首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of the impact craters on Earth larger than 20 km in diameter, 10-15% (3 out of 28) are doublets, having been formed by the simultaneous impact of two well-separated projectiles. The most likely scenario for their formation is the impact of well-separated binary asteroids. If a population of binary asteroids is capable of striking the Earth, it should also be able to hit the other terrestrial planets as well. Venus is a promising planet to search for doublet craters because its surface is young, erosion is nearly nonexistent, and its crater population is significantly larger than the Earth's. After a detailed investigation of single craters separated by less than 150 km and “multiple” craters having diameters greater than 10 km, we found that the proportion of doublet craters on Venus is at most 2.2%, significantly smaller than Earth's, although several nearly incontrovertible doublets were recognized. We believe this apparent deficit relative to the Earth's doublet population is a consequence of atmospheric screening of small projectiles on Venus rather than a real difference in the population of impacting bodies. We also examined “splotches,” circular radar reflectance features in the Magellan data. Projectiles that are too small to form craters probably formed these features. After a careful study of these patterns, we believe that the proportion of doublet splotches on Venus (14%) is comparable to the proportion of doublet craters found on Earth (10-15%). Thus, given the uncertainties of interpretation and the statistics of small numbers, it appears that the doublet crater population on Venus is consistent with that of the Earth.  相似文献   

2.
Abstract— We surveyed the impact crater populations of Venus and the Moon, dry targets with and without an atmosphere, to characterize how the 3‐dimensional shape of a crater and the appearance of the ejecta blanket varies with impact angle. An empirical estimate of the impact angle below which particular phenomena occur was inferred from the cumulative percentage of impact craters exhibiting different traits. The results of the surveys were mostly consistent with predictions from experimental work. Assuming a sin2θ dependence for the cumulative fraction of craters forming below angle θ, on the Moon, the following transitions occur: >?45 degrees, the ejecta blanket becomes asymmetric; >?25 degrees, a forbidden zone develops in the uprange portion of the ejecta blanket, and the crater rim is depressed in that direction; >?15 degrees, the rim becomes saddle‐shaped; >?10 degrees, the rim becomes elongated in the direction of impact and the ejecta forms a “butterfly” pattern. On Venus, the atmosphere causes asymmetries in the ejecta blanket to occur at higher impact angles. The transitions on Venus are: >?55 degrees, the ejecta becomes heavily concentrated downrange; >?40 degrees, a notch in the ejecta that extends to the rim appears, and as impact angle decreases, the notch develops into a larger forbidden zone; >?10 degrees, a fly‐wing pattern develops, where material is ejected in the crossrange direction but gets swept downrange. No relationship between location or shape of the central structure and impact angle was observed on either planet. No uprange steepening and no variation in internal slope or crater depth could be associated with impact angle on the Moon. For both planets, as the impact angle decreases from vertical, first the uprange and then the downrange rim decreases in elevation, while the remainder of the rim stays at a constant elevation. For craters on Venus >?15 km in diameter, a variety of crater shapes are observed because meteoroid fragment dispersal is a significant fraction of crater diameter. The longer path length for oblique impacts causes a correlation of clustered impact effects with oblique impact effects. One consequence of this correlation is a shallowing of the crater with decreasing impact angle for small craters.  相似文献   

3.
In order to study the geomorphic evolution and lifetimes of lunar craters, data were collected from (i) 32mare andterra provinces of the nearside of the Moon using the L.P.L. catalog; (ii) amare area in Sinus Medii, using direct observations of Lunar Orbiter photos, and (iii) aterra area on the farside using direct observations of Zond-8 photos. The theory presented in a previous publication is expanded and applied to the data.The following conclusions are obtained. (1) Steady-state conditions occur on the studiedmare surfaces for craters of diameter up to approximately 220 m, and on the studiedterra surfaces for craters of diameter up to at least 50 km. (2) The average lifetime of a crater, in addition of being a function of the meteoroidal flux, is a steep function of the diameter of the crater. (3) The correlation is good between a geomorphic classification of craters based on visual comparison with standard craters and a classification of craters based on their depth-diameter ratio, resulting in a coefficient of rank correlation of 0.64. (4) When craters are classified as young, mature, and old, the length of time spent as young is less than a few percent of the total lifetime of the crater; the time spent as mature is 10 to 30%; and as much as 80% is spent as an old crater. Within the error of the calculations, these values are independent of crater diameter and apply to both pre-mare and post-mare craters, indicating that they are also independent of the intensity of the meteoroidal flux. (5) The average lifetime of a 50 km crater in pre-mare times is estimated to be less than 0.3×109 years. (6) The average lifetime of a 50 km crater in post-mare times is estimated to be between 3×1011 and 1014 years. (7) The average meteoroidal flux in pre-mare times is estimated to be three to six orders of magnitude more intense than in post-mare times.  相似文献   

4.
The surface of Venus viewed in Arecibo radar images has a small population of bright ring-shaped features. These features are interpreted as the rough or blocky deposits surrounding craters of impact or volcanic origin. Population densities of these bright ring features are small compared with visually identified impact craters on the surface of the Moon and volcanic craters on Io. However, they are comparable to the short-lived radar-bright haloes associated with ejecta deposits of young craters on the Moon. This suggests that bright radar signatures of the deposits around Venusian craters are obliterated by an erosional or sedimentary process. We have evaluated the hypothesis that bright radar crater signatures were obliterated by a global mantle deposited after impacts of very large bolides. The mechanism accounts satisfactorily for the population of features with internal diameters greater than 64 km. The measured population of craters with internal diameters between 32 and 64 km is difficult to account for with the model but it may be underestimated because of poor radar resolution (5 to 20 km). Other possible mechanisms for the removal of radar bright crater signatures include in situ chemical weathering of rocks and mantling by young volcanic deposits. All three alternatives may be consistent with existing radar roughness and cross-section data and Venera 8, 9, and 10 data. However, imaging observations from a lander on the rolling plains or lowlands may verify or disprove the proposed global mantling. New high-resolution ground-based radar data can also contribute new information on the nature and origin of these radar bright ring features.  相似文献   

5.
Abstract— Asteroids tens to hundreds of meters in diameter constitute the most immediate impact hazard to human populations, yet the rate at which they arrive at Earth's surface is poorly known. Astronomic observations are still incomplete in this size range; impactors are subjected to disruption in Earth's atmosphere, and unlike the Moon, small craters on Earth are rapidly eroded. In this paper, we first model the atmospheric behavior of iron and stony bodies over the mass range 1–1012 kg (size range 6 cm‐1 km) taking into account deceleration, ablation, and fragmentation. Previous models in meteoritics deal with rather small masses (<105–106 kg) with the aim of interpreting registered fireballs in atmosphere, or with substantially larger objects without taking into account asteroid disruption to model cratering processes. A few earlier attempts to model terrestrial crater strewn fields did not take into account possible cascade fragmentation. We have performed large numbers of simulations in a wide mass range, using both the earlier “pancake” models and also the separated fragments model to develop a statistical picture of atmosphere‐bolide interaction for both iron and stony impactors with initial diameters up to ?1 km. Second, using a compilation of data for the flux at the upper atmosphere, we have derived a cumulative size‐frequency distribution (SFD) for upper atmosphere impactors. This curve is a close fit to virtually all of the upper atmosphere data over 16 orders of magnitude. Third, we have applied our model results to scale the upper atmosphere curve to a flux at the Earth's surface, elucidating the impact rate of objects <1 km diameter on Earth. We find that iron meteorites >5 times 104 kg (2.5 m) arrive at the Earth's surface approximately once every 50 years. Iron bodies a few meters in diameter (105–106 kg), which form craters ?100 m in diameter, will strike the Earth's land area every 500 years. Larger bodies will form craters 0.5 km in diameter every 20,000 years, and craters 1 km in diameter will be formed on the Earth's land area every 50,000 years. Tunguska events (low‐level atmospheric disruption of stony bolides >108 kg) may occur every 500 years. Bodies capable of producing hazardous tsunami (?200 m diameter projectiles) should strike the Earth's surface every ?100,000 years. This data also allows us to assess the completeness of the terrestrial crater record for a given area over a given time interval.  相似文献   

6.
The high-resolution Voyager images of Ganymede show a class of fresh craters 6–89 km in diameter which is distinguished by an ejecta blanket similar to those seen for some types of Martian craters. One hundred and eighty-five were identified and studied for trends with respect to latitude, longitude, and terrain type. No correlation of the ratio of ejecta diameter to crater diameter was found as a function of latitude or longitude, and there is only a suggestion of a trend in this ratio with respect to major terrain types. Central peak frequency is greatest for the smaller crater diameters. Central pit occurrence dominates central peak occurrence at crater diameters ?35 km. We conclude that the ejecta morphology probably results from impact into an icy target. The question of whether atmospheric ejecta-particle drag contributes to ejecta blanket morphologies on planets with an atmospheric cannot be resolved entirely from the Voyager images. The image resolution is insufficient to show diagnostic flow features on the ejecta, if they exist, or to detect evidence of any other ejecta deposits which would lie beyond the pedestal, predicted by some researchers to exist only on bodies with an atmosphere.  相似文献   

7.
On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186–176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73–83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin’s density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin’s model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus’ thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus’ upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEX pericenter altitude to below 170 km.  相似文献   

8.
Pangboche crater (17.2°N, 226.7°E; 10.4 km dia.) lies close to the summit of Olympus Mons volcano, Mars, at an elevation of ~20.9 km above the datum. Given a scale height of 11.1 km for the atmosphere, this relatively large fresh crater most likely formed at an atmospheric pressure <1 mbar in essentially volatile‐free young lava flows. Detailed analysis of Pangboche crater from High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) images reveals that volatile‐related features (e.g., fluidized ejecta layers and pitted floor material) are absent. In contrast, abundant impact melt occurs on the floor, inner walls, and rim of the crater, and there is an extensive field of secondary craters that extend up to approximately 45 km from the rim crest. All of these attributes argue that it was the absence of volatiles in the target rocks at the time of crater formation, rather than the thin atmosphere, which had a controlling influence on crater morphology. Digital elevation data derived from the CTX images reveal that Pangboche crater has a depth of about 954 m (depth/diameter = approximately 0.092) and that uplifted target rocks comprise about 58% of the relief of the 180 m‐high north rim. As the target material comprised a sequence of layered lava flows, Pangboche crater may well represent the best crater on Mars for direct comparison with craters formed on the Moon (permitting variations in gravitational effects to be investigated) or on Mercury (allowing the role of the atmosphere to be studied).  相似文献   

9.
This paper investigates the physics of meteoroid breakup in the atmosphere and its implications for the observed features of strewn fields. There are several effects which cause dispersion of the meteoroid fragments: gravity, differential lift of the fragments, bow shock interaction just after breakup, centripetal separation by a rotating meteoroid, and possibly a dynamical transverse separation resulting from the crushing deceleration in the atmosphere. Of these, we show that gravity alone can produce the common pattern in which the largest crater occurs at the downrange end of the scatter ellipse. The average lift-to-drag ratio of the tumbling fragments must be less than about 10?3, otherwise small fragments would produce small craters downrange of the main crater, and this is not generally observed. The cross-range dispersion is probably due to the combined effects of bow shock interaction, crushing deceleration, and possibly spinning of the meteoroid. A number of terrestrial strewn fields are discussed in the light of these ideas, which are formulated quantitatively for a range of meteoroid velocities, entry angles, and crushing strengths. It is found that when the crater size exceeds about 1 km, the separation between the fragments upon landing is a fraction of their own diameter, so that the crater formed by such a fragmented meteoroid is almost indistinguishable from that formed by a solid body of the same total mass and velocity.  相似文献   

10.
The Venera 8 descent module measured pressure, temperature, winds and illumination as a function of altitude in its landing on July 22, 1972, just beyond the terminator in the illuminated hemisphere of Venus. The surface temperature and pressure is 741 ± 7°K and 93 ± 1.5kgcm?2, consistent with early Venera observations and showing either no diurnal variation or insignificant diurnal variation in temperature and pressure in the vicinity of the morning terminator. The atmosphere is adiabatic down to the surface. The horizontal wind speed is low near the surface, about 35m/sec between 20 and 40km altitude, and increasing rapidly above 48km altitude to 100–140m/sec, consistent with the 4-day retrograde rotation of the ultraviolet clouds. The illumination at the center of the day hemisphere of Venus is calculated to be about 1% of the solar flux at the top of the atmosphere, consistent with greenhouse models and high enough to permit photography of the Venus surface by future missions. The attenuation below 35km altitude is explained by Rayleigh scattering with no atmospheric aerosols; above 35km there must be substantial extinction of incident light.  相似文献   

11.
The rayed crater Zunil and interpretations of small impact craters on Mars   总被引:1,自引:0,他引:1  
A 10-km diameter crater named Zunil in the Cerberus Plains of Mars created ∼107 secondary craters 10 to 200 m in diameter. Many of these secondary craters are concentrated in radial streaks that extend up to 1600 km from the primary crater, identical to lunar rays. Most of the larger Zunil secondaries are distinctive in both visible and thermal infrared imaging. MOC images of the secondary craters show sharp rims and bright ejecta and rays, but the craters are shallow and often noncircular, as expected for relatively low-velocity impacts. About 80% of the impact craters superimposed over the youngest surfaces in the Cerberus Plains, such as Athabasca Valles, have the distinctive characteristics of Zunil secondaries. We have not identified any other large (?10 km diameter) impact crater on Mars with such distinctive rays of young secondary craters, so the age of the crater may be less than a few Ma. Zunil formed in the apparently youngest (least cratered) large-scale lava plains on Mars, and may be an excellent example of how spallation of a competent surface layer can produce high-velocity ejecta (Melosh, 1984, Impact ejection, spallation, and the origin of meteorites, Icarus 59, 234-260). It could be the source crater for some of the basaltic shergottites, consistent with their crystallization and ejection ages, composition, and the fact that Zunil produced abundant high-velocity ejecta fragments. A 3D hydrodynamic simulation of the impact event produced 1010 rock fragments ?10 cm diameter, leading to up to 109 secondary craters ?10 m diameter. Nearly all of the simulated secondary craters larger than 50 m are within 800 km of the impact site but the more abundant smaller (10-50 m) craters extend out to 3500 km. If Zunil is representative of large impact events on Mars, then secondaries should be more abundant than primaries at diameters a factor of ∼1000 smaller than that of the largest primary crater that contributed secondaries. As a result, most small craters on Mars could be secondaries. Depth/diameter ratios of 1300 small craters (10-500 m diameter) in Isidis Planitia and Gusev crater have a mean value of 0.08; the freshest of these craters give a ratio of 0.11, identical to that of fresh secondary craters on the Moon (Pike and Wilhelms, 1978, Secondary-impact craters on the Moon: topographic form and geologic process, Lunar Planet. Sci. IX, 907-909) and significantly less than the value of ∼0.2 or more expected for fresh primary craters of this size range. Several observations suggest that the production functions of Hartmann and Neukum (2001, Cratering chronology and the evolution of Mars, Space Sci. Rev. 96, 165-194) predict too many primary craters smaller than a few hundred meters in diameter. Fewer small, high-velocity impacts may explain why there appears to be little impact regolith over Amazonian terrains. Martian terrains dated by small craters could be older than reported in recent publications.  相似文献   

12.
Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan’s surface imaged by Cassini’s high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan’s craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan’s surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan’s atmosphere in destroying most but not all small projectiles.  相似文献   

13.
We have identified two classes of crater clusters on Mars. One class is “small clusters” (crater diameter D∼ tens m, spread over few hundred m), fitting our earlier calculations for the breakup of weak stone meteoroids in the martian atmosphere [Popova, O.P., Nemtchinov, I.V., Hartmann, W.K., 2003. Meteorit. Planet. Sci. 38, 905-925]. The second class is “large clusters” (D∼ few hundred m, spread over 2 to 30 km), which do not fit any predictions for breakup of known meteoroid types. We consider a range of possible explanations. The best explanation relates to known, high-speed ejection of large, semi-coherent, fractured rock masses from the surface, as secondary debris from primary impacts. The clusters are probably due to breakup of partly fracture, few-hundred-meter scale weak blocks, especially during ascent (producing moderate lateral spreading velocities among the fragments during sub-orbital flight), and also during descent of the resulting swarm. These conclusions illuminate the launch conditions of martian meteorites, including fragmentation processes, although more work is needed on the lateral separation of fragments (during either atmosphere descent or ascent) due to the effects of volatiles in the projectiles. Martian meteorites probably come from smaller martian craters than the clusters' source craters. The latter probably have D?85 km, although we have not ruled out diameters as small as 15 km.  相似文献   

14.
Calculations are made to determine the sizes of stone and iron meteoroids which could penetrate the atmosphere of Venus and cause hypervelocity impact craters on the planet's surface. Using scaling relationships based on kinetic energy, impact crater size is related to meteoriod size. Finally, it is determined that the smallest impact craters that might exist on Venus are on the order of 150 to 300 meters in diameter.  相似文献   

15.
Abstract— Although tenuous, the atmosphere of Mars affects the evolution of impact‐generated vapor. Early‐time vapor from a vertical impact expands symmetrically, directly transferring a small percentage of the initial kinetic energy of impact to the atmosphere. This energy, in turn, induces a hemispherical shock wave that propagates outward as an intense airblast (due to high‐speed expansion of vapor) followed by a thermal pulse of extreme atmospheric temperatures (from thermal energy of expansion). This study models the atmospheric response to such early‐time energy coupling using the CTH hydrocode written at Sandia National Laboratories. Results show that the surface surrounding a 10 km diameter crater (6 km “apparent” diameter) on Mars will be subjected to intense winds (?200 m/s) and extreme atmospheric temperatures. These elevated temperatures are sufficient to melt subsurface volatiles at a depth of several centimeters for an ice‐rich substrate. Ensuing surface signatures extend to distal locations (?4 apparent crater diameters for a case of 0.1% energy coupling) and include striations, thermally armored surfaces, and/or ejecta pedestals—all of which are exhibited surrounding the freshest high‐latitude craters on Mars. The combined effects of the atmospheric blast and thermal pulse, resulting in the generation of a crater‐centered erosion‐resistant armored surface, thus provide a new, very plausible formation model for high‐latitude Martian pedestal craters.  相似文献   

16.
Abstract— We investigate the action of the martian atmosphere on entering meteoroids for present and past atmospheres with various surface pressures to predict the smallest observable craters, and to understand the implications for the size distributions of craters on Mars and meteoroids in space. We assume different strengths appropriate to icy, stone, and iron bodies and test the results against available data on terrestrial bolides. Deceleration, ablation, and fragmentation effects are included. We find that the smallest icy, stone, and iron meteoroids to hit the martian ground at crater forming speeds of ≥500 m/s have diameters of about 2 m, 0.03‐0.9 m (depending on strength), and 0.01 m, respectively, in the current atmosphere. For hypothetical denser past atmospheres, the cutoff diameters rise. At a surface pressure of 100 mb, the cutoff diameters are about 24 m, 5–12 m, and 0.14 m for the 3 classes. The weaker stony bodies in the size range of about 1–30 m may explode at altitudes of about 10–20 km above the ground. These figures imply that under the present atmosphere, the smallest craters made by these objects would be as follows: by ice bodies, craters of diameter (D) ?8 m, by stones about 0.5–6 m, and by irons, about 0.3 m. A strong depletion of craters should, thus, occur at diameters below about 0.3 m to 5 m. Predicted fragmentation and ablation effects on weak meteoroids in the present atmosphere may also produce a milder depletion below D ?500 m, relative to the lunar population. But, this effect may be difficult to detect in present data because of additional losses of small craters due to sedimentation, dunes, and other obliteration effects. Craters in strewn fields, caused by meteoroid fragmentation, will be near or below present‐day resolution limits, but examples have been found. These phenomena have significant consequences. Under the present atmosphere, the smallest (decimeter‐scale) craters in sands and soils could be quickly obliterated but might still be preserved on rock surfaces, as noted by Hörz et al. (1999). Ancient crater populations, if preserved, could yield diagnostic signatures of earlier atmospheric conditions. Surfaces formed under past denser atmospheres (few hundred mbar), if preserved by burial and later exposed by exhumation, could show: a) striking depletions of small craters (few meter sizes up to as much as 200 m), relative to modern surfaces; b) more clustered craters due to atmospheric breakup; and c) different distributions of meteorite types, with 4 m to 200 m craters formed primarily by irons instead of by stones as on present‐day Mars. Megaregolith gardening of the early crust would be significant but coarser than the gardening of the ancient lunar uplands.  相似文献   

17.
Abstract— We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ?29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ?8120 km2 ejecta blanket. Because the pre‐impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre‐impact terrain) is ?380 km3 the volume of materials above the pre‐impact terrain is ?425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ?100 m of additional ejecta thickness being deposited down‐range compared to the up‐range value at the same radial distance from the rim crest. Distal ramparts are 60 to 125 m high, comparable to the heights of ramparts measured at other multi‐layered ejecta craters. Tooting crater serves as a fresh end‐member for the large impact craters on Mars formed in volcanic materials, and as such may be useful for comparison to fresh craters in other target materials.  相似文献   

18.
Abstract— Meteor Crater is one of the first impact structures systematically studied on Earth. Its location in arid northern Arizona has been ideal for the preservation of the structure and the surviving meteoric material. The recovery of a large amount of meteoritic material in and around the crater has allowed a rough reconstruction of the impact event: an iron object 50 m in diameter impacted the Earth's surface after breaking up in the atmosphere. The details of the disruption, however, are still debated. The final crater morphology (deep, bowl‐shaped crater) rules out the formation of the crater by an open or dispersed swarm of fragments, in which the ratio of swarm radius to initial projectile radius Cd is larger than 3 (the final crater results from the sum of the craters formed by individual fragments). On the other hand, the lack of significant impact melt in the crater has been used to suggest that the impactor was slowed down to 12 km/s by the atmosphere, implying significant fragmentation and fragments' separation up to 4 initial radii. This paper focuses on the problem of entry and motion through the atmosphere for a possible Canyon Diablo impactor as a first but necessary step for constraining the initial conditions of the impact event which created Meteor Crater. After evaluating typical models used to investigate meteoroid disruption, such as the pancake and separated fragment models, we have carried out a series of hydrodynamic simulations using the 3D code SOVA to model the impactor flight through the atmosphere, both as a continuum object and a disrupted swarm. Our results indicate that the most probable pre‐atmospheric mass of the Meteor Crater projectile was in the range of 4.108to 1.2.109kg (equivalent to a sphere 46–66 m in diameter). During the entry process the projectile lost probably 30% to 70% of its mass, mainly because of mechanical ablation and gross fragmentation. Even in the case of a tight swarm of particles (Cd < 3), small fragments can separate from the crater‐forming swarm and land on the plains (tens of km away from the crater) as individual meteorites. Starting from an impactor pre‐atmospheric velocity of ?18 km/s, which represents an average value for Earth‐crossing asteroids, we find that after disruption, the most probable impact velocity at the Earth's surface for a tight swarm is around 15 km/s or higher. A highly dispersed swarm would result in a much stronger deceleration of the fragments but would produce a final crater much shallower than observed at Meteor Crater.  相似文献   

19.
We investigate the elevated crater rims of lunar craters. The two main contributors to this elevation are a structural uplift of the preimpact bedrock and the emplacement of ejecta on top of the crater rim. Here, we focus on five lunar complex mare craters with diameters ranging between 16 and 45 km: Bessel, Euler, Kepler, Harpalus, and Bürg. We performed 5281 measurements to calculate precise values for the structural rim uplift and the ejecta thickness at the elevated crater rim. The average structural rim uplift for these five craters amounts to SRU = 70.6 ± 1.8%, whereas the ejecta thickness amounts to ET = 29.4 ± 1.8% of the total crater rim elevation. Erosion is capable of modifying the ratio of ejecta thickness to structural rim uplift. However, to minimize the impact of erosion, the five investigated craters are young, pristine craters with mostly preserved ejecta blankets. To quantify how strongly craters were enlarged by crater modification processes, we reconstructed the dimensions of the transient crater. The difference between the transient crater diameter and the final crater diameter can extend up to 11 km. We propose reverse faulting and thrusting at the final crater rim to be one of the main contributing factors of forming the elevated crater rim.  相似文献   

20.
A hypervelocity oblique impact results in a downrange-moving vapor cloud, a significant fraction of which is derived from the projectile. Since the vapor cloud expands to great extent and becomes very tenuous quickly on a planet with a thin or no atmosphere, it does not leave a well-defined geologic expression. The thick atmosphere of Venus, however, is sufficient to contain such a rapidly expanding vapor cloud. As a result of atmospheric interactions, impact vapor condenses and contributes to run-out flows around craters on Venus. Previous results of both laboratory experiments and simple semi-analytical calculations indicate that an impact-vapor origin can account for the morphology of run-out flows on Venus most consistently. However, the detailed dynamics and geologic record of downrange-moving impact vapor clouds in Venus's atmosphere are not understood quantitatively. To approach these problems, we carried out two-dimensional hydrocode calculations. Parametric studies of these hydrocode calculations yield simple scaling laws for both the total downrange travel distance and the final temperature of impact vapor clouds under conditions on Venus. Under typical impact conditions, impact vapor clouds travel downrange more than a crater radius prior to the completion of crater formation. Furthermore, the scaling law for the total travel distance is compared with observations for the downrange offset of the source regions of run-out flows around oblique craters. The results of this comparison suggest that energy/momentum-partitioning processes other than pure shock coupling may play important roles in hypervelocity impact at planetary scales. The results of hydrocode calculations also indicate that the terminal temperature of the impact vapor is close to the condensation temperatures of silicates, suggesting that two scenarios are possible for expected range of impact conditions: 1. Impact vapor condenses and forms run-out flows. 2. Impact vapor fails to condense and leaves no run-out flows. Consequently, natural variation in impact angle, velocity, and projectile composition may account for partial occurrence of run-out flows around impact craters on Venus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号