the crucial role of biodegradation by heterotrophic microorganisms, but no biomarker for cyanobacteria has been found. Primary sources of organic material should have been manifold, including major contributions by metazoans such as sponges. It is concluded that many carbonate mud mounds are essentially organomineralic in origin and that the resulting fabric of polygenetic muds (‘polymuds’) may represent ancestral metazoan reef ecosystems, which possibly originated during the Neoproterozoic.  相似文献   

14.
Carbonate buildups in the Flinders Ranges of mid-Early Cambrian age grew during a period of high archaeocyath diversity and are of two types: (1) low-energy, archaeocyath-sponge-spicule mud mounds, and (2) high-energy, archaeocyath-calcimicrobe (calcified microbial microfossil) bioherms. Mud mounds are composed of red carbonate mudstone and sparse to abundant archaeocyath floatstone, have a fenestral fabric, display distinct stromatactis, contain abundant sponge spicules and form structures up to 150m wide and 80 m thick. Bioherms are either red or dark grey limestone and occur as isolated small structures 2–20 m in size surrounded by cross-bedded calcarenites and calcirudites or as complexes of mounds and carbonate sands several hundreds of metres across. Red bioherms comprise masses of white Epiphyton with scattered archaeocyaths and intervening areas of archaeocyath-rich lime mudstone. Grey bioherms are complex intergrowths of archaeocyaths, encrusting dark grey Renalcis and thick rinds of fibrous calcite cement. The bioherms were prone to synsedimentary fracturing and exhibit large irregular cavities, up to 1.5 m across, lined with fibrous calcite. The buildups are isolated or in contiguous vertical succession. Mud mounds occur alone in low-energy, frequently nodular, limestone facies. Individual bioherms and bioherm complexes occur in high-energy on-shelf and shelf-margin facies. The two types also form large-scale, shallowing-upward sequences composed of basal (deep water) mud mounds grading upward into archaeocyath-calcimicrobe bioherm complexes and bioherms in cross-bedded carbonate sands. The uppermost sequence is capped by ooid grainstone and/ or fenestral to stromatolitic mudstone. The calcimicrobe and metazoan associations form the two major biotic elements which were to dominate reefs throughout much of subsequent Phanerozoic time.  相似文献   

15.
The Bowland Basin (northern England) contains a series of carbonates and terrigenous mudstones deposited during the Ivorian to early Brigantian. Two regional depositional environments are indicated by facies and facies associations. Wackestone/packstone and calcarenite facies indicate deposition in a carbonate ramp environment, while lime mudstone/wackestone, calcarenite and limestone breccia/conglomerate facies, often extensively slumped, represent a carbonate slope environment. Stratigraphic relations suggest that the depositional environment evolved from a ramp into a slope through the Dinantian. Two main sediment sources are indicated by the sequence; an extra-basinal terrigenous mud source and a supply of carbonate from the margins of the basin. Deposition from suspension and from sediment gravity flows, in situ production and remobilization of sediment during sedimentary sliding were important processes operating within the basin. Periods of enhanced tectonic activity in the late Chadian to early Arundian and late Asbian to early Brigantian are indicated by basin-wide horizons of sedimentary slide and mass flow deposits. Both intervals were marked by a decline in carbonate production resulting from inundation and uplift/emergence. The first of these intervals separates deposition on a seafloor with gentle topography (carbonate ramp) from a situation where major lateral thickness and facies variations were present and deposition took place in a carbonate slope environment. The second interval marks the end of major carbonate deposition within the Bowland Basin and the onset of regional terrigenous sedimentation.  相似文献   

16.

Surficial deposits of the tidally influenced Australian shelf seas exhibit a variation in fades related to energy gradient. These deposits comprise a high energy gravelly facies, a mobile sand sheet facies and a low energy muddy sand facies. Such a facies distribution conforms generally with the existing model of continental shelf tidal sedimentation, derived for the west European tidal seas. However, the carbonate rich and mainly warm water deposits of the Australian shelf differ from the mainly quartzose and temperate cold‐water deposits of the European type case in terms of: (i) the role of seagrasses in trapping fine‐grained sediment; and (ii) the relative importance of the production of carbonate mud by mechanical erosion of carbonate grains. Seagrasses in Spencer Gulf, Gulf of St Vincent and Torres Strait are located in regions of strong tidal currents, associated with bedforms and gravel lag deposits. Thus, in the case of tropical carbonate shelves, seagrass deposits containing fine‐grained and poorly sorted sediments are located in close proximity to high energy gravel and mobile sand facies. In contrast, the European model (for temperate, siliciclastic shelves) places facies in a regional gradient with a wide separation (in the order of 50–100 km).

Of the locations reviewed, the Gulf of St Vincent, Bass Strait, southern Great Barrier Reef, Torres Strait and Gulf of Carpentaria exhibit zones of carbonate mud accumulation. The production and winnowing of carbonate mud from the mobile sand facies is a factor that must be taken into account in the assessment of a sediment budget for this facies, and which is of relatively greater importance for carbonate shelves. Insufficient data are presently available from the macrotidal North West Shelf to test the applicability of the model to this region.  相似文献   

17.
A ~6 Ma Messinian (late Miocene) Bioherm Unit on the southern slope of the Sorbas Basin, SE Spain, contains numerous biotically diverse lensoid patch reefs that formed on a shelf to basin slope during a cycle of relative sea-level change. Halimeda reefs are the largest and most complex of the patch reefs and are divisible into core, cap, and flank facies. On the upper and midslope they are up to 40 m thick and 400 m long. They become smaller downslope. The core consists of jumbled Halimeda segments, released by spontaneous disaggregation of the alga. The segments were stabilized close to their sites of growth and rapidly lithified by micritic and peloidal microbial crusts. Residual cavities were further veneered by isopachous marine cements. Flank facies, consisting of bedded packstones to rudstones, form wedge-shaped units lateral to the mounds. Cap facies consist of bioclastic calcarenites/calcirudites and microbial carbonates. Synsedimentary lithification assisted rapid accretion and inhibited off-mound export of sediment. Allochthonous reef-derived blocks on the mid-slope reflect penecontemporaneous rigidity of the Halimeda bioherms. Proximal Porites coral frame patch reefs associated with calcarenites were located near the shelf margin during the initial lowstand stage. Halimeda segment reefs associated with calcarenites and silty marls developed on the midslope and bivalve-bryozoan-serpulid reefs formed on the lower slope in silty marls with occasional turbidites. During the transgressive stage, coral patch reefs near the shelfbreak were overgrown by Halimeda. During highstand progradation, cap facies spread basinward as a sheet connecting many of the midslope patch reefs. These ancient analogues differ from most modern Halimeda reefs in being discrete laterally restricted patch reefs, surrounded by marly sediment, and located on a slope. They are, however, broadly comparable in biota, thickness, and depositional depth. Intense early lithification by microbial crusts and marine cements is an important feature of these Messinian segment reefs. It has not been reported from modern examples.  相似文献   

18.
引言肾形藻(Renalcis)是A.G.Vologdin发现并命名的一种钙质微体化石,在广义上归属于蓝绿藻(Pratt,1984)。肾形藻通常发育在寒武纪、早奥陶世、泥盆纪和早石炭世的碳酸盐岩地层中。就其形态来说,在漫长的地质年代中没有什么变化,不同形态的肾形藻可出现在不同时代的地层中,各种类型的肾形藻又可共生一处,因此常被认为没有什么时代意义。尽管如此,肾形藻的生长常局限于比较窄的生态和环境范围,又在某些建隆,特别在泥丘中是主要的骨架构筑成分,因而对于沉积微相的研究和细分具有重要的意义。  相似文献   

19.
High resolution studies from the Propeller Mound, a cold-water coral carbonate mound in the NE Atlantic, show that this mound consists of >50% carbonate justifying the name ‘carbonate mound’. Through the last ~300,000 years approximately one third of the carbonate has been contributed by cold-water corals, namely Lophelia pertusa and Madrepora oculata. This coral bound contribution to the carbonate budget of Propeller Mound is probably accompanied by an unknown portion of sediments buffered from suspension by the corals. However, extended hiatuses in Propeller Mound sequences only allow the calculation of a net carbonate accumulation. Thus, net carbonate accumulation for the last 175 kyr accounts for only <0.3 g/cm2/kyr, which is even less than for the off-mound sediments. These data imply that Propeller Mound faces burial by hemipelagic sediments as has happened to numerous buried carbonate mounds found slightly to the north of the investigated area.  相似文献   

20.
四川盆地早古生代灰泥丘中的微生物及其造岩和成丘作用   总被引:13,自引:0,他引:13  
作为生物礁的特殊类型,灰泥丘在古生代十分发育,许多学者都认为它们是通过微生物造岩作用而形成的,而且,也在现代湖泊中发现了由兰菌藻的生命活动所形成的灰泥沉积物及灰泥丘。但是国际上一直没有在古生代灰泥丘中发现过细菌等微生物的实体化石,微生物促使碳酸钙沉淀、聚集的能力和机理也不明确。四川盆地北缘寒武纪和志留纪灰泥丘发育,笔者通过扫描电镜及能谱分析,在国际上首次发现了 (川西北志留纪 )灰泥丘中菌藻类微生物的实体化石及其特征的造岩成丘现象,发现的菌藻类微生物实体化石有三种类型 :1.表面光滑的卵形球体型;2.表面粗糙的椭球体型;3.网状结构型。而且,对寒武纪和志留纪灰泥丘凝块石作生物标志化合物分析也证明了其有机质生源为菌藻类微生物。这些凝块石灰泥丘中的菌藻类实体化石都显示了不同的沉积、造岩和成丘功能,因而证实了微生物在形成古生代灰泥丘中具重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号