首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
热带太平洋-印度洋温跃层海温异常联合模及其演变   总被引:4,自引:0,他引:4       下载免费PDF全文
黎鑫  李崇银  谭言科  张韧  李刚 《地球物理学报》2013,56(10):3270-3284
利用SODA次表层海温再分析资料和卫星遥感海面高度异常数据,分析了热带太平洋和印度洋温跃层海温之间的联系,提出了太平洋-印度洋温跃层海温异常联合模(PITM)的概念、并定义了该联合模指数.结果表明,联合模指数具有准两年和3~5年的年际变化周期以及2011-2012年的年际变化周期,并具有季节锁相和振幅不对称等特征.联合模的演变过程与温跃层海温异常(TOTA)的发展和传播过程紧密相联:在太平洋,TOTA一般从西太平洋出发沿赤道(5°S-5°N)向东传播,到达东太平洋之后折向北,再沿10°N-14°N纬度带向西传播到达太平洋西岸并向赤道西太平洋扩展,形成一条回路;南太平洋也有类似回路但信号较弱;在印度洋,则主要沿8°S-12°S纬度带向西传播,到达西岸后折向北,然后迅速沿赤道(1.25°S-1.25°N)向东扩展,也形成一条回路.对NCEP/NCAR再分析风场资料的合成分析则表明,联合模的演变过程与大气环流尤其是纬向垂直环流(Walker环流)的变化密切相关,联合模的正位相对应着赤道印度洋区域顺时针的Walker环流以及赤道太平洋区域逆时针的Walker环流;而联合模的负相位则有相反的情况.此外,联合模演变过程中,TOTA的传播发展与850 hPa异常纬向风的传播发展有很好的相关.  相似文献   

2.
Mixed-layer water oscillations in tropical Pacific for ENSO cycle   总被引:2,自引:0,他引:2  
The main modes of interannal variabilities of thermocline and sea surface wind stress in the tropical Pacific and their interactions are investigated,which show the following results.(1) The thermocline anomalies in the tropical Pacific have a zonal dipole pattern with 160°W as its axis and a meridional seesaw pattern with 6-8°N as its transverse axis.The meridional oscillation has a phase lag of about 90° to the zonal oscillation,both oscillations get together to form the El Ni?o/La Ni?a cycle,which be-haves as a mixed layer water oscillates anticlockwise within the tropical Pacific basin between equator and 12°N.(2) There are two main patterns of wind stress anomalies in the tropical Pacific,of which the first component caused by trade wind anomaly is characterized by the zonal wind stress anomalies and its corresponding divergences field in the equatorial Pacific,and the abnormal cross-equatorial flow wind stress and its corresponding divergence field,which has a sign opposite to that of the equatorial region,in the off-equator of the tropical North Pacific,and the second component represents the wind stress anomalies and corresponding divergences caused by the ITCZ anomaly.(3) The trade winds anomaly plays a decisive role in the strength and phase transition of the ENSO cycle,which results in the sea level tilting,provides an initial potential energy to the mixed layer water oscillation,and causes the opposite thermocline displacement between the west side and east side of the equator and also between the equator and 12°N of the North Pacific basin,therefore determines the amplitude and route for ENSO cycle.The ITCZ anomaly has some effects on the phase transition.(4) The thermal anomaly of the tropical western Pacific causes the wind stress anomaly and extends eastward along the equator accompanied with the mixed layer water oscillation in the equatorial Pacific,which causes the trade winds anomaly and produces the anomalous wind stress and the corresponding divergence in favor to conduce the oscillation,which in turn intensifies the oscillation.The coupled system of ocean-atmo-sphere interactions and the inertia gravity of the mixed layer water oscillation provide together a phase-switching mechanism and interannual memory for the ENSO cycle.In conclusion,the ENSO cycle essentially is an inertial oscillation of the mixed layer water induced by both the trade winds anomaly and the coupled ocean-atmosphere interaction in the tropical Pacific basin between the equator and 12°N.When the force produced by the coupled ocean-atmosphere interaction is larger than or equal to the resistance caused by the mixed layer water oscillation,the oscillation will be stronger or maintain as it is,while when the force is less than the resistance,the oscillation will be weaker,even break.  相似文献   

3.
Abstract

Convection in a rotating spherical shell has wide application for understanding the dynamics of the atmospheres and interiors of many celestial bodies. In this paper we review linear results for convection in a shell of finite depth at substantial but not asymptotically large Taylor numbers, present nonlinear multimode calculations for similar conditions, and discuss the model and results in the context of the problem of solar convection and differential rotation. Detailed nonlinear calculations are presented for Taylor number T = 105, Prandtl number P = 1, and Rayleigh number R between 1 |MX 104 and 4 |MX 104 (which is between about 4 and 16 times critical) for a shell of depth 20% of the outer radius. Sixteen longitudinal wave numbers are usually included (all even wave numbers m between 0 and 30) the amplitudes of which are computed on a staggered grid in the meridian plane.

The kinetic energy spectrum shows a peak in the wave number range m = 12–18 at R = 104, which straddles the critical wave number m = 14 predicted by linear theory. These are modes which peak near the equator. The spectrum shows a second strong peak at m = 0, which represents the differential rotation driven by the peak convective modes. As R is increased, the amplitude of low wave numbers increases relative to high wave numbers as convection fills in in high and middle latitudes, and as the longitudinal scale of equatorial convection grows. By R = 3 |MX 104, m = 8 is the peak convective mode. There is a clear minimum in the total kinetic energy at middle latitudes relative to low and high, well into the nonlinear regime, representing the continued dominance of equatorial and polar modes found in the linear case. The kinetic energy spectrum for m > 0 is maintained primarily by buoyancy work in each mode, but with substantial nonlinear transfer of kinetic energy from the peak modes to both lower and higher wave numbers.

For R = 1 to 2 |MX 104, the differential rotation takes the form of an equatorial acceleration, with angular velocity generally decreasing with latitude away from the equator (as on the sun) and decreasing inwards. By R = 4 |MX 104, this equatorial profile has completely reversed, with angular velocity increasing with depth and latitude. Also, a polar vortex which has positive rotation relative to the reference frame (no evidence of which has been seen on the sun) builds up as soon as polar modes become important. Meridional circulation is quite weak relative to differential rotation at R = 104, but grows relative to it as R is increased. This circulation takes the farm of a single cell of large latitudinal extent in equatorial regions, with upward flow near the equator, together with a series of narrower cells in high latitudes. It is maintained primarily by axisymmetric buoyancy forces. The differential rotation is maintained at all R primarily by Reynolds stresses, rather than meridional circulation. Angular momentum transport toward the equator for R = 1–2 |MX 104 maintains the equatorial acceleration while radially inward transport maintains the opposite profile at R = 4 |MX 104.

The total heat flux out the top of the convective shell always shows two peaks for the range of R studied, one at the equator and the other near the poles (no significant variation with latitude is seen on the sun), while heat flux in at the bottom shows only a polar peak at large R. The meridional circulation and convective cells transport heat toward the equator to maintain this difference.

The helicity of the convection plus the differential rotation produced by it suggest the system may be capable of driving a field reversing dynamo, but the toroidal field may migrate with lime in each cycle toward the poles and equator, rather than just toward the equator as apparently occurs on the sun.

We finally outline additions to the physics of the model to make it more realistic for solar application.  相似文献   

4.
Abstract

It is shown that the linear equatorial dynamics of a shallow ocean is characterized by two boundary layers of width γ? L and γL (γ is the Ekman number of the flow, assumed small, and L is a horizontal dimension of the basin). In the γ? layer stress in the bottom Ekman layer is comparable to that in the surface Ekman layer. In the γ layer vertical friction is important throughout the depth of the ocean. Should the Rossby number ? be so large as to invalidate a linear theory (? > γ5/3), then inertial effects become important at a distance ?2/5 L from the equator. The role played in the circulation of the basin by the non-linear equatorial current first studied by Charney (1960) is shown to be similar to that of the γ layer of the linear theory. Though lateral friction is unimportant in a linear model of the flow, shear layers at the equator are found to be a necessary feature of non-linear flow.  相似文献   

5.
Low-frequency current fluctuations in the deep central equatorial Atlantic are analyzed using current meter measurements recorded from November 1992 to November 1994. Current meters were located at about 14°W of longitude and 1° of latitude on both sides of the equator between 1,700 m depth and the ocean bottom. At all sampling depths, the velocity fluctuations are dominantly zonal and symmetrical with respect to the equator. At 1,700 and 2,000 m, the flow is dominated by annual period fluctuations, at 3,000 m, the velocity field amplitude presents a minimum, and at 3,750 and 3,950 m, the flow is modulated by annual and semiannual period variability. The annual signal exhibits an apparent upward phase propagation. When considering the phase and the amplitude of the seasonal fluctuations, the data compare well with the outputs of a realistic numerical simulation of the Atlantic Ocean. Together with a previous analysis of the model simulations, this supports the idea that the observed annual fluctuations are due to wind-forced vertically propagating Kelvin and Rossby waves. Data and model do not provide deciding evidences of the presence of semiannual equatorial waves deeper than 3,500 m depth in the central equatorial Atlantic Ocean.  相似文献   

6.
Mean radial distributions of various dynamic characteristics of the permanently existing anticyclonic Lofoten vortex (LV) in the Norwegian Sea are obtained from an eddy-permitting regional hydrodynamic MIT general circulation model. It is shown that the model adequately reproduces the observed 3D thermohaline and dynamic structure of the vortex. The obtained radial distribution of the mean vertical velocity is found to form a complex structure: with the upward fluxes along the axis in and above the anticyclonically rotating LV core, compensated by the downward fluxes in the vortex skirt. These vertical motions maintain the vortex potential energy anomaly against dissipation. This secondary circulation is generated by the centrifugal force and, to a lesser extent, by the horizontal dispersion of the vortex energy, both intensified towards the sea surface. Below the vortex core, the maximum downward vertical velocity converges towards the vortex axis with depth. At these depth levels, the secondary circulation is forced by Ekman divergence in the bottom mixed layer. The theory of columnar vortices with helical structure, applied to the LV, relate the radial profiles of the vertical velocity with those of the horizontal circulation. The theoretically predicted the radial patterns of the mean vertical velocity in the LV were close to those, obtained from the primitive equation ocean model, when approximating the radial patterns of the azimuthal velocity with the Rayleigh profile.  相似文献   

7.
Summary The problem of the gross nature of the Jovian atmospheric circulation is examined from the viewpoint of the following previous findings of the writer and others. 1) The equatorial acceleration cannot be accounted for by axisymmetric motions. 2) The departures from symmetry in a rotating system having an equatorial acceleration must impart angular momentum selectively to those particles moving toward the jet maximum and abstract it from those moving away. 3) These selective (pressure) torques and associated sorting processes arise spontaneously in the presence of a vertical convection mode involving motions not independent of longitude, if the cell sizes and other conditions are right.Since there is evidence that Jovian dark spots have statistical maxima of occurrence along the tropical shear lines flanking the equator, these are assumed to be vertical convective systems forming, in effect,convective vortex sheets which generate the high angular momentum of the equatorial zone. Various additional concepts are discussed, and many comparisons with conditions in the sun and in the earth's atmosphere are made.  相似文献   

8.
Summary The effect of ellipticity on the paths of Love waves is calculated for a homogeneous model; the result is a small gradual deviation from a plane section, varying with the inclination of this plane, maximum for trajectories nearly parallel to the equatorial plane; due to the differences in these deviations, the paths from a point near the equator are focalised along a caustic curve elongated by about one degree in a parallel direction with the equator. The effect of a radial inhomogeneity of the model is found small for periods less than 500 seconds.Contribution I.P.G. no 192.  相似文献   

9.
The major sudden stratospheric warming (SSW) events of 2003–04 and 2005–06 are considered to investigate changes in equatorial convection due to circulation changes associated with the SSW events. It is observed that the SSW events are accompanied by a considerable decrease in Outgoing Longwave Radiation (OLR), a proxy for tropical convection, over equatorial latitudes (15°N–15°S) in the Indonesian sector (90°E–150°E). However, unlike noted by earlier observations, the zonal mean OLR does not show any notable relationship with the SSW events. It can be explained from the latitude–longitude map of potential vorticity (PV) at 100 hPa, which shows a tongue of high PV emanating from high latitudes towards equator and converges in the longitude band of 90°E–150°E on the day of peak warming at 1 hPa in the case of 2003–04 and 10 hPa in the case of 2005–06. The latitude-height map of Eliassen–Palm (EP) vector and its divergence show convergence of EP flux in the upper troposphere at latitudes even lower than 20°N on these days. Further, vertical winds computed from the convergence of momentum flux are upward indicating convective activity at low-latitudes and downward at mid-latitudes.  相似文献   

10.
Two modes of dipole events in tropical Indian Ocean   总被引:1,自引:0,他引:1  
By analyzing the distributions of subsurface temperature and the surface wind stress anomalies in the tropical Pacific and Indian Oceans during the Indian Ocean Dipole (IOD) events, two major modes of the IOD and their formation mechanisms are revealed. (1) The subsurface temperature anomaly (STA) in the tropical Indian Ocean during the IOD events can be described as a “<” -shaped and west-east-oriented dipole pattern; in the east side of the “<” pattern, a notable tongue-like STA extends westward along the equator in the tropical eastern Indian Ocean; while in the west side of the “<” pattern, the STA has opposite sign with two centers (the southern one is stronger than the northern one in intensity) being of rough symmetry about the equator in the tropical mid-western Indian Ocean. (2) The IOD events are composed of two modes, which have similar spatial pattern but different temporal variabilities due to the large scale air-sea interactions within two independent systems. The first mode of the IOD event originates from the air-sea interaction on a scale of the tropical Pacific-Indian Ocean and coexists with ENSO. The second mode originates from the air-sea interaction on a scale of the tropical Indian Ocean and is closely associated with changes in the position and intensity of the Mascarene high pressure. The strong IOD event occurs when the two modes are in phase, and the IOD event weakens or disappears when the two modes are out of phase. Besides, the IOD events are normally strong when either of the two modes is strong. (3) The IOD event is caused by the abnormal wind stress forcing over the tropical Indian Ocean, which results in vertical transports, leading to the upwelling and pileup of seawater. This is the main dynamic processes resulting in the STA. When the anomalous easterly exists over the equatorial Indian Ocean, the cold waters upwell in the tropical eastern Indian Ocean while the warm waters pileup in the tropical western Indian Ocean, hence the thermocline in the tropical Indian Ocean is shallowed in the east and deepened in the west. The off-equator component due to the Coriolis force in the equatorial area causes the upwelling of cold waters and the shallowing of the equatorial India Ocean thermocline. On the other hand, the anomalous anticyclonic circulations and their curl fields located on both sides of the equator, cause the pileup of warm waters in the central area of their curl fields and the deepening of the equatorial Indian Ocean thermocline off the equator. The above three factors lead to the occurrence of positive phase IOD events. When anomalous westerly dominates over the tropical Indian Ocean, the dynamic processes are reversed, and the negative-phase IOD event occurs. Supported by National Natural Science Foundation of China (Grant No. 40776013), National Basic Research Program of China (Grant No. 2006CB403601) and the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KZCX-SW-222)  相似文献   

11.
Using a zonally averaged, one-hemispheric numerical model of the thermohaline circulation, the dependence of the overturning strength on the surface equator-to-pole density difference is investigated. It is found that the qualitative behavior of the thermohaline circulation depends crucially on the nature of the small-scale vertical mixing in the interior of the ocean. Two different representations of this process are considered: constant vertical diffusivity and the case where the rate of mixing energy supply is taken to be a fixed quantity, implying that the vertical diffusivity decreases with increasing stability of the water column. When the stability-dependent diffusivity parameterization is applied, a weaker density difference is associated with a stronger circulation, contrary to the results for a fixed diffusivity. A counterintuitive consequence of the stability-dependent mixing is that the poleward atmospheric freshwater flux, which acts to reduce the thermally imposed density contrast, strengthens the thermally dominated circulation and its attendant poleward heat transport. However, for a critical value of the freshwater forcing, the thermally dominated branch of steady states becomes unstable, and is succeeded by strongly time-dependent states that oscillate between phases of forward and partly reversed circulation. When a constant vertical diffusivity is employed, on the other hand, the thermally dominated circulation is replaced by a steady salinity-dominated state with reversed flow. Thus in this model, the features of the vertical mixing are essential for the steady-state response to freshwater forcing as well as for the character of flow that is attained when the thermally dominated circulation becomes unstable.Responsible Editor: Jin-Song von Storch  相似文献   

12.
本文利用GCITEM-IGGCAS模式,从电动力学耦合作用和直接上传两种作用方式,详细模拟研究了DE2潮汐4种Hough波模分量对电离层的影响.我们将不同种类的Hough波模分别输入到模式当中作为底层边界条件,驱动模式模拟得到电离层的电子密度变化,从中分离两种作用机制的响应进行分析.模拟结果发现电离层对DE2的4种Hough波模的响应都表现为半年变化,波峰出现在春季和秋季,波谷则出现在冬季和夏季.一天的变化特性上,赤道对称波模的响应出现明显的4个峰值和谷值,其他3种波模响应主要表现为一个峰值和谷值.4种波模当中赤道对称波模对电离层的作用最为明显,占据主导地位,对电离层的影响表现为波动效应,其中3波分量的响应最强,主要由电动力学作用控制.其他3种波模对电离层则是削弱作用.本研究可以帮助我们更深刻的理解非迁移潮汐对电离层的作用方式和效果.  相似文献   

13.
A global coupled thermosphere-ionosphere-plasmasphere model is used to simulate a family of large-scale imperfectly ducted atmospheric gravity waves (AGWs) and associated travelling ionospheric disturbances (TIDs) originating at conjugate magnetic latitudes in the north and south auroral zones and subsequently propagating meridionally to equatorial latitudes. A fast dominant mode and two slower modes are identified. We find that, at the magnetic equator, all the clearly identified modes of AGW interfere constructively and pass through to the opposite hemisphere with unchanged velocity. At F-region altitudes the fast AGW has the largest amplitude, and when northward propagating and southward propagating modes interfere at the equator, the TID (as parameterised by the fractional change in the electron density at the F2 peak) increases in magnitude at the equator. The amplitude of the TID at the magnetic equator is increased compared to mid-latitudes in both upper and lower F-regions with a larger increase in the upper F-region. The ionospheric disturbance at the equator persists in the upper F-region for about 1 hour and in the lower F-region for 2.5 hours after the AGWs first interfere, and it is suggested that this is due to enhancements of the TID by slower AGW modes arriving later at the magnetic equator. The complex effects of the interplays of the TIDs generated in the equatorial plasmasphere are analysed by examining neutral and ion winds predicted by the model, and are demonstrated to be consequences of the forcing of the plasmasphere along the magnetic field lines by the neutral air pressure wave.  相似文献   

14.
Based on the well established importance of long, non-dispersive baroclinic Kelvin and Rossby waves, a resonance of tropical planetary waves is demonstrated. Three main basin modes are highlighted through joint wavelet analyses of sea surface height (SSH) and surface current velocity (SCV), scale-averaged over relevant bands to address the co-variability of variables: (1) a 1-year period quasi-stationary wave (QSW) formed from gravest mode baroclinic planetary waves which consists of a northern, an equatorial and a southern antinode, and a major node off the South American coast that straddles the north equatorial current (NEC) and the north equatorial counter current (NECC), (2) a half-a-year period harmonic, (3) an 8-year sub-harmonic. Contrary to what is commonly accepted, the 1-year period QSW is not composed of wind-generated Kelvin and Rossby beams but results from the excitation of a tuned basin mode. Trade winds sustain a free tropical basin mode, the natural frequency of which is tuned to synchronize the excitation and the ridge of the QSWs. The functioning of the 1-year period basin mode is confirmed by solving the momentum equations, expanding in terms of Fourier series both the coefficients and the forcing terms. The terms of Fourier series have singularities, highlighting resonances and the relation between the resonance frequency and the wavenumbers. This ill-posed problem is regularized by considering Rayleigh friction. The waves are supposed to be semi-infinite, i.e. they do not reflect at the western and eastern boundaries of the basin, which would assume the waves vanish at these boundaries. At the western boundary the equatorial Rossby wave is deflected towards the northern antinode while forming the NECC that induces a positive Doppler-shifted wavenumber. At the eastern boundary, the Kelvin wave splits into coastal Kelvin waves that flow mainly southward to leave the Gulf of Guinea. In turn, off-tropical waves extend as an equatorially trapped Kelvin wave, being deflected off the western boundary. The succession of warm and cold waters transferred by baroclinic waves during a cycle leaves the tropical ocean by radiation and contributes to western boundary currents. The main manifestation of the basin modes concerns the variability of the NECC, of the branch of the South Equatorial Current (SEC) along the equator, of the western boundary currents as well as the formation of remote resonances, as will be presented in a future work. Remote resonances occur at midlatitudes, the role of which is suspected of being crucial in the functioning of subtropical gyres and in climate variability.  相似文献   

15.
A Lagrangian technique is developed and applied to calculate stratosphere-troposphere exchange in an extratropical cyclone. This exchange is computed from the potential vorticity or PV along trajectories, calculated from ECMWF circulation data. Special emphasis is put on the statistical significance of the results. The computed field of the cross-tropopause flux is dominated by elongated patterns of statistically significant large downward and small upward fluxes. The downward fluxes mainly occur in the lower part of the considered tropopause folds. The upward fluxes are found near the entrance of the folds, in the tropopause ridges. The ratio between the area averaged downward and upward cross-tropopause fluxes increases with increasing strength of the cyclone. Since the largest fluxes are shown to occur in the regions with the largest wind shear, where PV-mixing is thought to cause large cross-tropopause fluxes, the results are expected to be reliable, at least in a qualitative sense. The position of a tropopause fold along the northwest coast of Africa is confirmed by total ozone observations. The results indicate that the applied Lagrangian technique is an appropriate tool for diagnosing stratosphere-troposphere exchange.  相似文献   

16.
A comparison between the modeled NmF2 and hmF2 and NmF2 and hmF2, which were observed by the Kokubunji, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders and by the middle and upper (MU) atmosphere radar, have been used to study the time-dependent response of the low-latitude ionosphere to geomagnetic forcing during a time series of geomagnetic storms from 22 to 26 April 1990. The reasonable agreement between the model results and data requires the modified equatorial meridional E×B plasma drift, the modified HWM90 wind, and the modified NRLMSISE-00 neutral densities. We found that changes in a flux of plasma into the nighttime equatorial F2-region from higher L-shells to lower L-shells caused by the meridional component of the E×B plasma drift lead to enhancements in NmF2 close to the geomagnetic equator. The equatorward wind-induced plasma drift along magnetic field lines, which cross the Earth equatorward of about 20° geomagnetic latitude in the northern hemisphere and about −19° geomagnetic latitude in the southern hemisphere, contributes to the maintenance of the F2-layer close to the geomagnetic equator. The nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess [Fejer, B.G., Scherliess, L., 1997. Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res. 102, 24047–24056] or Scherliess and Fejer [Scherliess, L., Fejer, B.G., 1999. Radar and satellite global equatorial F region vertical drift model. J. Geophys. Res. 104, 6829–6842) in combination with corrected equatorward nighttime wind-induced plasma drift along magnetic field lines in the both geomagnetic hemispheres are found to be the physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator over Manila during 22–26 April 1990. The model crest-to-trough ratios of the equatorial anomaly are used to study the relative role of the main mechanisms of the equatorial anomaly suppression for the 22–26 April 1990 geomagnetic storms. During the most part of the studied time period, a total contribution from geomagnetic storm disturbances in the neutral temperature and densities to the equatorial anomaly changes is less than that from meridional neutral winds and variations in the E×B plasma drift. It is shown that the latitudinal positions of the crests are determined by the E×B drift velocity and the neutral wind velocity.  相似文献   

17.
Abstract

An analysis is presented of the propagation of barotropic non-divergent oscillations along the western side of an ocean basin along which the persistent circulation in the basin is strongly intensified and laterally sheared. Because the Rossby number of a western boundary current is near unity, the properties of these waves are strongly affected by the steady circulation pattern. It is shown that for relatively long wavelengths, these waves can travel along the shelf in both directions; however, for a small range of short wavelengths they can only propagate northward and are unstable. Along the southeastern coast of North America, the unstable waves have wavelengths of order 150 km and periods of order 10 days. However, these waves can become stable oscillations in the deeper water northeast of Cape Hatteras. These oscillations are a possible explanation of the initiation of Gulf Stream meanders along the continental rise.  相似文献   

18.
The impact of the Black Sea Water (BSW) inflow on the circulation and the water mass characteristics of the North Aegean Sea is investigated using a high-resolution 3D numerical model. Four climatological numerical experiments are performed exploring the effects of the exchange amplitude at the Dardanelles Straits in terms of the mean annual volume exchanged and the amplitude of its seasonal cycle. Larger inflow of low salinity BSW influences the water characteristics of the whole basin. The largest salinity reduction is encountered in the upper layers of the water column, and the most affected region is the northeastern part of the basin. The winter insulation character of the BSW layer (low-salinity layer) is reduced by the seasonal cycle of the inflow (minimum during winter). The maximum atmospheric cooling coincides with the minimum BSW inflow rate, weakening the vertical density gradients close to the surface and thus facilitating the vertical mixing. The inflow rate of BSW into the North Aegean Sea constitutes an essential factor for the circulation in the basin. Increased inflow rate results into considerably higher kinetic energy, stronger circulation and reinforcement of the mesoscale circulation features. Although the position of the front between BSW and waters of Levantine origin does not vary significantly with the intensity of the BSW inflow rate, the flow along the front becomes stronger and more unstable as the inflow rate increases, forming meanders and rings. The changes in the intensity of BSW inflow rate overpower the wind and thermohaline forcing and largely determine the general circulation of the North Aegean Sea.  相似文献   

19.
Longitudinal and local time variations in the structure of the equatorial anomaly under high solar activity in the equinox are considered according to the Intercosmos-19 topside sounding data. It is shown that the anomaly begins to form at 0800 LT, when the southern crest is formed. The development of the equatorial anomaly is associated with well-known variations in the equatorial ionosphere: a change in the direction of the electric field from the west to the east, which causes vertical plasma drift W (directed upward) and the fountain effect. At 1000 LT, both anomaly crests appear, but they become completely symmetrical only by 1400 LT. The average position of the crests increases from I = 20° at 1000 LT to I = 28° at 1400 LT. The position of the crests is quite strong, sometimes up to 15°, varies with longitude. The foF2 value above the equator and the equatorial anomaly intensity (EAI) at 1200–1400 LT vary with the longitude according to changes in the vertical plasma drift velocity W. At this time, four harmonics are observed in the longitudinal variations of W, foF2, and EAI. The equatorial anomaly intensity increases to the maximum 1.5–2 h after the evening burst in the vertical plasma drift velocity. Longitudinal variations of foF2 for 2000–2200 LT are also associated with corresponding variations in the vertical plasma drift velocity. The equatorial anomaly intensity decreases after the maximum at 2000 LT and the crests decrease in size and shift towards the equator, but the anomaly is well developed at midnight. On the contrary, after midnight, foF2 maxima in the region of the anomaly crests are farther from the equator, but this is obviously associated with the action of the neutral wind. At 0200 LT, in contrast to the morning hours, only the northern crest of the anomaly is clearly pronounced. Thus, in the case of high solar activity during the equinoxes, a well-defined equatorial anomaly is observed from 1000 to 2400 LT. It reaches the maximum at 2000 LT.  相似文献   

20.
The equatorial undercurrent (EUC), the shallow meridional overturning cells feeding it, and their role in El Niño and decadal variability in the equatorial Pacific are studied using both in situ data and an ocean general circulation model. Using temperature and current data from the TAO/TRITON moorings at the equator, their data gaps are filled and it was shown that continuous time series of mass transport, temperature, depth, and kinetic energy of the EUC could be constructed for the period 1980–2002 with an excellent accuracy. This dataset was analysed and used to validate the output from an oceanic general circulation model (OGCM). The OGCM was then used to find that variations in the strength of the EUC, shallow meridional overturning (pycnocline convergence and surface divergence), and equatorial upwelling had the same variations in mass transport on interannual and longer time scales within the period 1951–1999. These variations are all caused by variations of the zonal wind stress zonally integrated, in agreement with simple linear and steady dynamics theories. Impact of these mass transport variations and of temperature variations on heat budgets in the entire equatorial band of the Pacific and in its eastern part are quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号