首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
SVOM (Space-based multi-band astronomical Variable Objects Monitor) is an international cooperation project led by the Chinese National Space Agency (CNSA) and the Centre National d’Etudes Spatiales of France (CNES). SVOM focuses on the detection of Gamma-ray bursts (GRBs). It is developed by the Chinese Academy of Sciences (CAS), CNES, and several other French laboratories. With the multi-band observation, fast manoeuvrability, flexible operation, and the capability of ground follow-up observation, the SVOM project will be the most important GRB detection mission after the SWIFT project, and will open a wide exploration field. In this paper, the project management, science objectives, the satellite platform and payloads, the ground segment, and operation concept are illustrated.  相似文献   

2.
SVOM (Space-based multi-band astronomical Variable Objects Monitor) is a Sino-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade, capable to detect and localise the GRB emission, and to follow its evolution in the high-energy and X-ray domains, and in the visible and NIR bands. The satellite carries two wide-field high-energy instruments: a coded-mask gamma-ray imager (ECLAIRs; 4–150 keV), and a gamma-ray spectrometer (GRM; 15–5500 keV) that, together, will characterise the GRB prompt emission spectrum over a wide energy range. In this paper we describe the performances of the ECLAIRs and GRM system with different populations of GRBs from existing catalogues, from the classical ones to those with a possible thermal component superimposed to their non-thermal emission. The combination of ECLAIRs and the GRM will provide new insights also on other GRB properties, as for example the spectral characterisation of the subclass of short GRBs showing an extended emission after the initial spike.  相似文献   

3.
One of the scientific objectives of NASA’s Fermi Gamma-ray Space Telescope is the study of Gamma-Ray Bursts (GRBs). The Fermi Gamma-Ray Burst Monitor (GBM) was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of Fermi’s main instrument, the Large Area Telescope, into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs is determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. We present the principal instrument properties, which have been determined as a function of energy and angle, including the channel-energy relation, the energy resolution, the effective area and the spatial homogeneity.  相似文献   

4.
French (CNES) and Chinese (CNSA) space agencies collaborate to build the SVOM (Space-based multi-band Variable Object Monitor) mission due to be launched in 2021 to study gamma-ray bursts and high-energy transients. The SVOM prime instrument, ECLAIRs, will detect and localize GRBs autonomously as well as provide a spectral and temporal characterization of the GRB prompt emission. ECLAIRs is expected to detect around 200 GRBs during the 3 year nominal lifetime of the mission. ECLAIRs is a wide-field (\(\sim 2 \text {sr}\)) coded mask camera with a detection plane made of 8 independent sectors of 800 Schottky CdTe detectors working in the 4-150 keV energy range. Each sector is connected to independent readout electronics. In this paper, we focus on the study of the temporal performance and we estimate how dead time will affect bright transient lightcurves. We discuss the analytical model based on simulations over a large range of source count rates on a dedicated test bench. We show that dead time will not significantly affect ECLAIRs data, even for the brightest GRBs (3.7% of lost counts for a count rate of 105 counts.s??1 over the detection plane in the energy range 4?150 keV) and our model can nicely correct the parts of the lightcurves which are the most affected by dead time effects for very bright GRBs.  相似文献   

5.
How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy cluster formation, down to the very low redshift Universe, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (the so-called warm hot intragalactic medium). In addition EDGE, with its unprecedented capabilities, will provide key results in many important fields. These scientific goals are feasible with a medium class mission using existing technology combined with innovative instrumental and observational capabilities by: (a) observing with fast reaction Gamma-Ray Bursts with a high spectral resolution. This enables the study of their star-forming and host galaxy environments and the use of GRBs as back lights of large scale cosmological structures; (b) observing and surveying extended sources (galaxy clusters, WHIM) with high sensitivity using two wide field of view X-ray telescopes (one with a high angular resolution and the other with a high spectral resolution). The mission concept includes four main instruments: a Wide-field Spectrometer (0.1–2.2 eV) with excellent energy resolution (3 eV at 0.6 keV), a Wide-Field Imager (0.3–6 keV) with high angular resolution (HPD = 15”) constant over the full 1.4 degree field of view, and a Wide Field Monitor (8–200 keV) with a FOV of ? of the sky, which will trigger the fast repointing to the GRB. Extension of its energy response up to 1 MeV will be achieved with a GRB detector with no imaging capability. This mission is proposed to ESA as part of the Cosmic Vision call. We will outline the science drivers and describe in more detail the payload of this mission.  相似文献   

6.
Ulysses was launched in October 1990, and its Solar X-ray/Cosmic Gamma-Ray Burst Experiment (GRB) has provided more than 13 years of uninterrupted observations of solar X-ray flare activity. Due to the large variation of the relative solar latitude and longitude of the spacecraft orbit with respect to the Earth, the perspective of the GRB instrument often differed significantly from that of X-ray instruments on Earth-orbiting satellites. During extended periods the GRB experiment made direct observations of flares on the hidden face of the Sun, providing a unique record of events not visible to other instruments. The small detector area of GRB and its optimization for very high counting rates minimized the effects of pulse pile-up. We interpret the spectra, time histories, and occurrence distribution patterns of GRB data in terms of “thermal feed-through”, the confusion of thermal soft X-rays and non-thermal hard X-rays. This effect is a systematic problem for scintillation-counter spectrometers observing the solar hard X-ray spectrum. This paper provides a definitive catalog of the Ulysses X-ray flare observations and discusses various features of this unique database. For the equivalent GOES range X2 – X25, we find a power-law fit for the (differential) occurrence frequency at >25 keV with slope −1.61±0.04, with no evidence for a downturn at the highest event magnitudes (for the relatively small sample of such events available in this study). If the nine most intense events are excluded because of concerns about the effects of pulse pile-up, the slope steepens to −1.75±0.08.  相似文献   

7.
The High-Energy Transient Experiment (HETE) is designed for the multiwavelengths study of Gamma-Ray Bursts (GRBs) in UV, X-ray and gamma-ray range with three scientific instruments. The X-ray instrument, Wide-field X-ray Monitor (WXM), consists of four units of one-dimensional position sensitive gas proportional counters and two perpendicularly oriented one-dimensional coded apertures. The WXM has a wide FOV of 1.5 steradian together with the capability to locate GRBs with 10 arcmin accuracy, and covers photon energies of 2 to 25 keV with an energy resolution of typically 18 % at 6 keV, measuring wide band spectra together with the gamma-ray spectrometer (FREGATE). The coded X-ray image will be deconvolved on board and the GRB location will be provided to the UV camera within 1 sec . GRB locations will also be broadcast in real time to ground-based observers for follow-up observations.  相似文献   

8.
High energy emission (> tens MeV) of Gamma-Ray Bursts (GRBs) provides an important clue on the physical processes occurring in GRBs that may be correlated with the GRB early afterglow. A shallow decline phase has been well identified in about half of Swift Gamma-ray Burst X-ray afterglows. The widely considered interpretation involves a significant energy injection and possibly time-evolving shock parameter(s). We calculate the synchrotron-self-Compton (SSC) radiation of such an external forward shock and show that it could explain the well-known long term high energy (i.e., tens MeV to GeV) afterglow of GRB 940217. We propose that cooperation of Swift and GLAST will help to reveal the nature of GRBs.  相似文献   

9.
The observed association of Long Gamma-Ray Bursts (LGRBs) with peculiar Type Ic supernovae gives support to Woosley‘s collapsar/hypernova model, in which the GRB is produced by the collapse of the rapidly rotating core of a massive star to a black hole. The association of LGRBs with small star-forming galaxies suggests low-metallicity to be a condition for a massive star to evolve to the collapsar stage. Both completely-mixed single star models and binary star models are possible. In binary models the progenitor of the GRB is a massive helium star with a close companion. We find that tidal synchronization during core-helium burning is reached on a short timescale (less than a few millennia). However, the strong core-envelope coupling in the subsequent evolutionary stages is likely to rule out helium stars with main-sequence companions as progenitors of hypernovae/GRBs. On the other hand, helium stars in close binaries with a neutron-star or black-hole companion can, despite the strong core-envelope coupling in the post-helium burning phase, retain sufficient core angular momentum to produce a hypernova/GRB.  相似文献   

10.
By now there is no doubt that the gamma-ray bursts (GRB) have a cosmological origin. This allows to regard GRB as the most powerful known energy sources, ε∼ 1054 erg (with a total number of gamma quanta N_γ∼ 1060). A plausible mechanism of coherent synchrotron radiation (CSR) of relativistic electrons driven by a local magnetic field is studied in this paper. We consider relativistic electrons arising in the Compton scattering of a GRB in directions close to that of the ray from the source to a ground-based observer. The synchrotron pulses from Compton electrons located at different points on the line between the GRB source and the observer arrive at the observation point simultaneously. This simultaneity ensures the coherence of the detected radiation. Both molecular clouds in the host galaxy of the GRB and our own Galaxy, as well as the Earth atmosphere are assumed to be scatterers of the GRB radiation. Signals of each scatterer reach the Earth surface, and can be detected at radio wavelengths. We estimate the characteristics of this radiation. The comparison of GRB data with the corresponding information on CSR pulses offers a way to determine some global characteristics of the medium between the Earth and the GRB source.  相似文献   

11.
Statistical studies of Gamma-Ray Burst (GRB) properties have recently led to the discovery of a subclass within the population of classical events (Dezalayet al. 1992, Kouveliotouet al. 1993). Bursts belonging to this subclass are characterized by short durations, typically less than 2 seconds, and harder spectra on average. Using the PHEBUS GRB data set, we analyse the distributions of peak intensity, hardness ratio, and duration of the two subclasses. We also compare the sum spectra obtained with the brightest events to determine the ratio of total energies observed for each population.  相似文献   

12.
The correlation between distant Gamma-Ray Bursts (GRBs) and foreground galaxy clusters is re-examined by using the well localized (with an accuracy down to a few arcsec) Swift/XRT GRBs.The galaxy clusters are compiled from both the X-ray selected ROSAT brightest cluster sample (BCS) and the BCS extension by requiring δ≧ 0° and b ≧ 20°.The Swift/XRT GRBs fulfilling the above selection criteria are cross-correlated with the clusters.Both Nearest-Neighbor analysis and the angular two-point cross-correlation function show that there is not enough evidence supporting the correlation between the GRBs and foreground clusters.We suggest that the non-correlation is probably related to the GRB number-flux relation slope.  相似文献   

13.
We have obtainedK-band imaging observations of Gamma-Ray Burst (GRB) host galaxies with the near-infrared spectro-imager ISAAC installed on the Very Large Telescope at Paranal (Chile). The derivedK magnitudes, combined with other photometric data taken from the literature, are used to investigate theR-K colors of GRB hosts. We do not find any extremely reddened starbursts in our sample, despite the capability of GRBs to trace star formation even in dusty regions. The observedR-K colors are on the contrary typical of irregular and spiral blue galaxies at high redshift.  相似文献   

14.
We present details of one operational ground-based experiment for optical detection of GRBs and two which are under consideration/development. The wide-field CCD camera is already in manual burst alert operation with promising results. The Optical Transient Monitor is a CCD-based double monitor suitable for network use for reliable detection of short-lived phenomena in the sky. The system is well suited for correlated efforts with GRB projects. The third experiment is a robotic telescope with automatic response to GRB burst alert messages received via the Internet link. It is expected to get CCD frames with a FOV of 20 deg (needed for BACODINE triggers) of positions of newly detected GRBs within 1 minute.  相似文献   

15.
The observations of the prompt emission of gamma ray bursts (GRB) by GLAST Burst Monitor (GBM), on board Fermi Gamma-ray Space Telescope, suggest the presence of a significant thermal spectral component, whose origin is not well understood. Recently, it has been shown that for long duration GRBs, the spectral width as defined as the logarithm of the ratio of the energies at which the spectrum falls to half its peak value, lie in the range of 0.84–1.3 with a median value of 1.07. Thus, while most of the GRB spectra are found to be too narrow to be explained by synchrotron emission from an electron distribution, they are also significantly broader than a blackbody spectrum whose width should be 0.54. Here, we consider the possibility that an intrinsic thermal spectrum from a fire-ball like model, may be observed to be broadened if the system undergoes a rapid temperature evolution. We construct a toy-model to show that for bursts with durations in the range 5–70 s, the widths of their 1 second time-averaged spectra can be at the most ≲ 0.557. Thus, while rapid temperature variation can broaden the detected spectral shape, the observed median value of ∼ 1.07 requires that there must be significant sub-photospheric emission and/or an anisotropic explosion to explain the broadening for most GRB spectra.  相似文献   

16.
SVOM是中法合作研制的以探测伽玛暴为目标的天文卫星,数据处理对实现其科学目标具有重要意义.脚本语言高效灵活的特点使其特别适合于SVOM科学数据的处理需求.以Jython为例展示了脚本语言在SVOM科学中心的数据处理过程中的应用,分析了脚本语言的优势和适用范围,剖析了脚本语言的弱点并提出了针对性的解决方案.脚本语言在SVOM数据处理中的成功应用,不仅为SVOM科学中心数据处理等系统提供优秀解决方案,也会为国内其他空间天文项目的数据处理方法研究开辟一条新的途径.  相似文献   

17.
The extremely energetic ( approximately 10-4 ergs cm-2) gamma-ray burst (GRB) of 1999 December 8 was triangulated to an approximately 14 arcmin2 error box approximately 1.8 days after its arrival at Earth with the third interplanetary network (IPN), which consists of the Ulysses, Near-Earth Asteroid Rendezvous, and Wind spacecraft. Radio observations with the Very Large Array approximately 2.7 days after the burst revealed a bright fading counterpart whose position is consistent with that of an optical transient source with a redshift of 0.707. We present the time history, peak flux, fluence, and refined 1.3 arcmin2 error box of this event and discuss its energetics. This is the first time that a counterpart has been found for a GRB localized only by the IPN.  相似文献   

18.
定义了一个新的量,曲率宽度,去检查同步模型与伽玛射线暴(GRB)光谱的一致性.此量用于测量GRB中辐射能谱(νFν,ν和Fν分别是频率和随频率变化的能量流量)峰值处的光谱拐折锐度.然后使用它检查了理论同步模型与观测到的GRB光谱之间的一致性.首先计算几种典型的同步模型的曲率宽度,包括单能、单幂律和拐折幂律电子同步模型.其次从Fermi/GBM (Gamma-ray Burst Monitor)长GRB时间分辨光谱目录中选择包含1198个光谱的GRB样本,将光谱与常用的经验模型拟合,并计算最佳拟合模型的光谱曲率宽度.通过比较两个曲率宽度,发现大多数样本与同步模型不一致,因为同步模型的光谱拐折比数据的光谱拐折更加平滑.结果表明同步模型很难适合大多数观测到的GRB光谱.此外,在暴脉冲中发现光子流量和曲率宽度之间存在强的反相关性,这表明流量越高,光谱拐折越尖锐,或者与同步模型的偏差就越大.  相似文献   

19.
Long gamma-ray bursts (GRBs) are important for the study of the Universe near and beyond the epoch of reionization. In this paper, we describe the characteristics of an 'ideal' instrument that can be used to search for GRBs at z ≥ 6–10. We find that the detection of these objects requires soft-band detectors with high sensitivity and a moderately large field of view. In light of these results, we compare available and planned GRB missions, deriving conservative predictions of the number of high-redshift GRBs detectable by these instruments along with the maximum accessible redshift. We show that the Swift satellite will be able to detect various GRBs at z ≥ 6, and likely at z ≥ 10 if the trigger threshold is decreased by a factor of ∼2. Furthermore, we find that INTEGRAL and GLAST are not the best tools to detect bursts at z ≥ 6, the former being limited by the small field of view, and the latter by its hard energy band and relatively low sensitivity. Finally, future missions ( SVOM , EDGE and, in particular, EXIST ) will provide a good sample of GRBs at z ≥ 6 within a few years of operation.  相似文献   

20.
We calculate the high-energy (sub-GeV to TeV) prompt and afterglow emission of GRB 080319B that was distinguished by a naked-eye optical flash and by an unusual strong early X-ray afterglow. There are three possible sources for high-energy emission: the prompt optical and γ-ray photons IC scattered by the accelerated electrons, the prompt photons IC scattered by the early external reverse-forward shock electrons, and the higher band of the synchrotron and the synchrotron self-Compton emission of the external shock. There should have been in total hundreds of high-energy photons detectable for the Large Area Telescope onboard the Fermi satellite, and tens of photons of those with energy >10 GeV. The >10 GeV emission had a duration about twice that of the soft γ-rays. Astro-rivelatore Gamma a Immagini Leggero (AGILE) could have observed these energetic signals if it was not occulted by the Earth at that moment. The physical origins of the high-energy emission detected in GRB 080514B, GRB 080916C and GRB 081024B are also discussed. These observations seem to be consistent with the current high-energy emission models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号