首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
雷州半岛第四纪火山岩激光40Ar/39Ar等时线定年研究   总被引:2,自引:1,他引:1  
雷州半岛是我国新生代火山岩最重要的分布地区之一,火山活动主要集中在中晚更新世。前人对雷州火山岩的年代学研究以K-Ar法为主。研究表明,雷州火山岩测年结果大致分布在0.38~3.04Ma范围内。根据地层和火山岩层的叠置关系,雷州第四纪火山岩由于覆盖在被确定是1.87Ma和0.76Ma沉积的地层之上,故火山岩年龄应小于该地层年龄。K-Ar法定年结果与雷州地区地层叠置关系存在矛盾。本文通过对雷州半岛第四纪火山岩进行野外考察及采样,利用激光40Ar/39Ar年代学方法进行了精细定年。结果表明,雷州火山岩的喷发主要集中18万年前后。定年结果还表明,对于年轻样品,基于尼尔值计算的K-Ar年龄及40Ar/39Ar表观年龄偏老,等时线年龄相对较为可靠。对同一样品的斑晶、基质作斑晶-基质等时线计算,只有在斑晶基质满足同源条件时才有意义。本文首次提出,通过对比未照射样品的初始36Ar/38Ar值的均一性,以检验样品是否同源,确认斑晶-基质等时线年龄的可信度。据此,等时线的处理方法可以推广应用于特定区域内全部同源同时样品。  相似文献   

2.
We present a comprehensive paleomagnetic study on Paleoproterozoic (2173–2060 Ma) plutonic and metamorphic rocks from French Guiana, representative of the full range of the main Transamazonian tectonothermal steps. Twenty-seven groups of directions and poles were obtained from combination of 102 sites (613 samples) based on age constraint, similar lithology and/or geographical proximity. Paleomagnetic results show variations between rocks of different ages which are supposed to be characteristic of magnetizations acquired during uplift and cooling of successive plutonic pulses and metamorphic phases. This is also reinforced by positive field tests (baked contact and reversal tests). Recent U/Pb and Pb/Pb on zircon and complementary 40Ar/39Ar on amphibole and biotite allow questioning the problem of magnetic ages relative to rock formation ages. Estimated magnetic ages, based on amphibole dating as a proxy, enable us to construct a Guiana Shield apparent polar wander path for the 2155–1970 Ma period. It is also possible to present paleolatidudinal evolution and continental drift rates related to specific Transamazonian tectonic regimes.French Guiana and probably the Guiana Shield were located at the Equator from ca. 2155 to 2130 Ma during the Meso-Rhyacian D1 magmatic accretion phase, related to subduction of Eorhyacian oceanic crust. After closure of the Eorhyacian Ocean and collision of West African and Amazonian plates, the Guiana Shield moved. The first evolution towards 60° latitude, occurs after 2080 Ma, during the Neorhyacian D2a post collisional sinistral transcurrent phase. During the Late Rhyacian D2b phase, up to 2050 Ma, the Guiana Shield reaches the pole and starts to move to lower latitudes on an opposite meridian. By the Orosirian D2c phase, from ca. 2050 to 1970 Ma, the Guiana Shield reaches the Equator.Based on the amphibole 40Ar/39Ar dates, we estimate the continental drift between 12 and 16 cm/y for the Meso to Late Rhyacian period followed by a lower rate between 9 and 14 cm/y up to Orosirian time. This study highlights rock ages and magnetic ages are prerequisite to any continental reconstruction especially when it is shown continental drift is important for a 100–200 Ma time period. Our results confirm the possibility of APWP construction on Paleoproterozoic plutonic rocks but suggest improvement will rely on the combination with multidisciplinary approaches such as structural geology and multi-method radiometric dating.  相似文献   

3.
A paleomagnetic study has been conducted on intrusive doleritic rocks cropping out within Devonian horizontal tabular formations of the Saharan craton (Tin Serririne basin, South of Hoggar shield). The 40K/40Ar dating of the dolerites gave an age of 347.6 ± 8.1 Ma, i.e. Tournaisian. The paleomagnetic data present three different directions. The first has a paleomagnetic pole close to the previous African poles of Permian age. This direction is therefore interpreted as a Permian remagnetization. The second direction, which is defined by both linear regression and remagnetization circles analysis, is considered as the primary magnetization. It yields a new African Tournaisian paleomagnetic pole (λ = 18.8° S,  = 31.2° E, K = 29, A95 = 7.5°) very close to the Ben Zireg Tounaisian pole [Aifa, T., Feinberg, H., Pozzi, J.P., 1990. Devonian/Carboniferous paleopoles for Africa. Consequences for Hercynian geodynamics. Tectonophysics, 179, 288–304]. The third direction has intermediate orientation between those of the first or second directions and that of the Upper Cenozoic field. It is interpreted as related to a composite magnetization. This new Tin Serririne pole improves the APWP of Gondwana, for this key period of the evolution of the Pangea. This APWP confirms the previous paleogeographic reconstruction which shows that the pre-Hercynian ocean between Gondwana and Laurussia is still not close during the beginning of the Carboniferous.  相似文献   

4.
Potassium-Ar and Rb-Sr dating of minerals was fundamental in early efforts to date magmatic and metamorphic processes and paved the way for geochronology to become an important discipline within the earth sciences. Although K-Ar and, in particular, 40Ar/39Ar dating of micas is still widely applied, Rb-Sr dating of micas has declined in use, even though numerous studies demonstrated that tri-octahedral mica yields geologically realistic, and more reliable and reproducible Rb-Sr ages than the K-Ar or 40Ar/39Ar system. Moreover, a reduction of uncertainties typically reported for Rb-Sr ages (ca. 1%) can now be achieved by application of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) rubidium isotope dilution measurements (<0.3%). Replicate Rb-Sr biotite ages from the Oslo rift, Norway, yield an external reproducibility of ±0.3% (n=4) and an analytical error of ±0.8 Ma for individual ages that vary between 276.9 and 275.5 Ma. Conventional thermal ionisation mass spectrometry (TIMS) Rb analysis on the same mineral separates yields ages between 276.1 and 271.7 Ma, three times the spread compared to Rb MC-ICPMS data. Biotite and phlogopite from the central Nagssugtoqidian orogen, West Greenland, yield 40Ar/39Ar plateau ages (ca. 1700 Ma) with a spread of ±150 Ma, while Rb-Sr ages on either biotite or phlogopite separates have a much narrower range of ±10 Ma. This comparison of Rb-Sr and 40Ar/39Ar ages demonstrates the robustness of the Rb-Sr system in tri-octahedral micas and cautions against the sole use of 40Ar/39Ar tri-octahedral mica ages to date geological events. Analytical errors of 16 Ma for these Rb-Sr mica ages determined by TIMS are reduced to <±5 Ma when the Rb concentration is determined by MC-ICPMS. All the TIMS and MC-ICPMS data from the Nagssugtoqidian orogen agree within assigned analytical uncertainties. However, high precision Rb-Sr dating by MC-ICPMS can resolve geological information obscured by TIMS age determinations. TIMS data for seven phlogopite samples form an isochron age of 1645±6 Ma, and thus, no differentiation in age between the different samples can be made. In contrast, MC-ICPMS Rb measurements on the same samples reveal two distinct populations with ages of 1633±3 or 1652±5 Ma.Combining the mica Rb-Sr geochronological data with the well-constrained thermal history of this ancient orogen, we estimate the closure temperature of the Rb-Sr system in 1-2 mm slowly cooled phlogopite crystals, occurring in a matrix of calcite and plagioclase to be ∼435 °C, and at least 50 °C above that of biotite.  相似文献   

5.
琼北火山岩激光40Ar/39Ar定年研究   总被引:1,自引:1,他引:0  
洒骁  季建清  周晶 《岩石学报》2013,29(8):2789-2795
新生代以来,雷琼地区多次、大量地喷发了一系列火山岩。前人主要基于K-Ar法对此划分了期次。本文采用激光40Ar/39Ar年代学方法,对琼北火山岩区进行了精细定年研究。低本底激光40Ar/39Ar法能够对低钾含量,极少量样品(毫克级)进行精细测定,非常适合极年轻火山岩的定年工作。结果显示的火山岩激光40Ar/39Ar法高质量数据表明琼北火山喷发活动时限跨越1.3~0.052Ma。在比较了表观年龄与等时线年龄差异之后,本文给出了年龄推荐值。正如测试数据所显示,本地区新生代火山岩普遍存在40Ar和36Ar过剩的问题,此时只有等时线年龄才代表喷发的真实年龄。  相似文献   

6.
A new U-Pb zircon age for the Aptian/Albian boundary (113.1 ± 0.3 Ma) indicates that an alternate Early Cretaceous timescale that is largely devised using the K-Ar date for GL-O glauconite international standard and other K-Ar glauconite geochronology, is inaccurate. Both 40Ar/39Ar sandine and U-Pb zircon ages indicate that the K-Ar date for the GL-O international standard does not record the timing of sediment deposition and thus should not be used for timescale calibration. This issue is not solely constrained to the Early Cretaceous, because other geological time intervals also reveal younger K-Ar glauconite ages in comparison to other radioisotopic dating techniques (e.g., U-Pb, Ar-Ar, Re-Os).  相似文献   

7.
We report a new paleomagnetic pole for the Black Range Dolerite Suite of dykes, Pilbara craton, Western Australia. We replicate previous paleomagnetic results from the Black Range Dyke itself, but find that its magnetic remanence direction lies at the margin of a distribution of nine dyke mean directions. We also report two new minimum ID-TIMS 207Pb/206Pb baddeleyite ages from the swarm, one from the Black Range Dyke itself (>2769 ± 1 Ma) and another from a parallel dyke whose remanence direction lies near the centre of the dataset (>2764 ± 3 Ma). Both ages are slightly younger than a previous combined SHRIMP 207Pb/206Pb baddeleyite weighted mean date from the same swarm, with slight discordance interpreted as being caused by thin metamorphic zircon overgrowths. The updated Black Range suite mean remanence direction (D = 031.5°, I = 78.7°, k = 40, α95 = 8.3°) corresponds to a paleomagnetic pole calculated from the mean of nine virtual geomagnetic poles at 03.8°S, 130.4°E, K = 13 and A95 = 15.0°. The pole's reliability is bolstered by a positive inverse baked-contact test on a younger Round Hummock dyke, a tentatively positive phreatomagmatic conglomerate test, and dissimilarity to all younger paleomagnetic poles from the Pilbara region and contiguous portions of Australia. The Black Range pole is distinct from that of the Mt Roe Basalt (or so-called ‘Package 1’ of the Fortescue Group), which had previously been correlated with the Black Range dykes based on regional stratigraphy and imprecise SHRIMP U–Pb ages. We suggest that the Mt Roe Basalt is penecontemporaneous to the Black Range dykes, but with a slight age difference resolvable by paleomagnetic directions through a time of rapid drift of the Pilbara craton across the Neoarchean polar circle.  相似文献   

8.
辽宁小佟家堡子金矿床成矿时代探讨   总被引:12,自引:2,他引:10  
刘国平 《矿床地质》2002,21(1):53-57
小佟家堡子金矿床位于辽东金矿集中区,为产于古元古代变质岩系中的微细粒浸染型金矿,矿床类型独特。文章采用了绢云母^40Ar/^39Ar法对样品从450℃进行了8个阶段的加热分析。从绢云母石英交代岩型金矿石中挑选出与金矿化密切共生的绢云母单矿物,通过^40Ar/^39Ar快中子活化阶段加热法获得坪年龄为167Ma。绢云母^40Ar/^39Ar法测年结果与矿床的控矿构造特征、区域岩浆活动的演化规律相吻合,进一步证明了该金矿床为燕山期成矿。同时,绢云母^40Ar/^39Ar的马鞍形年龄谱还表明,在绢云母石英交代岩形成过程中,可捕获部分“过剩剩氩”,这可能是造成K-Ar法年龄值高、范围较大的原因之一。  相似文献   

9.
A combined paleomagnetic and geochronological study is reported of Paleogene basalt lavas and an intercalated red bed succession, comprising a minimum of 14 basalt flows and 10 red bed horizons in the Tuoyun Basin of the southwest Tian Shan Range, China. Two basalt matrix samples yield 40Ar / 39Ar isochron ages of 58.5 ± 1.3 Ma (2σ, MSWD = 0.9) and 60.4 ± 1.3 Ma (2σ, MSWD = 1.7). These compare well with a previously published K–Ar dilution age of 61.7 ± 2.3 Ma for comparable Paleogene basalts and confirm that the younger pulse of magmatism in this basin is represented by both intrusive and extrusive activity. Demagnetization and component analysis identify a stable characteristic remanence (ChRM) with predominantly reversed polarity following removal of secondary remanence by peak demagnetization steps below 250–350 °C or 5 mT. Rock magnetic analysis identifies pseudo-single domain magnetite or titanomagnetite as carriers. The stable ChRM passes a fold test; it was probably acquired at the time of lava emplacement. Results from the bulk of the collection imply that paleomagnetic data from the upper and lower ( 115 Ma) basalt series in the Tuoyun Basin are not distinguishable at the 95% significance level and indicate that this tectonic domain remained essentially stationary with respect to the Earth's spin axis for 50 Ma prior to onset of the India/Asia collision in early Eocene times. It is therefore probable that no paleomagnetically detectable crustal shortening occurred in the southwest Tian Shan prior to collision. Paleomagnetic data sets from the Tuoyun Basin also show that little or no paleolatitude difference is present between the Tian Shan and the reference latitude of Eurasia at 60 Ma. This supports previous evidence suggesting that central Asian blocks in the vicinity of the Tian Shan are unlikely to have experienced appreciable northward convergence relative to Eurasia since onset of the India/Asia collision and initiation of the Himalaya.  相似文献   

10.
Thirty-five illite and muscovite concentrates were extracted from Triassic and Permian claystones, shales, slates and phyllites along a cross-section from the diagenetic Alpine foreland (Tabular Jura and borehole samples beneath the Molasse Basin) to the anchi- and epimetamorphic Helvetic Zone of the Central Alps. Concentrates and thin sections were investigated by microscopic, X-ray, infrared, Mössbauer, thermal (DTA and TG), wet chemical, electron microprobe, K-Ar, Rb-Sr, 40Ar/39Ar and stable isotope methods.With increasing metamorphic grade based on illite crystallinity data (XRD and IR) the following continuous changes are observed: (i) the 1Md2M1 polymorph transformation is completed in the higher grade anchizone; (ii) K2O increases from 6–8 wt. % (diagenetic zone) to 8.5–10% (anchizone) to 10–11.5% (epizone), reflecting an increase in the total negative layer charge from 1.2 to 2.0; (iii) a decrease of the chemical variation of the mica population with detrital muscovite surviving up to the anchizone/ epizone boundary; iv) a shift of an endothermic peak in differential thermal curves from 500 to 750° C; (v) K-Ar and Rb-Sr apparent ages of the fraction <2 m decrease from the diagenetic zone to the epizone, K-Ar ages being generally lower than Rb-Sr ages. The critical temperature for total Ar resetting is estimated to be 260±30° C. K-Ar and Rb-Sr ages become concordant when the anchizone/ epizone boundary is approached. The stable isotope data, on the other hand, show no change with metamorphic grade but are dependent on stratigraphic age.These results suggest that the prograde evolution from 1 Md illite to 2M1 muscovite involves a continuous lattice restructuration without rupture of the tetrahedral and octahedral bonds and change of the hydroxyl radicals, however this is not a recrystallization process. This restructuration is completed approximately at the anchizone/epizone boundary. The isotopic data indicate significant diffusive loss of 40Ar and 87Sr prior to any observable lattice reorganization. The restructuration progressively introduces a consistent repartition of Ar and K in the mineral lattices and is outlined by the 40Ar/39Ar age spectra.Concordant K-Ar and Rb-Sr ages of around 35-30 Ma. with concomitant concordant 40Ar/39Ar release spectra are representative for the main phase of Alpine metamorphism (Calanda phase) in the Glarus Alps. A second age group between 25 and 20 Ma. can probably be attributed to movements along the Glarus thrust (Ruchi phase), while values down to 9 Ma., in regions with higher metamorphic conditions, suggest thermal conditions persisting at least until the middle Tortonian.  相似文献   

11.
西秦岭降扎地区金、铀矿床年代学对比研究   总被引:9,自引:0,他引:9       下载免费PDF全文
刘家军 《地质科学》1998,33(3):300-309
西秦岭降扎地区寒武、志留系中的金、铀矿床,是我国相当重要的碳硅泥岩型矿床。根据金矿床中岩石和矿石异常铅模式年龄、氩-氩同位素年龄和钾-氩同位素年龄等,获得了一批有益的年代学信息。金矿床的各种同位素年龄数据主要有2组:(1)242-186Ma;(2)137-47Ma.结合区域地质发展史、成矿热液脉与岩脉的穿切关系以及矿床产出的其它宏观特征等,确定金矿床的成矿时代为137-47Ma,与区域铀矿床形成的主要时代(117-55Ma)相比,二者成矿时间大体相同。  相似文献   

12.
New Hornblende K-Ar and 39Ar-40Ar and mica Rb-Sr and K-Ar ages are used to place specific timemarks on a well-constrained pressure-temperature path for the late Alpine metamorphism in the Western Tauern Window. After identification of excess 40Ar, the closure behavior of Ar in hornblende is compared with that of Sr and Ar in phengite and biotite. Samples were collected in three locations, whose maximum temperatures were 570° C (Zemmgrund), 550° C (Pfitscher Joch), and 500–540° C (Landshuter Hütte).The average undisturbed age sequence found is: Phengite Rb-Sr (20 Ma)>hornblende K-Ar (18 Ma)>phengite K-Ar (15 Ma)>biotite Rb-Sr, K-Ar (13.3 Ma)>apatite FT (7 Ma). Except for the phengite Rb-Sr age, the significance of which is debatable, all ages are cooling ages. No compositional effects are seen for closure in biotite. Additionally, Rb-Sr phengite ages from shearzones possibly indicate continuous shearing from 20 to 15 Ma, with reservations regarding the validity of the initial Sr correction and possible variations of the closure temperatures. The obviously lower closure temperature (T c) for Ar in these hornblendes than for Sr in the unsheared phengites indicates that the T c sequence in the Western Tauern Window is different from those observed in other terrains. In spite of this discrepancy, valuable geological conclusions can be drawn if the application of closure temperatures is limited to this restricted area with similar T, P and : (1) All ages of samples located on equal metamorphic isotherms decrease from east to west by about 1 Ma which is the result of a westward tilting of the Tauern Window during uplift. (2) In a PT-path, the undisturbed cooling ages yield constantly decreasing uplift rates from 3.6 mm/a to 0.1 mm/a. (3) Use of recently published diffusion data for Ar in hornblende (T c=520° C) and biotite (T c=320° C) suggests an extrapolated phengite closure temperature for Sr at 550° C. This suggests that the prograde thermal metamorphism at this tectonic level of the Tauern Window lasted until some 20 Ma ago.  相似文献   

13.
40Ar/39Ar incremental-release analyses were carried out on whole-rock and constituent white mica (illite)-rich size fractions (0.63–1 to 6.3–20 m) within two very-low grade, penetratively cleaved metatuffs of contrasting anchizonal metamorphic grade (northeastern Rheinisches Schiefergebirge, Federal Republic of Germany). One sample from the upper anchizone displays internally concordant 40Ar/39Ar spectra with plateau ages ranging between ca. 316 and 325 Ma. These are similar to conventional K-Ar ages determined for the whole-rock and size fractions. Together the isotopic results suggest that cleavage formed at ca. 320 Ma during a concomitant very-low grade metamorphism. This is consistent with biostratigraphic controls which suggest that metamorphism and cleavage formation occurred during the Westphalian.A metatuff sample from the middle anchizone records more internally discordant 40Ar/39Ar age spectra with total-gas ages ranging from 366 to 372 Ma. These are ca. 35–45 Ma older than corresponding conventional K-Ar ages, indicating marked recoil-loss of 39Ar occurred during irradiation. Transmission electron microscopy reveals that white mica grains within size fractions from the upper anchizone sample have clearly defined, straight edges whereas those within the middle anchizone samples are embayed and diffuse. This results in an increase in surface/volume ratio and therefore greater susceptibility for recoil-loss of 39Ar in the middle anchizone sample. Grain-edge morphology appears to be a major factor in determining the extent of recoil-loss of 39Ar during 40Ar/39Ar analysis of fine-grained size fractions.  相似文献   

14.
孙东霞  吕同艳  沈晓丽  薛蕾 《地质通报》2019,38(9):1511-1520
福建东南沿海龙海—漳浦地区是新生代佛昙群玄武岩的分布区之一。对该区域火山岩而言,前人的研究主要集中在岩石地球化学特征、形成演化方面,对年代学研究较少,玄武岩喷发期次划分仍以20世纪80、90年代测定的K-Ar结果为依据,或通过下覆地层孢粉组合时代推断而来。为了更精确地测定该地区火山作用的时代及进一步确定其喷发期次,选取龙海—漳浦地区4个玄武岩样品,利用激光~(40)Ar/~(39)Ar测年方法进行精细定年。样品年龄为10.1~14.8Ma,明确了龙海-漳浦新生代玄武岩在中新世中晚期存在一次喷发期次。  相似文献   

15.
The paper summarizes paleomagnetic and rock-magnetic data on the Late Cretaceous diatremes and associated dikes from the Minusa trough located within the southwestern Siberian Platform. It is shown that the stable characteristic component of magnetization is superimposed magnetization (in physical sense). It is linked to Fe-rich titanomagnetite produced by the decay and oxidation of Ti-rich titanomagnetite derived from a primary magma. This process, however, coincides in time with the intrusion cooling, which is supported by paleomagnetic tests. Correlation of magnetic polarity with 39Ar/40Ar ages suggests that the acquired stable characteristic component of magnetization corresponds to magnetic Chrons C33-C32 and characterizes the Middle Campanian magnetic field (74–82 Ma). The mean paleomagnetic pole for this span is located at 82.8° N, 188.5° E, with α95 = 6.1 and, within confidence intervals, coincides with the reference data from the European part of the Eurasian plate. The excellent agreement between virtual paleomagnetic poles testifies that the intraplate motions in the Mesozoic resulting in the crust deformation of Central Asia ceased in the late Cretaceous or were so small that elude detection by the paleomagnetic method.  相似文献   

16.
Paleomagnetic data from lavas and dikes of the Unkar igneous suite (16 sites) and sedimentary rocks of the Nankoweap Formation (7 sites), Grand Canyon Supergroup (GCSG), Arizona, provide two primary paleomagnetic poles for Laurentia for the latest Middle Proterozoic (ca. 1090 Ma) at 32°N, 185°E (dp=6.8°, DM=9.3°) and early Late Proterozoic (ca. 850–900 Ma) at 10°S, 163°E (dp=3.5°, DM=7.0°). A new 40Ar/39Ar age determination from an Unkar dike gives an interpreted intrusion age of about 1090 Ma, similar to previously reported geochronologic data for the Cardenas Basalts and associated intrusions. The paleomagnetic data show no evidence of any younger, middle Late Proterozoic tectonothermal event such as has been revealed in previous geochronologic studies of the Unkar igneous suite. The pole position for the Unkar Group Cardenas Basalts and related intrusions is in good agreement with other ca. 1100 Ma paleomagnetic poles from the Keweenawan midcontinent rift deposits and other SW Laurentia diabase intrusions. The close agreement in age and position of the Unkar intrusion (UI) pole with poles derived from rift related rocks from elsewhere in Laurentia indicates that mafic magmatism was essentially synchronous and widespread throughout Laurentia at ca. 1100 Ma, suggesting a large-scale continental magmatic event. The pole position for the Nankoweap Formation, which plots south of the Unkar mafic rocks, is consistent with a younger age of deposition, at about 900 to 850 Ma, than had previously been proposed. Consequently, the inferred 200 Ma difference in age between the Cardenas Basalts and overlying Nankoweap Formation provides evidence for a third major unconformity within the Grand Canyon sequence.  相似文献   

17.
西藏波龙斑岩铜金矿床是新近在青藏高原中部发现的规模最大的斑岩型矿床。文章对该矿床内的蚀变钾长石和蚀变绢云母进行了40Ar/39Ar年代学测试,获得蚀变钾长石的40Ar/39Ar坪年龄为(118.33±0.60) Ma,反等时线年龄为(118.49±0.74) Ma (初始40Ar/36Ar=286.1±8.4),表明波龙斑岩铜金矿床的钾化蚀变年龄为118~119 Ma;蚀变绢云母的40Ar/39Ar坪年龄为(121.61±0.67) Ma,反等时线年龄为(121.1±2.0) Ma (初始40Ar/36Ar=279±19)。由于蚀变绢云母测试样品内可能混入了斜长石,受其影响,蚀变绢云母测年结果的下限可能代表了该矿床绢英岩化蚀变年龄。这些蚀变钾长石和蚀变绢云母40Ar/39Ar测年结果与波龙矿床的成岩年龄值和成矿年龄值在误差范围内基本一致,表明该矿床的钾化和绢英岩化与成岩、成矿同期,该矿床的岩浆-热液活动过程的时限为121~118 Ma。  相似文献   

18.
Precambrian granitic basement rocks obtained from well BH-36 of Bombay High Field, western offshore of India has been studied both by Rb-Sr and K-Ar dating methods. Seven basement samples chosen from two cores have yielded whole rock Rb-Sr isochron age of 1446 ± 67 Ma with an initial87Sr/86Sr ratio of 0.7062 ± 0.0012. This age has been interpreted as the formation/emplacement time of the granite. Two biotite fractions of different grain size separated from a sample CC6B2T have yielded Rb-Sr mineral isochron age of 1385 ± 21 Ma. However, these fractions when studied by K-Ar dating method have yielded slightly higher but mutually consistent ages of 1458 ± 43 Ma and 1465 ± 43 Ma, respectively. Further, two biotites separated from additional samples CC5B9T and CC6B3B have yielded K-Ar ages of 1452 ± 42 Ma and 1425 ± 40 Ma with an overall mean age of 1438 ± 19 Ma. This mean K-Ar age is indistinguishable from whole rock Rb-Sr isochron as well as mineral isochron age within experimental error. The similarity in the whole rock and biotite ages obtained by different isotopic methods suggests that no thermal disturbance has occurred in these rocks after their emplacement/formation around 1450 Ma ago. The present study provides the evidence for the existence of an important Middle Proterozoic magmatic event around 1400-1450 Ma on the western offshore of India which, hitherto, was thought to be mainly confined to the eastern Ghats, Satpura and Delhi fold belt of India. This finding may have an important bearing on the reconstruction of Proterozoic crustal evolution of western Indian shield.  相似文献   

19.
The Yaogangxian deposit in the central Nanling region, South China consists of vein-type ore bodies hosted in Cambrian to Jurassic strata and Mesozoic granitic intrusions. Wolframite and molybdenite are the dominant ore minerals intergrown with gangue minerals of quartz, feldspar, phlogopite, and muscovite. We have carried out molybdenite Re–Os and phlogopite and muscovite 40Ar/39Ar dating to better understand the timing and genesis of mineralization. Re–Os dating of eight molybdenite samples yielded model ages ranging from 152.0±3.5 to 161.1±4.5 Ma, with an average of 156.0 Ma. The Re–Os analyses give a well-defined 187Re/187Os isochron with an age of 154.9±2.6 Ma (MSWD=2.4). Hydrothermal phlogopite and muscovite display extremely flat 40Ar/39Ar age spectra. Phlogopite yields a 40Ar/39Ar plateau age of 153.0±1.1 Ma, whereas muscovite yields a plateau age of 155.1±1.1 Ma. Both 40Ar/39Ar ages are in good agreement with the Re–Os ages, placing the timing of tungsten mineralization at about 154 Ma. This age is consistent with the field relationships. Our new data, when combined with published geochronological results from other major deposits in this region, suggest that large scale W–Sn mineralization occurred throughout the central Nanling region in the Late Jurassic.  相似文献   

20.
Northwestern Anatolia is characterized by voluminous Paleozoic to Cenozoic granitoid bodies with varying compositions. Most of them are composite plutons emplaced into western Anatolia orogenic crust during the Eocene, Oligocene and Miocene along the İzmir-Ankara-Erzincan suture zone. This paper reports systematic good quality mineral and bulk-rock chemistry, Sr-Nd isotope data, honblend Ar-Ar, zircon U-Pb and first apatite (U-Th)/He (AHe) ages to reveal possible source compositions of the Evciler and Eybek granitoids and petrogenetic/geodynamic processes involved during their genesis, and thermochronology of Oligocene magmatism in the NW Anatolia. The Evciler and Eybek granitoids are mainly granodiorite and composed of K-feldspar (usually orthoclase and rarely microcline), plagioclase (albite, oligoclase), hornblende, biotite, quartz and accessory minerals (e.g., titanite, zircon, apatite, opaque), and secondary minerals such as chlorite, sericite and clay minerals. Estimated temperature-pressure conditions are 690–770 ° C at 1.6–2.7 kbar for the Evciler granitoid and 690–760 ° C at 3.2–4.01 kbar for the Eybek granitoid. These two granitoids enriched in LILEs (e.g., U, Th, Rb, and K), LREEs and Pb, and depleted in HREEs (e.g., Nb, Ti) and Sr, Ba and P relative to LILEs, and display small negative Eu anomalies. They belong to calc-alkaline, high-K calc-alkaline and minor shoshonite series, and display metaluminous and I-type character. Their REE patterns show a large fractionation between LREE and HREE ((La/Yb)N = 4.6–21.4) and a small negative Eu anomaly (Eu* = 0.2–0.3). The Evciler granitoid has homogeneous 87Sr/86Sr = 0.7060−0.7063 and 143Nd/144Nd = 0.51259−0.51262, and the Eybek granitoid has 87Sr/86Sr = 0.7060−0.7080 and 143Nd/144Nd = 0.51243−0.51263. New precise 40Ar/39Ar age data of hornblende and 206Pb–238U ages of zircons and (U-Th)/He ages of apatites from the plutons allow a more accurate temporal reconstruction of the Cenozoic magmatism of the western Anatolia. 40Ar/39Ar dating of hornblendes from the Evciler and Eybek granitoids gave plateau ages of between ca. 28 Ma and 25 Ma. Laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) 206Pb-238Pb ages of euhdral magmatic zircons from the samples of these granitoids yield between ca. 28 and 26 Ma. The new high-temperature age constraints indicate Oligocene emplacement ages for the two intrusive bodies. The closeness of the zircon U-Pb and the hornblende Ar-Ar ages show that they experienced quick post-crystallization cooling. However, the significant difference between the apatite (U-Th)/He ages of 19.8 Ma and 7.6 Ma obtained on the Evciler and Eybek granitoids warns that in the post-Oligocene times the two structural blocks had different exhumation histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号