首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Tan-Lu Fault Zone(TLFZ), a well-known lithosphere fault zone in eastern China, is a boundary tectonic belt of the secondary block within the North China plate, and its seismic risk has always been a focus problem. Previous studies were primarily conducted on the eastern graben faults of the Yishu segment where there are historical earthquake records, but the faults in western graben have seldom been involved. So, there has been no agreement about the activity of the western graben fault from the previous studies. This paper focuses on the activity of the two buried faults in the western graben along the southern segment of Yishu through combination of shallow seismic reflection profile and composite drilling section exploration. Shallow seismic reflection profile reveals that the Tangwu-Gegou Fault(F4)only affects the top surface of Suqian Formation, therefore, the fault may be an early Quaternary fault. The Yishui-Tangtou Fault(F3)has displaced the upper Pleistocene series in the shallow seismic reflection profile, suggesting that the fault may be a late Pleistocene active fault. Drilling was implemented in Caiji Town and Lingcheng Town along the Yishui-Tangtou Fault(F3)respectively, and the result shows that the latest activity time of Yishui-Tangtou Fault(F3)is between(91.2±4.4)ka and(97.0±4.8)ka, therefore, the fault belongs to late Pleistocene active fault. Combined with the latest research on the activity of other faults along TLFZ, both faults in eastern and western graben were active during the late Pleistocene in the southern segment of the Yishu fault zone, however, only the fault in eastern graben was active in the Holocene. This phenomenon is the tectonic response to the subduction of the Pacific and Philippine Sea Plate and collision between India and Asian Plate. The two late Quaternary active faults in the Yishu segment of TLFZ are deep faults and present different forms on the surface and in near surface according to studies of deep seismic reflection profile, seismic wave function and seismic relocation. Considering the tectonic structure of the southern segment of Yishu fault zone, the relationship between deep and shallow structures, and the impact of 1668 Tancheng earthquake(M=8(1/2)), the seismogenic ability of moderate-strong earthquake along the Yishui-Tangtou Fault(F3)can't be ignored.  相似文献   

2.
郯庐断裂带莒县胡家孟晏地震破裂带的发现   总被引:4,自引:3,他引:1       下载免费PDF全文
郯庐断裂带是中国东部最主要的一条活动断裂带。在该断裂带中部,沂沭断裂东地堑的潍坊—嘉山段中发育了1条长360km的全新世活动断裂带(F5),在该全新世断裂带的北段和中段分别发生了公元70年的安丘地震和公元1668年的郯城地震。2003年底我们考察沭河断裂带时,在莒县境内发现了1条长约7km的地震破裂带,作为活动断层应该归属于F5断裂带,但其是一条独立的地震破裂段还是归属于1668年郯城8.5级地震破裂带有待于进一步的研究。尽管如此,探槽揭示出的上覆未经破坏的地层的14C年代表明,该破裂带在(2140±190)aBP以来没有过活动,因此我们认为其作为1条独立破裂段的可能性较大  相似文献   

3.
沂沭断裂带重力场及地壳结构特征   总被引:5,自引:2,他引:3  
沂沭断裂带为郯庐断裂带山东段,新构造运动显著,是华北地区的强震活动带之一。文中收集了该地区的布格重力数据,利用小波多尺度分析方法对重力场进行有效分离,研究区域地壳结构特征及断裂空间展布,并应用Parker变密度模型对区域莫霍面进行反演分析,得到以下几点结论:1)重力区域场显示,沂沭断裂带形成了NNE走向的大型重力梯度带,分隔了鲁西、鲁东地块,成为区域内重要的地球物理分界线。2)重力局部场显示,中上地壳结构复杂,沂沭带内部呈现两堑一垒的重力异常格局,5条主干断裂形成线性梯度带分布于东、西地堑内,鲁西块体的多条NW向活动断裂交切于沂沭断裂带,多数断裂只交切于西地堑,而蒙山山前断裂和苍尼断裂横穿沂沭断裂带;下地壳结构相对简单,发生明显的褶曲构造,表现出大规模高、低密度异常相间排列的典型特征。3)区域莫霍面形态东高西低,沂沭断裂带形成了莫霍面陡变带,造成了东西分异格局,潍坊东—莒县—临沂一线出现莫霍面上隆区,具有强震发生的深部孕震环境。4)区域内地震多发于高、低重力异常转化带之间,特别是活动断裂对应的重力梯度条带之上,地震的发生与断裂活动有着密切的关系,沂沭断裂带地震活动性最强,且东地堑强于西地堑。  相似文献   

4.
沂沭断裂带内部的差异活动及其成因分析   总被引:8,自引:0,他引:8  
郯庐断裂带在山东境内被称为沂沭断裂带的部分是其新构造活动最为强烈的一段.许多学者对沂沭断裂带做过大量研究工作,指出沂沭带活动存在差异性,但较少关于差异活动的原因分析.本文在前人研究工作基础上,较为深入地分析了沂沭带5条断裂的主要活动规律及其特点,对沂沭带进行了新的分段,并归纳了沂沭带不同断裂之间、同一断裂不同段落之间的活动差异及其差异的基本特征.在此基础上,从地貌、断裂结构、断裂空间组合、现代运动、深部构造环境等几个方面,分析阐述了造成沂沭带差异活动的可能原因,为更深入地研究沂沭带提供了新鲜的启示和思路.  相似文献   

5.
The Yishu fault zone is one of the branch faults of the Tanlu fault zone in its central part. Moderate and strong earthquakes occurred in the Yishu fault zone repeatedly. Due to its complex structure, the Yishu fault zone attracts much attention from earthquake researches. The Anqiu and Juxian electromagnetic stations in Shandong Province locate near the Anqiu-Juxian Fault and Changyi-Dadian Fault, which are branches of the Yishu fault zone, respectively. Geoelectric field and geomagnetic field observation were carried out in these two stations. The Wudi electromagnetic station is in the west of Tanlu fault zone in the Jidong-Bohai block and 230km from Anqiu electromagnetic station. This paper firstly describes the crustal structure near the electromagnetic stations by using magnetotelluric(MT)method. By processing the data carefully, we obtain the MT data in good quality near the stations. The MT data of each electromagnetic station and its nearby area suggests that the electrical structure and geological structure of the station are comparable. This paper applied 1-D and 2-D inversion for MT data and obtained the crustal electrical structure model beneath the Anqiu and Juxian seismic station. The shallow electrical structure from the MT method was compared with the results of symmetrical quadrupole electrical sounding. The model suggests that the electrical structure beneath the Anqiu and Juxian electromagnetic stations is complex and shows the feature of block boundary. The Wudi electromagnetic station is located inside a basin, the crustal structure shows layered feature typical for the stable blocks. Beneath the Anqiu electromagnetic station, there is a 1km-thick relative low resistivity layer in the shallow crust and a high resistivity body beneath it with a depth of 13km. There is a high resistivity structure in the crust beneath the Juxian electromagnetic station. The crustal structures are divided into two different parts by Anqiu-Juxian Fault and Changyi-Dadian Fault, respectively. More conductive layers appear to the west of the two faults. Plenty of fluid possibly exists within the conductive body to the west of Changyi-Dadian Fault, which plays important role in the earthquake generation. There is a relative low resistivity layer in the crust within 1~2km beneath the Wudi electromagnetic station. Beneath the relatively low resistivity layer, a relatively high resistivity layer extends to a depth of around 15km, and the resistivity value decreases with the increase of depth. The electrical resistivity model suggests the seismic activity of the Yishu fault zone around the Anqiu and Juxian electromagnetic stations should be taken into account seriously, and monitoring and research on it need to be strengthened. The results of this paper provide a certain reference value for the crustal structure research to similar stations.  相似文献   

6.
郯庐断裂带东地堑边界断层在断裂带演化过程和现今构造格局中都是重要断层,对该边界断层的第四纪活动性研究有助于了解郯庐断裂带的演化历史和地震活动性,而有关该边界断层第四纪活动性研究较少且至今尚无定论。本文通过浅层地震勘探和钻孔联合剖面相结合的方法,针对郯庐断裂带江苏段东地堑两边界断层开展系统的断层第四纪活动性研究,结果显示,昌邑-大店断裂(F_1)第四纪以来未见构造运动证据,白芬子-浮来山断裂(F_2)在第四纪早期曾发生有关活动,晚更新世以来未见活动迹象。  相似文献   

7.
山西大同盆地口泉断裂全新世古地震活动   总被引:9,自引:4,他引:9       下载免费PDF全文
野外调查表明 ,口泉断裂断错了断面附近的 3级地貌面 ,包括大同盆地西侧全新世形成的洪积扇后缘及位于洪积扇冲沟内的Ⅰ ,Ⅱ级阶地。其中冲沟内Ⅱ级阶地为剥蚀阶地 ,Ⅰ级阶地为堆积阶地 ,Ⅰ级阶地面的地层时代距今 2 52ka。在该断裂的悟道及上黄庄 2个地点开挖的大探槽表明 ,在距今 1 2 3万年以来该断裂曾发生 4次古地震事件 ,其中 3次分别发生在接近距今 2 52 ,5 6 8,13 73ka。另一次古地震事件发生在距今 6 76~ 10 82ka。这些数据有可能反映了口泉断裂具备准周期的强震活动。这 4次古地震事件的平均间隔约为 3 74ka ,最新一次古地震与上一次事件的时间间隔约为 3 16ka。 2个大探槽各次事件的平均最小同震垂直位移为 1 8m。这些资料对重新评价口泉断裂未来的地震潜势具有重要意义  相似文献   

8.
安丘-莒县断裂是沂沭断裂带最主要的活动断裂,对强震的发生具有明显的控制作用。该断裂的安丘—朱里段由南流段、双官—眉村段和朱里段3条右阶斜列的次级断裂所组成,以右旋走滑活动为主,兼有正断或逆冲活动分量;其最新活动时代推断为晚更新世—全新世早期。根据断裂活动性的最新研究成果,认为在莒县至昌邑之间安丘-莒县断裂仍是占主导地位的活动断裂,与公元前70年安丘7级地震的发生具有密切关系  相似文献   

9.
运用格点尝试法推断了沂沭断裂带现状构造应力场的分段受力环境,初步分析了沭断裂带及其两侧块体在中强地震前后构造应力环境的变化特点。其变化特点为:震前3个区主应力方位值有一个明显的增大趋势;3个区的增大变化为不同步;沂沭带主应力方位值增大出现时间较晚,增幅较大,为阶跃性增大;山东东部的主张应力方位值幅度增大,持续达4年以上,震后3个区主应力方位值出现明显的同步性回落,沂沭带的主应力降幅巨大。  相似文献   

10.
The northeastern margin of Tibetan plateau is an active block controlled by the eastern Kunlun fault zone, the Qilian Shan-Haiyuan fault zone, and the Altyn Tagh fault zone. It is the frontier and the sensitive area of neotectonic activity since the Cenozoic. There are widespread folds, thrust faults and stike-slip faults in the northeastern Tibetan plateau produced by the intensive tectonic deformation, indicating that this area is suffering the crustal shortening, left-lateral shear and vertical uplift. The Riyueshan Fault is one of the major faults in the dextral strike-slip faults systems, which lies between the two major large-scale left-lateral strike-slip faults, the Qilian-Haiyuan Fault and the eastern Kunlun Fault. In the process of growing and expanding of the entire Tibetan plateau, the dextral strike-slip faults play an important role in regulating the deformation and transformation between the secondary blocks. In the early Quaternary, because of the northeastward expansion of the northeastern Tibetan plateau, tectonic deformations such as NE-direction extrusion shortening, clockwise rotation, and SEE-direction extrusion occurred in the northeastern margin of the Tibetan plateau, which lead to the left-lateral slip movement of the NWW-trending major regional boundary faults. As the result, the NNW-trending faults which lie between these NWW direction faults are developed. The main geomorphic units developed within the research area are controlled by the Riyueshan Fault, formed due to the northeastward motion of the Tibet block. These geomorphic units could be classified as:Qinghai Lake Basin, Haiyan Basin, Datonghe Basin, Dezhou Basin, and the mountains developed between the basins such as the Datongshan and the Riyueshan. Paleo basins, alluvial fans, multiple levels of terraces are developed at mountain fronts. The climate variation caused the formation of the geomorphic units during the expansion period of the lakes within the northeastern Tibetan plateau. There are two levels of alluvial fans and three levels of fluvial terrace developed in the study area, the sediments of the alluvial fans and fluvial terraces formed by different sources are developed in the same period. The Riyueshan Fault connects with the NNW-trending left-lateral strike-slip north marginal Tuoleshan fault in the north, and obliquely connects with the Lajishan thrust fault in the south. The fault extends for about 180km from north to south, passing through Datonghe, Reshui coal mine, Chaka River, Tuole, Ketu and Xicha, and connecting with the Lajishan thrusts near the Kesuer Basin. The Riyueshan Fault consists of five discontinuous right-step en-echelon sub-fault segments, with a spacing of 2~3km, and pull-apart basins are formed in the stepovers. The Riyueshan Fault is a secondary fault located in the Qaidam-Qilian active block which is controlled by the major boundary faults, such as the East Kunlun Fault and the Qilian-Haiyuan Fault. Its activity characteristics provide information of the outward expansion of the northeastern margin of Tibet. Tectonic landforms are developed along the Riyueshan Fault. Focusing on the distinct geomorphic deformation since late Pleistocene, the paper obtains the vertical displacement along the fault strike by RTK measurement method. Based on the fault growth-linkage theory, the evolution of the Riyueshan Fault and the related kinetic background are discussed. The following three conclusions are obtained:1)According to the characteristics of development of the three-stage 200km-long steep fault scarp developed in the landforms of the late Pleistocene alluvial fans and terraces, the Riyueshan Fault is divided into five segments, with the most important segment located in the third stepover(CD-3); 2)The three-stage displacement distribution pattern of the Riyueshan Fault reveals that the fault was formed by the growths and connections of multiple secondary faults and is in the second stage of fault growth and connection. With CD-3 as the boundary, the faults on the NW side continue to grow and connect; the fault activity time on the SE side is shorter, and the activity intensity is weaker; 3)The extreme value of the fault displacement distribution curve indicates the location of strain concentration and stress accumulation. With the stepover CD-3 as the boundary, the stress and strain on NW side are mainly concentrated in the middle and fault stepovers. The long-term accumulation range of stress on the SE side is relatively dispersed. The stress state may be related to the counterclockwise rotation inside the block under the compression of regional tectonic stress.  相似文献   

11.
The Hetao depression zone, located to the north of Ordos block, is a complex depression basin that consists of two sub-uplifts and three sub-depressions. The depression zone is subject to the regional extensional stress field driven by the Indo-Asian continental collision and the westward subduction of the Pacific Plate. The Baotou uplift that separates the Baiyanhua sub-depression and Huhe sub-depression is mainly composed of Archean gneiss and is overlaid by Quaternary sedimentary strata. The two sub-depressions are bordered by the Wula Mountains and Daqing Mountains to the north, respectively. The bedrock exhumed in Wula Mountains and Daqing Mountains consists mostly of Precambrian granitic gneiss, and the piedmont depressions are infilled by thick Cenozoic strata. The Wulashan piedmont fault and Daqingshan piedmont fault extend along the range front of Wula Mountains and Daqing Mountains, respectively. The subsidence is controlled by the two boundary faults. Previous studies have preliminarily documented the characteristics of the northwest boundary fault of Baotou uplift. Combining shallow seismic exploration, active fault mapping, and geological drilling, this paper presents a detailed study on the tectonic characteristics of the Baotou uplift. The shallow seismic exploration reveals that the Baotou uplift is an asymmetrical wedge with a steep southeast wing and a gentle dipping northwest wing. The Baotou uplift is wider in the northeastern part and narrows down towards the southwest. In seismic profiles, the Baiyanhua sub-depression and the Huhe sub-depression manifest as asymmetric dustpan-like depressions with south-dipping controlling faults. Baotou uplift is bounded by the Xishawan-Xingsheng Fault to the northwest and Daqingshan piedmont fault to the southeast. The two faults exhibit significant difference in many aspects, such as fault geometry, fault displacement, the latest active time, and so on. The southeast boundary fault of Baotou uplift is the Baotou section of the Daqingshan piedmont fault which is a Holocene active fault and the major boundary fault of Huhe sub-depression. East of Wanshuiquan, the fault strikes EW-NEE; west of Wanshuiquan, the strike changes to NW. The Daqingshan piedmont fault appears as a south-dipping listric fault in seismic profiles whose dip decreases with depth and cuts through all the sedimentary strata in Huhe sub-depression; the fault extends along the late Pleistocene lacustrine platform at surface with prominent geomorphological evidences. The Xishawan-Xingsheng Fault is a buried high-angle normal fault that mainly dips to the northwest and strikes NE. The fault strike changes to NNE at the eastern tip. Based on the results of seismic exploration and geological drilling, the Xishawan-Xingsheng buried fault is an early to middle Pleistocene Fault capped by late Pleistocene lacustrine strata. We reckon that the Xishawan-Xingsheng Fault is one of the synthetic faults that dip towards the main boundary fault of Baiyanhua sub-depression. Similarities in lithology, geometry, and structural characteristics of south boundary faults all indicate that Baotou uplift is the western extension of Daqing Mountains. Multiple factors may contribute to the formation of Baotou uplift, such as tectonic subsidence and the development of large-scale river system and mega-lake. We suggest that the upwelling of asthenosphere may play a primary role in the evolution of Wulanshan piedmont fault and Daqingshan piedmont fault. Separated by the Baotou uplift, the Wulashan piedmont fault and Daqingshan piedmont fault can be regarded as independent seismogenic faults. The Hetao depression zone is featured by complex inner structures, and many scientific issues are subject to further researches. Thus, more attention should be paid to the secondary structures within the depression zone for a better understanding on the formation and evolution of Hetao depression zone.  相似文献   

12.
Beijing plain area has been always characterized by the tectonic subsidence movement since the Pliocene. Influenced and affected by the extensional tectonic environment, tensional normal faulting occurred on the buried NE-trending faults in this area, forming the "two uplifts and one sag" tectonic pattern. Since Quaternary, the Neocathaysian stress field caused the NW-directed tensional shear faulting, and two groups of active faults are developed. The NE-trending active faults include three major faults, namely, from west to east, the Huangzhuang-Gaoliying Fault, Shunyi Fault and Xiadian Fault. The NW-trending active faults include the Nankou-Sunke Fault, which strikes in the direction of NW320°~330°, with a total length of about 50km in the Beijing area. The northwestern segment of the fault dips SW, forming a NW-directed collapse zone, which controls the NW-directed Machikou Quaternary depression. The thickness of the Quaternary is more than 600 meters; the southeastern segment of the fault dips NE, with a small vertical throw between the two walls of the fault. Huangzhuang-Gaoliying Fault is a discontinuous buried active fault, a boundary line between the Beijing sag and Xishan tectonic uplift. In the Beijing area, it has a total length of 110km, striking NE, dipping SE, with a dip angle of about 50~80 degrees. It is a normal fault, with the maximum fault throw of more than 1 000m since the Tertiary. The fault was formed in the last phase of Yanshan movement and controls the Cretaceous, Paleogene, Neogene and Quaternary sediments.There are four holes drilled at the junction between Nankou-Sunhe Fault and Huangzhuang-Gaoliying Fault in Beijing area. The geographic coordinates of ZK17 is 40°5'51"N, 116°25'40"E, the hole depth is 416.6 meters. The geographic coordinates of ZK18 is 40°5'16"N, 116°25'32"E, the hole depth is 247.6 meters. The geographic coordinates of ZK19 is 40°5'32"N, 116°26'51"E, the hole depth is 500.9 meters. The geographic coordinates of ZK20 is 40°4'27"N, 116°26'30"E, the hole depth is 308.2 meters. The total number of paleomagnetism samples is 687, and 460 of them are selected for thermal demagnetization. Based on the magnetostratigraphic study and analysis on the characteristics of sedimentary rock assemblage and shallow dating data, Quaternary stratigraphic framework of drilling profiles is established. As the sedimentation rate of strata has a good response to the activity of the basin-controlling fault, we discussed the activity of target fault during the Quaternary by studying variations of deposition rate. The results show that the fault block in the junction between the Nankou-Sunhe Fault and the Huangzhuang-Gaoliying Fault is characteristic of obvious differential subsidence. The average deposition rate difference of fault-controlled stratum reflects the control of the neotectonic movement on the sediment distribution of different tectonic units. The activity of Nankou-Sunhe Fault shows the strong-weak alternating pattern from the early Pleistocene to Holocene. In the early Pleistocene the activity intensity of Huangzhuang-Gaoliying Fault is stronger than Nankou-Sunhe Fault. After the early Pleistocene the activity intensity of Nankou-Sunhe Fault is stronger than Huangzhuang-Gaoliying Fault. The activity of the two faults tends to consistent till the Holocene.  相似文献   

13.
文中收集了1999—2015年天山地震带及其周边地区的GNSS数据,计算得到了速度场结果,并利用弹性块体模型计算了研究区域内各块体的闭锁深度和主要断层的滑动速率。研究结果表明:南天山断裂带西段的迈丹断裂的缩短速率处于高值状态,达(-6.3±1.9) mm/a,高于南天山东段;北天山断裂带西段的缩短速率同样高于东段。利用主要断裂带的滑动速率计算出各地震带的地震矩积累变化及1900年以来的地震矩释放变化量,以分析地震矩亏损分布,结果显示北天山山前断裂、迈丹断裂、额尔齐斯断裂带北段和喀什河断裂西段存在较大的地震矩亏损,具有孕育7级以上地震的潜能,而北轮台断裂、柯坪断裂带中段则呈现地震矩盈余状态,在未来的一段时间内不具备发生强震的可能。  相似文献   

14.
郯庐断裂带莱州湾段的构造特征   总被引:5,自引:1,他引:5  
本文利用海上浅层地震勘探剖面分析了郯庐断裂带莱州湾段的上更新统、全新统和活动构造的某些特征。晚更新世末期发生的构造运动使上更新统产生断裂与褶皱,沿郯庐断裂带东主干断裂发育了狭长的背斜构造,在西主干断裂两侧次级横向(东西向)断裂十分发育,这些横向断裂是一些高角度的张性正断层。  相似文献   

15.
付萍杰  张景发  王鑫 《地震学报》2017,39(5):708-724
以沂沭断裂带南段(沂水县—郯城县)及周边地区为研究对象,收集该地区的遥感影像、数字高程模型和布格重力数据,研究区域构造地貌和地壳深部构造特征,进一步对沂沭断裂带南段与周边断裂的交切关系予以分析.研究结果显示:在遥感影像中,蒙山山前断裂和苍尼断裂的构造地貌特征明显,断裂沿线发育水系转弯、河流错断、断层陡坎、断层崖、断层三角面等地貌现象,反映了两断裂正断兼左旋走滑的活动性质,其中蒙山山前断裂向东延伸至莒南县附近,苍尼断裂向东延至郯城一带,两条断裂在地貌上均截切了沂沭断裂带;在重力细节场中,两断裂形成了不同尺度上的重力梯度带,切割至下地壳深度,在地壳浅层至深层均交切于沂沭断裂带,且交切处出现扭曲、断折、串珠状等重力异常现象,证实其在地壳深部切穿沂沭断裂带.因此,两条断裂的遥感和重力场解译结果具有明显的一致性,在地貌及深部均截切沂沭断裂带南段,使其出现分段性特征.此外,在临沭县附近发现了一条新断裂,即相庄—沙岭断裂,该断裂在地貌上呈北高南低,沿线水系发生左旋同步转弯,且在1—3阶重力细节场中形成线性梯度条带,故推测该断裂下切至中地壳深度,在临沭县附近截切沂沭断裂带交切于东地堑,并未延伸至西地堑.   相似文献   

16.
龙门山断裂带晚第四纪活动性分段的初步研究   总被引:21,自引:3,他引:21  
NE向展布于松潘-甘孜造山带与扬子陆块之间的龙门山断裂带,是由后山断裂等4条主干断裂及其控制的冲断构造岩片组成的具前展式发育特点的推覆构造带。它形成于印支运动,此后多次活动,第四纪以来活动强烈,但不同地段活动程度具有明显的非均一性。根据地貌、地质构造、布格重力异常和地震活动等资料的综合分析研究认为:1)以位于虎牙—北川—安县一线的近SN向虎牙断裂和擂东断裂为界划分出断裂带西南段和东北段,其活动性迥然不同,西南段晚更新世以来活动强烈,中小地震频繁;东北段第四纪活动微弱,仅偶有小震分布。2)在青藏高原被挤压隆升和块体侧向滑移的作用下,川青地块向SEE滑动,使它东缘发育的岷山隆起与被其截切的龙门山断裂带西南段一起构成了川青地块东部的活动边界,而龙门山断裂带东北段则被遗弃  相似文献   

17.
用多震相地震走时成像法反演郯庐断裂带鲁苏皖段及邻区三维地壳速度结构。一些地区如郯庐断裂带临沭到定远及以东地区在中地壳的20~25km出现低速层,一些地区莫霍面埋深有变化。浅层速度结构的分段与断裂活动的分段相一致,表明新沂到泗洪是活动断裂的闭锁段。对比1668年山东郯城8级地震区和研究区的深部速度结构,结合与郯庐带相交的断裂、地震活动、活动断裂的闭锁段、中地壳低速层及莫霍面深度变化,综合判断郯庐断裂带江苏段未来可能发生大震的地区为33.4°~34.1°N,118.2°~118.8°E,重点是宿迁、沭阳、泗阳和泗洪。震级估计可达8级。  相似文献   

18.
In this work,the fractal dimension of granulometric composition in the fault gouge from the Yishu fault zone and northwest-trending faults on its west side is calculated and studied based on the fractal theory of rock fragmentation.The seismo-geological implications of the fractal dimension of granulometric composition in fault gouges are also discussed.The results show that the Yishu fault zone is more active than the northwest-trending faults and the Anqiu-Juxian fault is the most active in the Yishu fault zone.The fractal dimension of fault gouge is a parameter describing the relative active age and rupture mode of the fault and forming age of the fault gouge.The fractal dimension value is also related to the parent rock,thickness,structural position,and clay content of the fault gouge.  相似文献   

19.
谢霄峰 《地震》1993,(1):53-58
本文以不同的成因机制为基础,对沂沭活断层的全新世活动部分进行了分段,继而主要讨论了分段边界的地表地质特征。 沂沭全新世活断层北起莒南左山,南至泗洪峰山。通过卫片解译分析、对横切主断层的北西向断层的野外调查和主断层的断层几何分析,笔者认为,位于郯城东北的分段边界,是一个以横向构造(归义—山左口断层)和主断层的错列起主要作用的、可能基岩岩性起一定影响的、空间上沿断裂方向延伸约10km的障碍体。  相似文献   

20.
Abstract Ground penetrating radar (GPR) and high‐resolution shallow reflection seismic surveying were carried out to investigate the subsurface geology in and around the Uemachi Fault zone in the Yamato River area, Osaka, Japan. Shallow drilling in the area showed a major displacement event during the middle Pleistocene. The main Uemachi Fault plane could be clearly imaged on the seismic section, except for the most shallow 200 m. Several shallow normal fault planes with less displacement could be detected on both sides of the fault plane. GPR profiles confirmed the presence of several shallow normal faults within the area near the fault zone. These shallow faults could be followed in all of the GPR profiles crossing the fault zone. The integration of seismic section, GPR profiles and drilling data led to a conceptual model that explains the evolution of the Uemachi Fault system. The proposed model suggests the occurrence of several cycles of small vertical displacement along the deep part of the fault plane caused by the regional east–west compressional stress. The ductile nature of the shallow sedimentary cover and the absence of confining pressure in the shallow part allow for a considerable amount of plastic bending before failing in the shallow sedimentary layers. This bending generates stretching force within the shallow sedimentary cover, which in time, along with gravitational force, gives rise to the formation of the swarm of normal faults within the shallow layers near the fault zone. Some of the detected faults extend to a depth of less than 3 m below the ground surface, suggesting that the last tectonic activity along the fault plane may have occurred recently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号