首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Operation of a monostatic acoustic sounder on the campus of The University of Calgary for the period March to September, 1976, has provided data on the atmospheric boundary layer over Calgary. The formation and dissipation of the nocturnal temperature inversion layer leaves a clear signature in the sounder records. A trend is discerned in which the nocturnal layer tends to form at sunset, whereas convective instability is established some 2–3 hours after sunrise. Comparison of sounder records with an extensive set of radiosonde temperature profiles has shown that the height of the inversion layer can be determined reliably when a single, dark, ground-based return is visible on the sounder charts. On many occasions, however, the sounder detects multiple structures in the atmosphere. In these cases, it is difficult to establish a systematic correspondence of the turbulent structure as observed in the sounder records with the temperature profile as observed by the radiosonde.  相似文献   

2.
DMS emissions and fluxes from the Australasian sector of the Antarctic and Subantarctic Oceans, bound by 46–68° S and 65.5–142.6° E, were determined from a limited number of samples (n=32) collected during three summer resupply voyages to Australian Antarctic continental research bases between November 1988 and January 1989 (a 92 day period). The maximum DMS emission from this sector of the Antarctic Ocean was in an area near the Antarctic Divergence (60–63° S) and the minimum DMS emission was from the Antarctic coastal and offshelf waters. The greatest emission of DMS from this sector of the Southern Ocean was from the Subantarctic waters. DMS flux from the Australasian Antarctic Ocean was 64.3×106 (±115) mol d–1 or 5.9 (±10.6)×109 mol based on an emission of 10.9 (±19.5) µmol m–2 d–1 (n=26). The flux of DMS from the Australasian sector of the Subantarctic Ocean was probably twice the flux of DMS from the adjacent Antarctic Ocean.  相似文献   

3.
This paper summarizes the long-term fluctuations of snow accumulation in the Antarctic and analyzes its correlation with the sea level pressure (SLP) in the middle latitude (40°–50° S) of the Southern Hemisphere. Stratigraphic data which were compiled from studies on ice cores and snow-pits at eight stations in the Antarctic were used in the present study. It was found that the data concerning fluctuations in snow accumulation for East Antarctica showed correlations, whereas no such correlation was observed for the data from West Antarctica.This study shows possible relationships between snow accumulation in the Antarctic and SLP in the middle latitudes. The fluctuations of accumulation at South Pole, Dome C, Wilkes and South Ice Point show correlations with SLP over a large area in the 40°–50° S latitudinal zone. For the long-term fluctuations of SLP in the 40°–50 ° S latitudinal zone, a zonal fluctuation with wave number zero structure and a longitudinal variation of SLP anomalies due to their out-of-phase-fluctuation between the Pacific and the Indian Oceans were observed. The temporal scales for these fluctuations were found to be in the order of 20–30 years and 40–60 years, respectively. The influences of these two modes on the behaviour of snow accumulation in the Antarctic is also discussed.Now at Kitami Institute of Technology, Kitami, Hokkaido, Japan.  相似文献   

4.
Summer weather conditions along the west coast of Africa near 34 ° S, 18 ° E are investigated using doppler acoustic sounder profiles. Case studies were selected from a two-year record to form composite analyses over the diurnal cycle. The SE trade wind exhibited a low level jet at the level of the temperature inversion due to a sharp reversal in the thermal wind vector aloft. Mean wind speeds reached 14 m s–1 just before midnight as the surface and upper inversions strengthened. Seabreezes were categorised by the supporting gradient wind and found to have mean depths of 400 m, speeds of over 6 m s–1 at the 200 m level, and advance/retreat times of 09 hr and 16–20 hr. During seabreezes and weak on-shore gradient flow conditions, the thermal internal boundary layer (TIBL) was monitored with sounder transects in the first 12 km of the coastal zone. The growth height was observed to be 1:20 in the first 5 km and 1:50 farther inland. The sounder climatology, together with surface network and aerial survey results, illustrate the four-dimensional characteristics of trade winds and seabreezes near Cape Town.  相似文献   

5.
Characteristics of the winter boundary layer over the (elevation 1600 m) in the vicinity of Johannesburg, 26 ° S, 29 ° E, are described in relation to air pollution potential by means of doppler sounder observations and background climatological data. Regional mean winds for the 800 h Pa level show that the winter boundary layer is dominated by a cell of high pressure over the Limpopo River Valley to the northeast of Johannesburg. To the south of Johannesburg, westerly circumpolar flow is prevalent and encroaches onto the plateau during the passage of frontal perturbations. Doppler sounder wind and turbulence profiles, averaged for the months of August 1984 and June 1985, are presented to establish a boundary-layer climatology. Diurnally averaged doppler sounder profiles for both months revealed a very consistent convective/day — stable/night cycle in the very dry winter conditions. A sharp radiation inversion formed just after sunset up to the 150–200 m level and grew in depth to reach 300 m on average near sunrise. The inversion caused a reduction in frictional drag and the formation of nocturnal low level jet during westerly encroachment. A case study is evaluated to determine the detailed structure of the low level jet near Johannesburg. The thermal wind plays a role in the nocturnal acceleration; mechanisms for its development and maintenance are explored. Additional work is presented on the synoptic cycle and its influence on air pollution dispersion over the African Plateau.  相似文献   

6.
A detailed climatic study of the Antarctic Peninsula from 1850 to 1980 has been carried out through the analysis of deuterium content in the snow layers of Dalinger Dome (James Ross Island, Antarctic Peninsula). It is based on the high correlation found between mean deuterium contents at this site and temperature data from stations within this region going back as far as April 1903 for the Argentine Orcadas station.The strong correlation between isotopes and temperatures first reveals a 1956 isotope reference for the region considered. Secondly, the isotope-temperature gradient is estimated at 4.5%. °C–1 for deuterium.After checking that the major temperature anomalies on the Antarctic Peninsula recorded since 1904 (according to available data) correspond to annual mean stable isotope peaks at Dalinger Dome, the amplitude of four prior anomalies are estimated in °C. Finally, a cooling of about 2 °C since 1850 is suggested for the region.  相似文献   

7.
Four Holocene-long East Antarctic deuterium excess records are used to study past changes of the hydrological cycle in the Southern Hemisphere. We combine simple and complex isotopic models to quantify the relationships between Antarctic deuterium excess fluctuations and the sea surface temperature (SST) integrated over the moisture source areas for Antarctic snow. The common deuterium excess increasing trend during the first half of the Holocene is therefore interpreted in terms of a warming of the average ocean moisture source regions over this time. Available Southern Hemisphere SST records exhibit opposite trends at low latitudes (warming) and at high latitudes (cooling) during the Holocene. The agreement between the Antarctic deuterium excess and low-latitude SST trends supports the idea that the tropics dominate in providing moisture for Antarctic precipitation. The opposite trends in SSTs at low and high latitudes can potentially be explained by the decreasing obliquity during the Holocene inducing opposite trends in the local mean annual insolation between low and high latitudes. It also implies an increased latitudinal insolation gradient that in turn can maintain a stronger atmospheric circulation transporting more tropical moisture to Antarctica. This mechanism is supported by results from a mid-Holocene climate simulation performed using a coupled ocean-atmosphere model. Received: 7 July 1999 / Accepted: 21 July 2000  相似文献   

8.
An attempt is made to study the planetary boundary layer (PBL) characteristics during the winter period at Anand (22.4°N, 72.6°E), a semi-arid region, which is located in the western part of India. A one-dimensional turbulent kinetic energy (TKE) closure model is used for the study. The structure of the PBL,which consists of profiles of zonal and meridional components of wind,potential temperature and specific humidity, is simulated. A one-dimensional soil heat and moisture transport parameterization scheme is incorporated for the accurate representation of the energy exchange processes at the soil-atmosphere interface. The diurnal variation of fluxes of sensible heat, latent heat, shortwave radiation, net radiation and soil flux, soil temperature at different depths, Richardson number and TKE at the height of the constant flux layer is studied. The model predictions are compared with the available observations obtained from a special Land Surface Processes (LSP) experiment.  相似文献   

9.
Dumont d'Urville, on the Antarctic coast, is an area well known for the presence of strong katabatic winds blowing from the Antarctic plateau toward the sea almost all year. Since January 1993, a three-axis Doppler sodar has been operating in this area to investigate the variability of the boundary layer structure and dynamics. In this paper, the capabilities, behavior and advantages of using this ground-based remote-sensing system in Antarctica are evaluated after one year of measurements. This instrument may play an important role in boundary layer studies in remote regions where other profiling techniques (e.g., kitoons, slow ascent balloons) are difficult and expensive. All year long, except in summer when the signal-to-noise ratio was dramatically reduced by the noise of a large group of Adelie penguins, reliable measurements were available up to 900 m. The reliability of the vertical wind velocity has been checked and the influence of the local topography on the flow pattern has been evaluated. Some preliminary results regarding the statistical analysis of the horizontal and vertical velocities and an overview of the main physical processes are also shown. The statistical analysis of the wind speed shows that the wind blows from the 30 ° angular sectors centered at 90 °, 150 °, 180 °, and 0 °. The winds from 90 ° and 150 ° constitute the main local circulation and have, most of the time, the characteristics of a katabatic flow, whereas the winds blowing from 180 °, arising from the surface temperature difference between the sea and the land, are land breezes. Strong winds coming from the ocean (0 °), attributable to the inland penetration of depressions, have been observed in May, October, and November. Finally, some examples of the observed thermal structures, as depicted in the facsimile recording, are shown.  相似文献   

10.
The NASA/GISS GCM is used to estimate the evaporative contributions of several oceanic regions (defined by temperature) to Antarctica's July precipitation. Tracer diagnostics in the GCM suggest that the weighted average evaporative source temperature for Antarctic precipitation as a whole is about 12°C. The average source temperature for local precipitation there varies from 9° C to 14° C. To examine the effect of evaporative source on water isotope concentration, the GCM also follows a global deuterium (HDO) tracer and deuterium tracers evaporating from each oceanic region. The results suggest that although evaporative source temperature does affect the concentrations of the individual HDO tracers, differences in evaporative source do not explain the scatter in the roughly linear relationship between condensation temperature and isotope concentration. Offprint requests to: R Koster  相似文献   

11.
We use NCEP/NCAR reanalysis data to study the impact of the semiannual oscillation (SAO) on the annual cycle of Antarctic near-surface temperature. When the SAO is weak, the contracted phases (March/April and September/October) are warm and the expanded phases (December/January and June/July) cold. This pattern is explained in terms of the changing meridional fetch of the circumpolar pressure trough. Because of the wave number three character of the SAO, large regional deviations are found. For instance, enhanced north-westerly flow in the second expansion phase (June/July) of weak SAO years limits the growth of the sea ice in the Amundsen and Bellingshausen seas, leading to anomalously high temperatures in the Antarctic Peninsula region. The short (<50 year) temperature records at Antarctic stations still carry the fingerprint of decadal SAO variability. By matching the observed monthly temperature trends to the patterns derived from the gridded re-analysis, we propose a background Antarctic warming trend for the second expansion phase (June/July) of 4.62 ± 1.02 °C per century, four times the annual value. Received: 23 August 1999 / Accepted: 28 October 1999  相似文献   

12.
Condensation nucleus (CN) concentrations have been measured at Mawson (67.6°S, 62.9°E) since mid 1981. Weekly median concentrations have an annual cycle with a maximum of around 300 to 400 cm-3 in summer and a minimum of a few tens of particles per cm-3 in winter. In this respect Mawson behaves very much like an Antarctic continental location. Preliminary measurements of the size distribution of CN particles taken over a nine month period suggest a seasonal change in typical particle radius from around 0.01 m in winter to around 0.04 m in summer. Diurnal variation in the CN concentration is generally very weak and does not show any systematic relation to the pronounced diurnal variation in wind-speed at Mawson.Department of Science, Antarctic Division  相似文献   

13.
Two Holocene ice core records from East Antarctica (Vostok and EPICA-Dome C) were analysed for dust concentration and size distribution at a temporal resolution of 1 sample per ~50 years. A series of volcanic markers randomly distributed over the common part of the ice cores (from 9.8 to 3.5 kyear BP) ensures accurate relative dating (±33 years). Dust-size records from the two sites display oscillations structured in cycles with sub-millennial and secular scale frequencies that are apparently asynchronous. The power spectra of the composite sum (Σ) of the two dust-size records display spectral energy mostly for 150- to 500-year periodicities. On the other hand, the 200-year band is common to both records and the 200 year components of the two sites are out-of-phase (100-year lead or lag) over ~5.5 kyear, a phenomenon also reflected by a significant (>99% conf. lev.) band in the power spectra of the composite difference (Δ) of the two size records. During long-range transport, mineral dust originating from the Southern Hemisphere continents is graded to a variable extent depending on the altitude and duration of atmospheric transport. Relatively coarse dust is associated with air mass penetration from the middle–lower troposphere and conversely relatively fine dust with upper troposphere air masses or the influence of subsidence over the Antarctic plateau, a hypothesis already proposed for the changes that occurred during the Last Glacial Maximum to Holocene transition (Delmonte et al. 2004b). Moreover, we assume that the overall fluctuation of air mass advection over Antarctica depends on the meridional pressure gradient with respect to low latitudes, i.e. the Antarctic Oscillation (AAO). We therefore suggest a regional variability in atmospheric circulation over East Antarctica. The 150–500 year power spectrum of the composite (Σ) parameter represents the long term variability of the AAO, imprinted by secular internal oscillations probably related to the southern ocean-climatic system. On the other hand, the Δ dust composite parameter suggests a persistent atmospheric dipole over East Antarctica delivering coarser (finer) dust particles alternatively to Vostok and Dome C regions with a bi-centennial periodicity. Indeed, a seesaw phenomenon in dust size distribution was already observed at three East Antarctic sites during the last deglaciation (Delmonte et al. 2004b) and was interpreted as a progressive reduction of the eccentricity of the polar vortex with respect to the geographic south pole. Interestingly, the Δ parameter shows a pronounced 200-year oscillation mode, throwing new light on the unresolved question of a possible relationship between climate and solar activity.  相似文献   

14.
Summary The temperature and moisture data from TIROS operational vertical sounder (TOVS) are examined to obtain humidity parameters like, mid and upper tropospheric water vapour, and scale height of water vapour. Their usefulness in characterizing the onset of south-west (SW) monsoon over India is studied. The NOAA satellite data (finished product) with a resolution of 2.5° lat/lon are used to obtain these parameters during and prior to the SW monsoon season over selected regions during 1979 to 1985. The pentad averaged values in the western Indian Ocean showed an increase in scale height of water vapour and mid-tropospheric moisture (700–500 mb) over about 8 to 10 days prior to the onset over Kerala coast. The association of the moisture flux across the Indian Ocean and the rainfall over Kerala coast has also been examined. Results showed that the gradient of middle level moisture is stronger in the case of rainfall deficit years.With 13 Figures  相似文献   

15.
Inferred climatic changes in southern Chile during the Last Glacial Maximum are modelled to investigate the role of the southern Westerlies on the region's glacial history. This is accomplished with a numerical model of the surface energy balance which derives glacial mass balance profiles from existing climatic stations. This provides an independent measure of the regional snowline which is compared with palaeoecological evidence of former snowlines.The modelled snowline mirrors the latitudinal trend of current glacier equilibrium line altitudes. It is most sensitive to temperature changes in regions with high precipitation (46°–50° S) and to precipitation changes in regions with lower precipitation totals (south of 50° and north of 40°). This differential sensitivity with latitude implies that glacial expansion in the region depends on a delicate interplay between cooling induced by the equatorward movement of the oceanic Antarctic Polar Front and access to precipitation comparable to or greater than that of today. The main conclusion is that glacial expansion in southern Chile is associated with the migration of the southern Westerlies towards the equator. The importance of migrating precipitation belts in permitting glacier growth carries the implication that maximum depression of the snowline is unlikely to have been contemporaneous from latitude to latitude.  相似文献   

16.
Response of the Antarctic ice sheet to future greenhouse warming   总被引:2,自引:0,他引:2  
Possible future changes in land ice volume are mentioned frequently as an important aspect of the greenhouse problem. This paper deals with the response of the Antarctic ice sheet and presents a tentative projection of changes in global sea level for the next few hundred years, due to changes in its surface mass balance. We imposed a temperature scenario, in which surface air temperature rises to 4.2° C in the year 2100 AD and is kept constant afterwards. As GCM studies seem to indicate a higher temperature increase in polar latitudes, the response to a more extreme scenario (warming doubled) has also been investigated. The mass balance model, driven by these temperature perturbations, consists of two parts: the accumulation rate is derived from present observed values and is consequently perturbed in proportion to the saturated vapour pressure at the temperature above the inversion layer. The ablation model is based on the degree-day method. It accounts for the daily temperature cycle, uses a different degree-day factor for snow and ice melting and treats refreezing of melt water in a simple way. According to this mass balance model, the amount of accumulation over the entire ice sheet is presently 24.06 × 1011 m3 of ice, and no runoff takes place. A 1°C uniform warming is then calculated to increase the overall mass balance by an amount of 1.43 × 1011 m3 of ice, corresponding to a lowering of global sea level with 0.36 mm/yr. A temperature increase of 5.3°C is needed for the increase in ablation to become more important than the increase in accumulation and the temperature would have to rise by as much as 11.4°C to produce a zero surface mass balance. Imposing the Bellagio-scenario and accumulating changes in mass balance forward in time (static response) would then lower global sea level by 9 cm by 2100 AD. In a subsequent run with a high-resolution 3-D thermomechanic model of the ice sheet, it turns out that the dynamic response of the ice sheet (as compared to the direct effect of the changes in surface mass balance) becomes significant after 100 years or so. Ice-discharge across the grounding-line increases, and eventually leads to grounding-line retreat. This is particularly evident in the extreme case scenario and is important along the Antarctic Peninsula and the overdeepened outlet glaciers along the East Antarctic coast. Grounding-line retreat in the Ross and Ronne-Filchner ice shelves, on the other hand, is small or absent.  相似文献   

17.
Acoustic sounder and microbarograph records of atmospheric waves propagating in the planetary boundary layer over Table Mountain, Colorado, are presented and compared. The two observing techniques are complementary in that the array provides wave amplitude, horizontal phase speed, direction, and wavelength, while the sounder provides a detailed picture of temporal changes in the structure of the lowermost kilometer or so of the Earth's atmosphere.  相似文献   

18.
Summary ?A time-dependent semi-geostrophic Ekman boundary-layer model (SG), including slowly varying eddy diffusivity with height and inertial term effects, is developed to investigate the diurnal wind variation in the planetary boundary layer (PBL). An approximate analytical solution of this model is derived by using the WKB method, which extends the Tan and Farahani (1998)’s solution by including the vertical variable eddy viscosity. The features of the diurnal wind variation in the PBL mainly depend on three factors: the latitude, horizontal momentum advection and eddy viscosity. The vertical variable eddy viscosity has little influence on diurnal wind variation in the PBL at the low latitude, however its effect may be exacerbated in the mid- and high latitudes. In comparing with the constant eddy viscosity case, the decreasing (increasing) with height eddy viscosity produces a large (small) maximum wind speed (MWS) in the PBL, however, the eddy viscosity that has a mid-layer peak in the vertical gives rise to a higher height of occurrence of MWS. For the boundary-layer wind structure, there is a singular point when the modified SG inertial oscillation frequency η equals the forcing frequency ω. The isotachs of boundary-layer wind speed have almost no tilt to left or right relative to time evolution and the occurrence time of the MWS is the earliest at the singular point. The feature will be enhanced in the decreasing with height eddy viscosity case and weakened in the eddy viscosity initially increasing with height case. Received April 6, 2001; accepted December 27, 2001  相似文献   

19.
Systematic year-round observations of submicron aerosols were carried out at Syowa Station (69°00'S, 39°35'E) in 1978. On the basis of the results of these observations, it is concluded that two types of aerosols originating from different sources are present in the Antarctic croposphere. With the intrusion of maritime air, mostly in the polar night months, sea salt particles and ammonium sulfate particles contained originally in the clean maritime air are dominant. The size distribution of such aerosols is monomodal, having a single mode at around 0.03 m in radii. On the other hand, in the sunlit months, sulfuric acid droplets are predominant and the size distribution is bimodal, having an additional mode at around 0.005 m in radii. Those sulfuric acid particles seem to be formed photochemically within a specific layer in the mid to lower troposphere over Antarctica. Most Antarctic submicron particles are of tropospheric origin, not of stratospheric nor anthropogenic origin.  相似文献   

20.
Measured concentration levels of carbon monoxide present in the atmosphere near the ground surface have been studied in relation to atmospheric stability inferred from acoustic sounder vis-à-vis the density of motor-vehicular traffic responsible for the emission of carbon monoxide gas. It has been seen that concentration levels of carbon monoxide during peak traffic hours depend on the prevailing stability of the atmosphere. The need for continuous monitoring of atmospheric stability at a place using acoustic sounder to assess air quality has been emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号