首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dissociation constants (pK1 and pK2) for methionine have been measured in artificial seawater as a function of salinity (S = 5 to 35) and temperature (5 to 45 °C). The seawater pK2 values were lower than the values in NaCl at the same ionic strength while the pK1 values in seawater were lower only at S = 35. In an attempt to understand these differences, we have made measurements of the constants in Na–Mg–Cl solutions at 25 °C. The measured values have been used to determine the formation of Mg2+ complexes and Pitzer interaction parameters for Mg2+ with methionine. The seawater model with the interaction parameters accounts for the differences between the value of pK1 and pK2 between NaCl and seawater. This study demonstrates that it is important to consider all of the ionic interactions in natural waters when examining the dissociation of organic acids.  相似文献   

2.
New and published data on the distribution and speciation of manganese and iron in seawater are analyzed to identify and parameterize major biogeochemical processes of their cycling within the suboxic (15.6σt16.2) and anoxic layers (σt16.2) of the Black Sea. A steady-state transport-reaction model is applied to reveal layering and parameterize kinetics of redox and dissolution/precipitation processes. Previously published data on speciation of these elements in seawater are used to specify the nature of the transformations. Two particulate species of iron (Fe(III) hydroxide and Fe(II) sulfide) are necessary to adequately parameterize the vertical profile of suspended iron, while three particulate species (hydrous Mn(IV) oxide, Mn(II) sulfide, and Mn(II) carbonate) are necessary to describe the profile of suspended manganese. In addition to such processes as mixing and advection, precipitation, sinking, and dissolution of manganese carbonate are found to be essential in maintaining the observed vertical distribution of dissolved Mn(II). These results are used to interpret the observed difference in the form of vertical distribution for dissolved Mn(II) and Fe(II). Redox transformations of iron and manganese are coupled via oxidation of dissolved iron by sinking suspended manganese at σt16.2±0.2 kg m−3. The particulate manganese, necessary for this reaction, is supplied through oxidation of dissolved Mn(II). The best agreement with observations is achieved when nitrate, rather than oxygen, is set to oxidize dissolved Mn(II) in the lower part of the suboxic layer (15.90σt16.2). The results support the idea that, after sulfides of these metals are formed, they sink with particulate organic matter. The sinking rates of the particles and specific rates of individual redox and dissolved-particulate transformations have been estimated by fitting the vertical profile of the net rate.  相似文献   

3.
The marine microalga Dunaliella salina was used as a model organism in this study. Hydroxyl radicals (OH) were determined using HPLC with sodium benzoate as a probe, and the photochemical activity of marine alga in the formation of OH was confirmed for the first time. Coastal organisms are often exposed to both metal pollution and macronutrient enrichment, and so the effects of algal concentration, exposure time, macronutrient (nitrate and phosphate) additions and metal pollution (5.0 μg/L Pb(II) and 0.1 μg/L methylmercury) on the photoproduction of OH were examined. Photoproduction was increased with increasing algal concentration and with exposure time. It could be increased greatly, with or without the presence of D. salina, by the addition of Pb(II), or Pb(II) and methylmercury, but was decreased by the addition of methylmercury only. Photoproduction of OH was positively correlated with the amount of basic functional groups on the cell's surface and also with the chlorophyll a content per cell. The influence of macronutrient additions on the photoproduction of OH resulted from the photolysis of nitrate and their effects on the photochemical activity of D. salina.  相似文献   

4.
Different estimates were used to assess the diversity of the total macrofauna and its major taxonomic groups separately from a broad bathymetric range at a site in the NE Atlantic. In the Goban Spur region, a transect was sampled from the shelf to the abyssal plain over a depth range from 200 to 4500 m and in the Porcupine Sea Bight two stations were sampled (at 3670 m and 4115 m). Species diversity (the number of species per number of individuals) increased with increasing water depth, both when expressed as Hurlbert's E(Sn) and as Shannon's H′log e. The expected number of species in a 100-individual sample E(S100) of total macrofauna increased from 30 on the shelf to 68 on the abyssal plain. Evenness (the proportional abundance of species), estimated with Shannon's J′, also increased with water depth from 0.66 to 0.91, whereas dominance (Simpson's D) decreased from 0.09 to 0.01. Species richness (the number of species per unit of area), however, showed a parabolic pattern with a peak at the upper slope. The largest number of species was found at the slope station at 1425 m (232 species within 0.66 m2). It is argued that species richness is not a synonym of species diversity, but that species richness depends both on species density (which decreases with increasing water depth) and on species diversity. Across the whole bathymetric range (200 to 4500 m) a total of 696 species within 8327 specimens in a total sampled area of 4.12 m2 were counted, yielding mean values of 12 individuals per species and 169 species per m2. Different communities were found to exist on the shelf, slope and abyss. It is suggested that this could have been caused by different selection processes. Differences in life-history strategies and organic-matter supply could (at least partly) explain the different community structures and diversity patterns found along the depth gradient.  相似文献   

5.
Quasi-synoptic observations of the horizontal and vertical structure of a cold-core cyclonic mesoscale eddy feature (Cyclone Noah) were conducted in the lee of Hawai’i from November 4–22, 2004 as part of the E-Flux interdisciplinary collaborative research program. Cyclone Noah appears to have spun up to the southwest of the ‘Alenuihaha Channel (between Maui and Hawai’i) as a result of strong and persistent northeasterly trade winds through the channel. Shipboard hydrographic surveys 2.5 months later suggest that Noah weakened and was in a hypothesized spin-down phase of its life cycle. Although the initial surface expression of Noah was limited in scale to 40 km in diameter and, as evidenced by surface temperatures, 2–3 °C cooler than the surrounding waters, depth profiles revealed a fully developed semi-elliptical shallow feature (200 m), 144 km long and 90 km wide (based on sigma-t=23 kg m−3) with tangential speeds of 40–80 cm s−1, and substantial isopycnal doming. Potential vorticity distribution of Noah suggests that radial horizontal flow of the core water was inhibited from the surface to depths of 75 m, with high vorticity confined above the sigma-t=23.5 kg m−3 isopycnal surface. Upward displacements of isopycnal surfaces in the eddy's center (50 m) were congruent with enhanced pigment concentrations (0.50 mg m−3). Comparisons of the results obtained for E-Flux I (Noah) and E-Flux III (Opal) suggest that translation characteristics of cyclonic Hawaiian lee eddies may be important in establishing the biogeochemical and biological responses of the oligotrophic ocean to cyclonic eddies.  相似文献   

6.
Experiments were conducted to investigate the geometry of the scour hole and flow structure around short cylinders under the action of waves alone (WA) and combined flows (CF). The study is aimed at better understanding the dynamics of isolated objects on a sandy floor under oscillatory flows as occurs in shallow water regions in coastal areas. Flow velocities within the fluid core were recorded and 3D mapping of the bottom was performed with sub-aquatic acoustic sensors. Experiments were conducted for cylinder Reynolds wave number and Keulegan-Carpenter number within the ranges 104Re1.7×105 and 2KC71, respectively. The present experimental evidence shows that the geometric characteristics of the scour hole (length and width) depend primarily on the Keulegan-Carpenter number (KC) and the cylinder aspect ratio (ar=Lc/D). The effect of variation in the angle of attack of the flow with respect to the cylinder main axis was also investigated. Initial orientations of zero and ninety degrees were found to be stable while cylinders with intermediate initial orientations tended to orientate their main axes perpendicular to the flow direction. The final angle of orientation was found to be primarily a function of the Shields parameter, θ, and the initial angle of attack, αi.  相似文献   

7.
Benthic foraminiferal biomass, density, and species composition were determined at 10 sites in the Gulf of Mexico. During June 2001 and 2002, sediment samples were collected with a GoMex box corer. A 7.5-cm diameter subcore was taken from a box core collected at each site and sliced into 1-cm or 2-cm sections to a depth of 2 or 3 cm; the >63-μm fraction was examined shipboard for benthic foraminifera. Individual foraminifers were extracted for adenosine triphosphate (ATP) using a luciferin–luciferase assay, which indicated the total ATP content per specimen; that data was converted to organic carbon. Foraminiferal biomass and density varied substantially (2–53 mg C m−2; 3600–44,500 individuals m−2, respectively) and inconsistently with water depth: although two 1000-m deep sites were geographically separated by only 75 km, the foraminiferal biomass at one site was relatively low (9 mg C m−2) while the other site had the highest foraminiferal biomass (53 mg C m−2). Although most samples from Sigsbee Plain (>3000 m) had low biomass, one Sigsbee site had >20 mg foraminiferal C m−2. The foraminiferal community from all sites (i.e. bathyal and abyssal locales) was dominated by agglutinated, rather than calcareous or tectinous, species. Foraminiferal density never exceeded that of metazoan meiofauna at any site. Foraminiferal biomass, however, exceeded metazoan meiofaunal biomass at 5 of the 10 sites, indicating that foraminifera constitute a major component of the Gulf's deep-water meiofaunal biomass.  相似文献   

8.
Methods are described for the rapid (11 min) automated shipboard analysis of dissolved sulfur hexafluoride (SF6) in small volume (200 cm3) seawater samples. Estimated precision for the SF6 measurements is 2% or 0.02 fmol kg−1 (whichever is greater). The method also allows for the simultaneous measurement of chlorofluorocarbon-11 (CFC11) and chlorofluorocarbon-12 (CFC12) on the same water sample, with significantly improved sensitivity over previous analytical methods.  相似文献   

9.
In this paper, a time-dependent dynamic equation for the potential energy anomaly, , is rigorously derived from dynamic equations for potential temperature and salinity, the continuity equation and the equation of state for sea water. The terms locally changing are (A) the -advection, (B) the depth-mean straining, (C) the non-mean straining, (D) the vertical advection, (E) the vertical mixing, (F) surface and bottom density fluxes, (G) inner sources of density e.g. due to absorption of solar radiation and the non-linearity of the equation of state, and (H) horizontal divergence of horizontal turbulent density fluxes. In order to derive the equation in concise form, a vertical velocity (linearly varying with depth) with respect to depth-proportional vertical coordinates had to be defined. The evaluation of the terms in the -equation is then carried out for a one-dimensional tidal straining study and a two-dimensional estuarine circulation study. Comparisons to empirical estimates for these terms are made for the one-dimensional study. It is concluded that the -equation provides a general reference for empirical bulk parameterisations of stratification and mixing processes in estuaries and coastal seas and that it is a tool for complete analysis of the relevant terms from numerical models.  相似文献   

10.
In order to better understand the relationship between the natural radionuclide 234Th and particulate organic carbon (POC), marine particles were collected in the northwestern Mediterranean Sea (spring/summer, 2003 and 2005) by sediment traps that separated them according to their in situ settling velocities. Particles also were collected in time-series sediment traps. Particles settling at rates of >100 m d−1 carried 50% and 60% of the POC and 234Th fluxes, respectively, in both sampling years. The POC flux decreased with depth for all particle settling velocity intervals, with the greatest decrease (factor of 2.3) in the slowly settling intervals (0.68–49 m d−1) over trap depths of 524–1918 m, likely due to dissolution and decomposition of material. In contrast the flux of 234Th associated with the slowly settling particles remained constant with depth, while 234Th fluxes on the rapidly settling particles increased. Taking into account decay of 234Th on the settling particles, the patterns of 234Th flux with depth suggest that either both slow and fast settling particles scavenge additional 234Th during their descent or there is significant exchange between the particle classes. The observed changes in POC and 234Th flux produce a general decrease in POC/234Th of the settling particles with depth. There is no consistent trend in POC/234Th with settling velocity, such as might be expected from surface area and volume considerations. Good correlations are observed between 234Th and POC, lithogenic material and CaCO3 for all settling velocity intervals. Pseudo-Kds calculated for 234Th in the shallow traps (2005) are ranked as lithogenic material opal <calcium carbonate <organic carbon. Organic carbon contributes 33% to the bulk Kd, and for lithogenic material, opal and CaCO3, the fraction is 22% each. Decreases in POC/234Th with depth are accompanied by increases in the ratio of 234Th to lithogenic material and opal. No change in the relationship between 234Th and CaCO3 was evident with depth. These patterns are consistent with loss of POC through decomposition, opal through dissolution and additional scavenging of 234Th onto lithogenic material as the particles sink.  相似文献   

11.
Sources and discharges of dissolved organic carbon (DOC) from the central Sumatran river Siak were studied. DOC concentrations in the Siak ranged between 560 and 2594 μmol l−1 and peak out after its confluence with the river Mandau. The Mandau drains part of the central Sumatran peatlands and can be characterized as a typical blackwater river due to its high DOC concentration, its dark brown-coloured, acidic water (pH 4.4–4.7) and its low concentration of total suspended matter (12–41 mg l−1). The Mandau supplies about half of the DOC that enters the Siak Estuary where it mixes conservatively with ocean water. The DOC input from the Siak into the ocean was estimated to be 0.3 Tg C yr−1. Extrapolated to entire Indonesia the data suggest a total Indonesian DOC export of 21 Tg yr−1 representing 10% of the global riverine DOC input into the ocean.  相似文献   

12.
Dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) measured in deep profiles in the N-E Atlantic and in the N-W Mediterranean in the period 1984–2002 are described. After accurate validation, they show close agreement with those previously published.Classic profiles were obtained, with concentrations decreasing in deep waters. In the Mediterranean and in the Atlantic comparable concentrations were found in the 1500–2000 m waters, 44–46 μmol l−1 DOC, 2.6–2.8 μmol l−1 DON and 0.02–0.03 μmol l−1 DOP. In the surface layers, DOC concentrations were higher, but DON and DOP concentrations lower, in the Mediterranean than in the Atlantic, leading to higher element ratios in the Mediterranean. In autumn, values were, respectively, DOC:DON 17 vs. 14, DOC:DOP 950 vs. 500 and DON:DOP 55 vs. 35. The data suggest an increase in DOC and DON in the North Atlantic Central Water over 15 years, which may be linked to the North Atlantic climatic oscillations.Refractory DOM found in the 1500–2000 m layer exhibited C:N:P ratios of 1570:100:1. The labile+semi-labile (=non-refractory) DOM (nrDOM) pool was computed as DOM in excess of the refractory pool. Its contribution to total DOM above the thermocline in the open sea amounted to 25–35% of DOC, 30–35% of DON, and 60–80% of DOP. Element ratios of the nrDOM varied among stations and were lower than those of refractory DOM, except for C:N in the Mediterranean: nrDOC:nrDON 10–19, nrDOC:nrDOP 160–530 and nrDON:nrDOP 15–38. The specific stoichiometry of DOM in the Mediterranean led us to postulate that overconsumption of carbon is probably a main process in that oligotrophic sea.By coupling non-refractory DOM stoichiometry and relationships between the main DOM elements in the water column, the relative mineralization of C, N and P from DOM was studied. Below the thermocline, the preferential removal of phosphorus with regard to carbon from the semi-labile DOM can be confirmed, but not the preferential removal of nitrogen. In the ocean surface layers, processes depend on the oceanic area and can differ from deep waters, so preferential carbon removal seems more frequent. Bacterial growth efficiency data indicate that bacteria are directly responsible for mineralization of a high proportion of DON and DOP in the deep water.  相似文献   

13.
Jingfeng Wu   《Marine Chemistry》2007,103(3-4):370-381
A low-blank pre-concentration procedure is described for the analysis of picomolar iron (Fe) in seawater by isotope dilution high-resolution inductively coupled plasma mass-spectrometry (HR-ICPMS). The procedure uses a two-step Mg(OH)2 co-precipitation procedure to extract Fe from a 50 ml seawater sample into a 100 μl 4% nitric acid (HNO3) solution followed by HR-ICPMS measurement. The high pre-concentration ratio ( 500:1) achieved by the procedure minimizes the Fe blank due to ICPMS instrumental Fe background and results in a detection limit of  2 pM and a precision of  4% at the 50 pM Fe level. The measurement of a low-Fe seawater sample spiked with gravimetric Fe standard shows that the method can clearly distinguish 0.01 nM Fe from 0.02 nM Fe in seawater with high accuracy. The method is demonstrated by the analysis of dissolved Fe in the equatorial Pacific Ocean.  相似文献   

14.
From observations of ice cover, temperature, salinity, currents and nitrate, it is evident that along-shelf variability was significant over the middle shelf of the eastern Bering Sea, but less distinct than that observed in the cross-shelf domains. Along the 70-m isobath, three zones were evident in the summer: the southeastern cold pool (centered at 57°N); an intermediate zone, consisting of warmer water, with weaker stratification; and the northern cold pool, extending northward from 58°N. Small-scale (20 km) horizontal features that persisted for months were common. Nutrient concentrations were related to salinity and were replenished more uniformly over the southern shelf, than north of the Pribilof Islands. Although mean currents were weak (1 cm s−1), short energetic advective events impacted the temperature and salinity structure.  相似文献   

15.
This study aims at assessing the adequacy for describing bimodal sea states of different non-linear probability distributions that have been developed for single sea states. It is based on data collected at an offshore test basin. The measurements represent three bimodal sea states with individual unidirectional wave systems propagating at 60, 90 and 120 from each other. The wave spectra are separated into swell and wind sea components and the relative energy ratio between the areas under the associated spectral curves is estimated and is related with the statistics of the time series considered. Dependence is found between the normalized high order cumulants, which describe the non-Gaussian surface, and the predominant contribution of the wind sea energy. Furthermore, the probabilities of exceedance of the individual wave heights are estimated and compared with the Rayleigh model and with other models that take into account either the effect of spectral bandwidth or the effect of wave nonlinearities. The results are discussed with respect to three classes of sea states that reflect the relative contribution of swell and wind sea energy.  相似文献   

16.
The unsteady cavity patterns around the gap of the conventional and newly developed semi-spade rudders for marine ships are visualized qualitatively using a high-speed CCD camera. Time-resolved PIV analysis is also performed with the bubble tracers to study the flow behavior over the rudder surface. In addition, pressure measurements are conducted on the rudder surface and inside the gap to find out the flow characteristics around the gap entrance of the rudder. Both the rudders are tested without a propeller wake at the various cavitation numbers and at the rudder deflection angle of −8°θ10°. The strong cavitation patterns around the conventional rudder gap are significantly reduced by adopting a newly developed entrance profile, and a time-resolved velocity field is found to be very effective in catching the vortical cavity flow around the rudder gap. The stagnation point near the gap entrance of the conventional rudder can cause unsteady cavity flow. However, the developed rudder has very stable pressure distribution along the horn surface and decreases the pressure inside the gap because of the modification of the gap entrance. The pressure distribution around the gap of the suction side is closely related to the variation of the rudder deflection angle. The cavitation inception speed is delayed by about 4 knots in the angle range of −5°θ5° by employing the developed profile of the gap entrance.  相似文献   

17.
A series of experiments was conducted to evaluate the appropriateness of cross-flow ultrafiltration (CFUF) techniques for the determination of the phase speciation of monomethyl mercury (MeHg) in natural waters. Spiral-wound cartridge (Amicon S1Y1) and Miniplate (Amicon) were evaluated for their nominal molecular weight cut-offs of 1 and 10 kDa, respectively. The ultrafiltration behavior of standard macromolecules showed that the permeation of high molecular weight (HMW) organic macromolecules was not significant when a concentration factor (CF)>15 was used. The retention of low molecular weight (LMW) molecules was significant, especially at a low CF<5, suggesting that the use of a high CF (15) will minimize the retention of LMW molecules. Sorptive losses of MeHg in the solution phase to the 1 kDa membrane were negligible, but MeHg bound to HMW macromolecules was still retained (20%), even with a preconditioned membrane. The mass balance recovery of MeHg during ultrafiltration averaged 101±15% (n=7) and 105±14% (n=5) for the 1 and 10 kDa membranes, respectively. Sample storage over 24 h caused significant coagulation (47%) of the <10 kDa MeHg into the 10 kDa–0.45 μm colloidal or the particulate MeHg pool. The 1 kDa–0.45 μm colloidal MeHg in Galveston Bay and the Trinity River water samples accounted for 40–48% of the filter-passing MeHg, although the most abundant fraction (52–60%) of MeHg was the truly dissolved fraction (<1 kDa). The partition coefficient between the colloidal (1 kDa–0.45 μm) and truly dissolved MeHg (average log KC=5.2) was higher than the partition coefficient based on particle/filter-passing (average log KD=4.6) or particle/truly dissolved MeHg (average log KP=4.8), suggesting that MeHg has stronger affinity for natural colloids than macroparticulate materials (>0.45 μm).  相似文献   

18.
The spatial distributions of dissolved manganese and nutrients were examined in the Columbia River plume off Oregon and Washington during the summer of 2004 and 2005 as part of the River Influence on Shelf Ecosystems (RISE) program. Factors influencing the hydrochemical characteristics of the freshly formed and aged Columbia River plume were investigated. Hydrographic data and nutrient concentrations were used to delineate three distinct water sources for the Columbia River Plume: California Current surface water, coastal upwelled water, and Columbia River water. The warm, intermediate salinity, nutrient poor California Current water contains low levels of dissolved manganese (< 5 nM) and silicic acid (< 5 μM), and is depleted in nitrate. The cold, high salinity, nutrient rich, freshly upwelled water is highly variable (2–20 nM) in dissolved manganese and can be as high as  45 μM in silicic acid and  30 μM nitrate. The variable Columbia River has summer temperatures ranging from  13 to 24 °C, high silicic acid concentrations (ranging from  120 to 200 μM), and lower nitrate concentrations (ranging from  2 to 20 μM). During the summer, the concentrations of silicic acid and dissolved manganese can exceed 100 μM and 200 nM, respectively, in near-field Columbia River plumes. These values are markedly greater than those of surface coastal waters (even during upwelling conditions). As the plume advects and mixes, the concentrations of these two constituents remain relatively high within plume waters. The concentrations of dissolved manganese in the near-field plume vary with tidal amplitude, exhibiting much higher concentrations for a given salinity during spring tides than during neap tides. For example, the Columbia River plume at a salinity of 20 has a concentration of dissolved manganese of  240 nM during spring tides, as compared to only  60 nM during low amplitude tides. Silicic acid concentrations in the near-field plume remain relatively constant throughout the tidal month. Calculations indicate there is roughly an equivalent yearly delivery of dissolved manganese and silicic acid to the coastal waters off Oregon and Washington by upwelled waters and by the Columbia River plume.  相似文献   

19.
N.K. Bigalke  G. Rehder  G. Gust   《Marine Chemistry》2009,115(3-4):226-234
The dissolution of in-situ generated methane hydrate in undersaturated, synthetic seawater (S = 35) was investigated in a series of laboratory-based experiments at P-/T-conditions within the hydrate stability field. A controlled flow field was generated across the smooth hydrate surface to test if, in addition to thermodynamic variables, the dissolution rate is influenced by changing hydrodynamic conditions. The dissolution rate was found to be strongly dependent on the friction velocity, showing that hydrate dissolution in undersaturated seawater is a diffusion-controlled process. The experimental data was used to obtain diffusional mass transfer coefficients kd, which were found to correlate linearly with the friction velocity, u. The resulting kd/u-correlation allows predicting the flux of methane from natural gas hydrate exposures at the sediment/seawater interface into the bulk water for a variety of natural P, T and flow conditions. It also is a tool for estimating the rate of hydrate regrowth at locations where natural hydrate outcrops at the seafloor persist in contact with undersaturated seawater.  相似文献   

20.
Biogeochemical processes in sediments under the influence of the Rhône River plume were studied using both in situ microelectrodes and ex situ sediment core incubations. Organic carbon (OC) and total nitrogen (TN) content as well as stable carbon isotopic composition of OC (δ13COC) were analysed in 19 surface sediments to determine the distribution and sources of organic matter in the Rhône delta system. Large spatial variations were observed in both the total O2 uptake (5.2 to 29.3 mmol m−2 d−1) and NH4+ release (−0.1 to −3.5 mmol m−2 d−1) rates at the sediment–water interface. The highest fluxes were measured near the Rhône River mouth where sedimentary OC and TN contents reached 1.81% and 0.23% respectively. Values of δ13COC ranged from −26.83‰ to −23.88‰ with a significant seawards enrichment tracing the dispersal of terrestrial organic matter on the continental shelf. The amount of terrestrial-derived OC reaches 85% in sediments close to the Rhône mouth decreasing down to 25% in continental shelf sediments. On the prodelta, high terrestrial OC accumulation rates support high oxygen uptake rates and thus indicating that a significant fraction of terrestrial OC is remineralized. A particulate organic carbon (POC) mass balance indicates that only 3% of the deposited POC is remineralized in prodelta sediments while 96% is recycled on the continental shelf. It was calculated that a large proportion of the Rhône POC input is either buried (52%) or remineralized (8%), mostly on the prodelta area. The remaining fraction (40%) is either mineralized in the water or exported outside the Rhône delta system in dissolved or particulate forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号