首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A local geoid solution for the northern part of Greece is presented based on a recent processing of newly available gravity data in the area 40.25 ≤ /o ≤ 41.00, 22.5 ≤λ ≤ 24.25. The derived gravimetric geoid heights are compared with geoid heights computed at recently measured GPS/ leveling benchmarks. A 4-parameter transformation model is applied to the differences between the two aforementioned geoid height sets, and a discussion is given on the current state of the leveling datum in the test area and the Greek territory. Regional and local transformation parameters are computed and some numerical tests are performed. A common adjustment of gravimetric geoid heights and corresponding GPS/leveling heights will be carried out in another study following an integrated procedure in order to study problems arising from the combination of different height data sets for geoid determination. Finally, some conclusions are drawn on the problems related to the optimization of a local geoid solution.  相似文献   

2.
This paper looks at the relation between the time-averaged level of the sea surface and a gravimertic geoid, as determined in coastal areas. Measurements in local regions can now be accurate enough to demonstrate that the geoid and mean sea level are not even parallel to each other, let alone identical. The accuracy and pattern structure of surface gravity data in some shelf seas is comparable with those on land, so that a marine geoid can be derived from surface data without using satellite altimetry. The geodetic objective is then to combine the two to determine sea surface topography. In principle, gravimetric studies provide the absolute datum so that local oceanographic models on the shelf can be combined with sea surface topography models related to the global ocean circulation. In contrast, sea surface topography information near deep ocean coasts must come from external sources and satellite altimetry used to give the gravity data needed to offset the less good coverage by ship-borne gravimetry.Marine Bouguer anomalies enable two specific problems of gravity anomaly patterns near the continent ocean transition to be overcome. The necessary extension of Stokes' condensation reduction is developed and illustrated along a north-south profile from the Mediterranean across the Cote d'Azur. The effect on gravity of deep ocean water introduces a geoid correction in the form of a dipolar ridge whose amplitude at the shore is about 11 cm. In addition to geostrophic currents, a semi-quantitative model for the thermohaline effects on sea surface topography is discussed in relation to sea level differences between the Atlantic and Mediterranean.In considering appropriate algorithms for local geoid computation, Kirby's Iterative Fourier Combination routine for combining altimetry and surface gravity is extended to account for global sea surface topography. The impact of very fast spherical harmonic analysis algorithms is discussed and a simple physical model is given which explains the short coherence lengths found for the global gravity field. This necessary assumption for any local geoid computation was hitherto purely empirical.Finally, the use of land data such as tide gauges, ellipsoidal heights from GPS, and orthometric heights from first order levelling are reviewed as ways of corroborating geodetic estimates of sea surface topography and its relation to levelling datums. Successful examples are given from southern England.  相似文献   

3.
The recovery of gravity field parameters using various heterogeneous data is performed according to the input/output system theory (IOST) method. The combination of different data sets is carried out by the application of a multiple input — multiple output system. The theory of the algorithm is presented and some conclusions on the assumptions made for the data properties are drawn. Comparisons between a combined system and individual uncorrelated systems are made and the proper use of the data sets in each case is discussed. Finally, an application is presented, where input data, such as shipborne gravity anomalies and sea surface heights (SSHs) derived from different satellite missions, are optimally combined in order to estimate marine geoid heights and sea surface topography (SST).  相似文献   

4.
Some steps were taken recently for Hungary aiming at the determination of geoid heights with a cm-accuracy. The present HGTUB98 gravimetric solution was based on terrestrial gravity data, height data and the EGM96 geopotential model, and was computed with the 1D Spherical FFT method. The gravity data were used in the area 45.5 ° ≤ϑ ≤ 49 °, 16 ° ≤ λ ≤ 23 °, the resolution of the grid was 30″ × 50″. The DTM used had a resolution of 1 km × 1 km.Our solution was evaluated using GPS/levelling data at 340 and 308 points respectively and at 138 vertical deflection points. We have compared our solution to the European EGG97 geoid solution, the gravimetric solution HGR97B developed by A. Kenyeres and the litospheric geoid solution by G. Papp. We have correlated our recent HGTUB98 solution to the Moho model of Central Europe. The comparison with GPS/levelling yielded respectively an accuracy of ±8.7 cm and ±4.4 cm (in terms of standard deviation) when a linear trend was removed. The comparison of the 1D planar FFT solution for the deflections of the vertical with 138 astrogeodetic deflections yielded an accuracy (in terms of standard deviation) of ±0.62″ and ±0.52″ for ξ and η, respectively.  相似文献   

5.
V. Corchete 《地学学报》2008,20(6):489-493
The gravimetric geoid computed in the northern part of Iberia, is presented in this paper. This computation has been performed considering two study windows fitted to the areas with higher density of gravity data, to reduce the computation errors associated to the scarcity of gravity data, as much as possible. The bad influence of a bathymetry with poorer resolution than the topography is also reduced considering the smallest marine area possible. Moreover, the computation of this gravimetric model is based on the most recent geopotential model: EIGEN‐GL04C (obtained in 2006). The method used in the computation of the new gravimetric geoid has been the Stokes integral in convolution form. The terrain correction has been applied to the gridded gravity anomalies, to obtain the corresponding reduced anomalies. Also the indirect effect has been taken into account. Thus, a new geoid model has been calculated and it is provided as a data grid in the Geodetic Reference System of 1980, distributed for the northern part of Iberia from 40 to 44 degrees of latitude and ?10 to 4 degrees of longitude, on a 161 × 561 regular grid with a mesh size of 1.5′ × 1.5′. This new geoid and the previous geoid Iberian Gravimetric Geoid 2005, are compared with the geoid undulations measured for eight points of the European Vertical Reference Network (EUVN) on Iberia. The new geoid shows an improvement in precision and reliability, fitting the geoidal heights of these EUVN points with more accuracy than the previous geoid. Moreover, this new geoid has a smaller standard deviation (12.6 cm) than that obtained by any previous geoid developed for the Iberian area up to date. This geoid obtained for the northern part of Iberia will complement the previously obtained geoid for South Spain and the Gibraltar Strait area; both geoids jointly will give a complete picture of the geoid for Spain and the Gibraltar Strait area. This new model will be useful for orthometric height determination by GPS over this study area, because it will allow orthometric height determination in the mountains and remote areas, in which levelling has many logistic problems. This new model contributes to our knowledge of the geoid, but the surrounding areas must be better known to constrain the lithospheric and mantle models.  相似文献   

6.
During recent years altimetry from the two geodetic missions of GEOSAT and ERS-1 has enabled the derivation of high resolution near global gravity field from altimetry [Andersen and Knudsen, 1995, 1996; Sandwell and Smith, 1997].Altimetric gravity fields are unique in the sense that they provide global uniform gravity information with very high resolution, and these global marine gravity fields are registered on a two by two minute grid corresponding to 4 by 4 kilometres at the equator.In this presentation several coastal complications in deriving the marine gravity field from satellite altimetry will be investigated using the KMS98 gravity field. Comparison with other sources of gravity field information like airborne and marine gravity observations will be carried out and two fundamentally different test areas (Azores and Skagerak) will be studied to investigated the different role of these different sources of gravity information.  相似文献   

7.
In Geodesy, the heights of points are normally orthometric heights measured above the geoid (an equipotential surface created by the earth masses and rotation which approximately coincides with the mean sea level) or the normal heights. It is necessary to transform the GNSS/GPS measured ellipsoidal heights (h) to classical physical heights (orthometric H/Normal H). The total gravity potential of the earth (W) is the summation of two components; gravitational potential (V) by earth masses and the centrifugal potential (Ω). The centrifugal potential is directly calculated, while the gravitational potential (V) needs to be modeled globally or locally using given measurements. The global models of the earth gravitational potential/gravity models (or so-called geoid models) are mostly given using spherical harmonics (SH). A modified approach of SH was defined to fit the use of SH for regional gravity/potential modeling called spherical cap harmonics (SCH). Due to the numerical difficulties of SCH, a simplified approach of SCH is selected to be used for a combined modeling of the earth potential using a variety of observations. This approach is called the Adjusted Spherical Cap harmonics.  相似文献   

8.
The main purpose of this article is to discuss the use of GPS positioning together with a gravimetrically determined geoid, for deriving orthometric heights in the North of Algeria, for which a limited number of GPS stations with known orthometric heights are available, and to check, by the same opportunity, the possibility of substituting the classical spirit levelling. For this work, 247 GPS stations which are homogeneously distributed and collected from the international TYRGEONET project, as well as the local GPS/Levelling surveys, have been used. The GPS/Levelling geoidal heights are obtained by connecting the points to the levelling network while gravimetric geoidal heights were interpolated from the geoid model computed by the Geodetic Laboratory of the National Centre of Spatial Techniques from gravity data supplied by BGI. However, and in order to minimise the discordances, systematic errors and datum inconsistencies between the available height data sets, we have tested two parametric models of corrector surface: a four parameter transformation and a third polynomial model are used to find the adequate functional representation of the correction that should be applied to the gravimetric geoid. The comparisons based on these GPS campaigns prove that a good fit between the geoid model and GPS/levelling data has been reached when the third order polynomial was used as corrector surface and that the orthometric heights can be deducted from GPS observations with an accuracy acceptable for the low order levelling network densification. In addition, the adopted methodology has been also applied for the altimetric auscultation of a storage reservoir situated at 40 km from the town of Oran. The comparison between the computed orthometric heights and observed ones allowed us to affirm that the alternative of levelling by GPS is attractive for this auscultation.  相似文献   

9.
An improved hybrid gravimetric geoid model for Egypt, EGY-HGM2016, has been recently computed implementing the least-squares collocation (LSC) method through the remove-compute-restore (RCR) procedure. The computation of EGY-HGM2016 involves different datasets in terms of gravity anomalies determined from the GOCE (gravity field and steady-state ocean circulation explorer)-based global geopotential model (SPW-R4) up to d/o 200 and EGM2008 from d/o 201 to 720 combined with terrestrial gravity datasets in terms of 2140 gravity field anomalies and about 121,480 marine surface gravity anomalies. In addition, orthometric heights from 17 GPS/levelling measurements have been considered during the modelling process to improve the determination of the hybrid gravimetric geoid over the Egyptian region. The EGY-HGM2016 model estimated over Egypt provides geoid heights that are ranging from 7.677 to 21.095 m with a standard deviation (st. dev.) of about 2.534 m in the northwest of the country excluding the involvement of the orthometric heights from GPS/levelling measurements. When the later dataset is considered during the implementation of LSC process, hybrid residual height anomalies ranging from ?1.5 to +0.9 m, with a mean of 0.22 m and a st. dev. of 0.17 m, are obtained. Comparison of the predicted hybrid gravimetric geoid with the corresponding ones obtained from EGM2008, GOCE-based SPW R4 model, and GPS/levelling reveals considerable improvements of our EGY-HGM2016 model over Egypt.  相似文献   

10.
王懋基  宋正范  尹春霞 《物探与化探》1998,22(5):329-335,328
用卫星雷达测高确定海面高度可以容易地转换成重力异常。南海应用密轨道的GEOSAT/GM和ERS-1卫星测高数据获得了高分辨率的重力复盖。在这个新的重力图上揭示出许多有意义的、过去未能清楚显示的构造特征,其中包括扩张脊,转换断层,岩石层弹性板厚度,大陆边缘性质,以及新的沉积盆地。  相似文献   

11.
Nowadays, Global Geopotential Models (GGMs) are used as a routine stage in the procedures to compute a gravimetric geoid. The GGMs based geoidal height also can be used for GPS/levelling and navigation purposes in developing countries which do not have accurate gravimetric geoid models. Also, the GGM based gravity anomaly including the digital elevation model can be used in evaluation and outlier detections schemes of the ground gravity anomaly data. Further, the deflection of vertical and gravity gradients components from the GGMs can be used for different geodetic and geophysical interpretation purposes. However, still a complete and user-friendly software package is not available for universities and geosciences communities. In this article, first we review the procedure for determination of the basic gravity field and gradient components from the GGMs, then general MATLAB based software is presented and applied as a sample case study for determination of gravity components based on the most recent EIGEN-GL04C GRACE model in Sweden. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
区域大地水准面的确定是GPS测量常需解决的问题。目前确定大地水准面的方法主要包括重力法、GPS水准几何法及组合法,其中组合法因其精度和可靠性都较高,常用于计算高精度区域大地水准面。高精度的大地水准面模型是组合法确定区域大地水准面的关键。在我国,EGM2008全球重力场模型精度和分辨率均高于此前的所有模型,研究基于该模型的组合法大地水准面精化具有重要的实践意义。笔者以吉林大学兴城教学实习基地物探实验区为例,基于实测重力数据、EGM2008重力场模型和GPS水准数据,采用组合法精化了区域大地水准面,比较了组合法大地水准面模型和无重力实测数据的几何法大地水准面模型的精度差异,分析了该方法在物探测量中的适用性。结果表明,实验区组合法大地水准面模型精度最高达到1.2 cm,并且误差分布区间较小,总体上精度和可靠性高于对比的几何方法,并且组合法和几何法获取的两种大地水准面模型均能满足大比例尺物探测量要求。EGM2008模型精度较高,故平坦地区使用组合法时,高密度的实测重力数据可能带来高频扰动,有可能降低EGM2008重力场模型本身的精度,所以重力数据采集过程中要顾及重力点的密度和空间分布。本文方法更适用于地形复杂的地区。  相似文献   

13.
Since the creation of the Sub-Commission for the Geoid in South America (SCGSA) in 1993, many efforts have been carried out in the different countries in order to improve the geoid computations. The validation of the gravity data in Brazil, Uruguay, Argentina and Chile has improved many of the gravity surveys in those countries. GPS observations carried out on benchmarks of the geometric levelling have been facilitated by the SIRGAS (Geocentric Reference System for South America) project and can contribute for testing the gravimetric determination of the geoid. Several countries made available GPS data for SCGSA like Brazil, Argentina, Venezuela and Chile. The Digital Terrain Model (DTM) has been improved considerably in Brazil and Argentina. A great number of topographic maps has been digitized to generate a DTM grid of 3′ resolution (DTM3). New gravity surveys in the Amazonas region have been in progress along Rio Negro and its tributaries. Many different organizations in most of the countries in South America have been involved with local or national geoid computations. This fact has brought attention to the data in several countries facilitating the efforts for a continental geoid. All these activities are strongly supported by Geophysical Exploration Technology (GETECH) — University of Leeds. The objective envisaged at the moment is to produce a 10′ resolution geoid for South America using FFT and to compare the result with that of the numerical integration of the modified Stokes integral.  相似文献   

14.
In this paper we advocate the use of Newton's law of gravitational attraction to ensure perfect consistency between gravity and height data. Starting with the absolute gravity on the topography we decompose this signal into a number of quantities associated with physics of the system. To model gravitational attraction from topography we use DTM and Newton's law of gravitational attraction. A residual part of the gravity signal is interpreted as inconsistency between gravity and heights. In the paper we discuss a method by which such inconsistency (at least in principle) can be decomposed into a “gravity error” and a “terrain error”. In practice such separation is not possible because the two types of error are nearly 100% correlated. The inconsistency can be interpreted as a measure of ambiguity of the gravity-terrain models which are consistent with a set of measured/interpolated data. We discuss the influence of such ambiguity on the accuracy of the geoid for the investigated area of Jutland, Denmark.  相似文献   

15.
In this article, separation between the geoid and the quasigeoid was calculated using ground gravity data and the data extracted from two Global Geopotential Models (GGMs). The calculated results were compared together. To do so, the authors used the terrestrial gravity data in a vast region of Iran, comprising 8,245 stations which are kindly put in our disposal by the National Cartographic Center of Iran, as well as two GGMs, namely EGM96 and EGM2008 for comparison. The calculation of the separation for GGMs was performed by iteration method. The results showed that the geoid–quasigeoid separations obtained from the terrestrial data versus the orthometric heights are nonlinear in mountainous areas, whereas they are almost linear in flat regions due to decreasing the values of the topographic potential of the masses between the earth surface and the geoid. On the other hand, in case of GGMs, a positive correlation was observed between the separations and the orthometric heights in both mountainous and flat areas. As the difference between the separations extracted by two methods in mountainous areas—especially in the regions with ragged topography—differs strongly, it is recommended to use the dense gravity and height networks for accurate determination of the geoid–quasigeoid separation in these regions. Finally, we can conclude that the mean values of separation by two global geopotential models (EGM96 and EGM2008) are 21.87 and 21.23 cm, respectively, values which did not differ strongly, whereas this mean value obtained from ground gravity data is 16.10 cm, which differs from the GGMs’ results with approximately 5 cm.  相似文献   

16.
The Fast Fourier Transformation (FFT) has become a routine mathematical tool for the refinement of the Earth's gravity field, such as the computation of precise gravimetric geoid and terrain corrections, particularly over a large area. This paper presents ideas and methodologies to evaluate the accuracy of geoid undulation computations using FFT. A global geopotential model is used as a ‘ground truth’ gravity field model to assess the geoid determination precision by using FFT technique. It is demonstrated that special considerations must be given for a high precision FFT gravimetric geoid determination. A maximum of a few decimetres error could be introduced by the FFT algorithm if the gravity anomalies are not long wavelength filtered and/or no zero padding is applied.  相似文献   

17.
In this paper an estimator for geoid is presented and applied for geoid computation which considers the topographic and atmospheric effects on the geoid. The total atmospheric effect is mathematically developed in terms of spherical harmonics to degree and order 2,160 based on a recent static atmospheric density model. Also the contribution of its higher degrees is formulated. Another idea of this paper is to combine one of the recent Earth gravity models (EGMs) of the Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission with EGM08 and the terrestrial gravimetric data of Fennoscandia in an optimum way. To do so, the GOCE EGMs are compared with the Global Positioning System (GPS)/levelling data over the area for finding the most suited one. This comparison is done in two different ways: with and without considering the errors of the EGMs. Comparison of the computed geoids with the GPS/levelling data shows that a) considering the total atmospheric effect will improve the geoid by about 5 mm, b) GOCO03S is the most suited GOCE EGM for Fennoscandia, c) the errors of some of the GOCE EGMs are optimistic and far from reality. Combination of GOCO03S from degree 120 to 210 and EGM08 for the rest of degrees shows its good quality in these frequencies.  相似文献   

18.
Analysis of factual data on acoustic indicators of fluid occurrences, negative gravity anomalies based on satellite altimetry, tectonic deformations, and findings of ultramafic rocks and serpentinites was carried out. Such data make up stable sublatitudinal groups across the Atlantic Ocean. The image obtained suggests the following cause-and-effect series of processes: (1) tectonic deformations; (2) serpentinization of ultramafic rocks and generation of methane; and (3) accumulation of gas hydrates in the sedimentary cover near the continental margin. The second process is accompanied by the formation of negative gravity anomalies; the third process, by the specific reflection of fluids in the acoustic wave field. These facts provide a basis for forecasting the presence of gas hydrates based on reductions of the satellite altimetry data and regional maps of the sedimentary cover in the Atlantic and Arctic.  相似文献   

19.
Satellite altimetry can be used to infer subsurface geological structures analogous to gravity anomaly maps generated through ship-borne survey. The Eastern offshore was taken up for analysis using Geosat Exact Repeat Mission (ERM) altimeter data. A methodology is developed to use altimeter data as an aid to offshore hydrocarbon exploration. Processing of altimeter data involves corrections for various atmospheric and oceanographic effects, stacking and averaging of repeat passes, cross-over correction, removal of deeper earth and bathymetric effects, spectral analysis and conversion into free-air gravity anomaly. The final processed results were derived for Eastern offshore in the form of prospecting geoid and gravity anomaly maps and their spectral components. The highs and lows observed in those maps were derived in terms of a number of prominent megastructures e.g., gravity linears, 85°E and 90°E ridges, the Andaman trench complex etc. Satellite-derived gravity profiles along 12°N latitude match well with the existing structures.  相似文献   

20.
Both the system of plate motions and the global gravity field or the geoid are now so precisely known that it seems worthwhile to look for quantitative relationships. Some aspects, such as the general occurrence of positive gravity and geoid anomalies in regions of plate convergence, have long been known. Our aim is to describe the gravitational field in terms of plate-kinematic parameters and we present a preliminary step in this direction: for four plates (Pacific, Nazca, Indian, American) we have computed the correlation of the Gem 8 geoid heights (with reference to an ellipsoid of 1/298.255 ellipticity) with distance from the poles of motion and distance from the axes in an “absolute” frame. The geoid tends first to drop from the ridge axes to at least 10° distance and then to rise toward the convergence zones. This trend is strongest for the Indian plate in collision with Eurasia, is smaller, but very clear for the oceanic Pacific and Nazca plates, and is not developed for the American plate which does not subduct. We did not find a consistent relationship for the geoid with distance from the pivots. A possible interpretation of the results is the return flow of the large-scale mantle circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号