首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
Spacecraft radio occultation measurements imply the presence of a nonuniformly mixed gaseous absorber within, but mostly below, the main cloud layer of sulfuric acid—water droplets measured by Pioneer-Venus. Preliminary considerations of the amount, distribution, and effects of sulfur dioxide and other gases, which apparently are associated with and produce the cloud, indicate that they constitute an important, and probably the predominant, source of the observed microwave opacity of the middle atmosphere of Venus.  相似文献   

2.
Recent papers attributing the observed microwave opacity of the middle atmosphere of Venus to gaseous sulfur dioxide (SO2) and other cloud-related gases have motivated laboratory measurements of their microwave absorbing properties under simulated conditions for this region. In the pressure range from 1 to 5 atmospheres and in the temperature range from 297 to 355°K, the absorption of SO2 in a carbon dioxide (CO2) atmosphere, at 2.257 and 8.342 GHz, has been found to be approximately 50% larger than that calculated from Van Vleck-Weisskopf theory. The measured absorption is about 25 × 106 q?2p1.20 T?3.1 (dB km?1), where q is the sulfur dioxide number mixing ratio, ? is frequency in gigahertz, p is pressure in atmospheres, and T is temperature in degrees Kelvin. This represents the best-fit expression to the observed pressure dependence, while theoretical values of frequency and temperature dependence are accepted as being consistent with the measurements. Another cloud-related gas, sulfur trioxide (SO3), was also tested in a CO2 atmosphere and found to be relatively transparent. These results reduce the amount of SO2 in the Venus middle atmosphere required to explain the opacity measured by radio occulatation, but this amount still exceeds the abundance measured in situ by atmospheric probes, suggesting that there must be another important source of opacity. Preliminary measurements of the 13-cm absorptivity of gaseous sulfuric acid (H2SO4) show it to be a strong microwave absorber, and thus likely to be responsible for a significant and possibly major part of the observed opacity.  相似文献   

3.
We present new 6.0 and 21.1 cm interferometric observations of Venus. When combined with our previous 3.12 cm work they provide s self-consistent set of high-resolution observations at three wavelengths covering a range in which the opacity of the Venus atmosphere varies by a factor of 50. Model calculations indicate that a model atmosphere of CO2 in adiabatic equilibrium containing uniformly mixed gaseous absorbers surrounding a dielectric sphere cannot simultaneously and adequately predict the radio interferometric measurements at all wavelengths together with the radar and radio occultation measurements.  相似文献   

4.
Jobea Cimino 《Icarus》1982,51(2):334-357
The opportunity to determine the planetwide temperature and cloud structure of Venus using radio occultation techniques arose with Pioneer Venus. Amplitude and Doppler data provided by the radio occultation experiment offered a unique and powerful means of examining the atmospheric properties in the lower cloud region.Absorption due to gaseous components of the atmosphere was subtracted from the measured absorption coefficient profiles before they were used to compute cloud mass contents. This absorption was found to represent a small part of the total absorption, depending on the latitude. In the main cloud deck, gaseous absorption contributes 10 to 20%, however, at the bottom of the detected absorption layer the sulfuric acid vapor contributes up to 100% due to increased vapor pressures. The clouds are the primary contributing absorbers in the 1- to 3-bar level of the Venus atmosphere. Below about 3 bars, depending on the latitude, absorption due to sulfuric acid vapor dominates.If a cloud particle model consisting of a solid nonabsorbing dielectric sphere with a concentric liquid sulfuric acid coating is invoked, the absorptivity of the particles increases from that of a pure sulfuric acid liquid sphere, and the mass content derived from the absorption coefficient profiles decreases. As the ratio of the core radius to the total radius (q) increases, absorption increases by more than a factor of 10 for high values of q. In the case of pure sulfuric acid droplets, the conductivity is sufficiently high that some of the field is excluded from the interior of the droplet thereby reducing the absorption. When a dielectric core of nonabsorbing material is introduced, the surface charge density is reduced and the absorption increases.The mass contents for all orbits in the equatorial region of Venus were calculated using values of q from 0 to 1. The resulting profiles match the probe mass content profiles at similar locations when a q of 0.97 is chosen.The wavelength dependence of the absorption for the spherical shell model varies with q from 1/λ2 for pure liquid to λ0.2 for a large core. A q of from 0.96 to 0.98 results in a wavelength dependence of 1/λ1.0 to 1/λ1.4 which matches the radio occultation absorption wavelength dependence and the microwave opacity wavelength dependence.Mass content profiles using a q of 0.97 were determined for occultations in the polar, collar, midlatitudinal, and equatorial regions assuming q remains constant over the planet. The results show considerable variability in both the level and the magnitude of the lower cloud deck. The cloud layer is lowest in altitude in the polar region. This might be expected as the temperature profile is cooler in the polar region than over the rest of the planet. The mass content is greatest in the polar and collar regions; however, many of the collar profiles were cut off due to fluctuations resulting from increased turbulence in the collar region. The mass contents are least dense in the midlatitude regions. There is a sharp lower boundary at about 1.5 bars in the equatorial and midlatitude regions and at about 2.5 bars in the polar region. Measurements made by the Particle Size Spectrometer and nephelometers also showed sharp lower cloud boundaries at this level.  相似文献   

5.
Sulfur dioxide has a strong and complex rotational spectrum in the microwave and far infrared regions. The microwave absorption due to SO2 in a CO2 mixture is calculated for conditions applicable to the Venus atmosphere. It is shown that at the concentrations detected by Pioneer-Venus in situ measurements, SO2 may be expected to contribute significantly to the microwave opacity of the Venus atmosphere. In particular, SO2 might provide the major source of opacity in the atmospheric region immediately below the main sulfuric acid cloud deck. The spectrum is largely nonresonant at the pressures where SO2 is expected to occur, however.  相似文献   

6.
Steffes PG  Klein MJ  Jenkins JM 《Icarus》1990,84(1):83-92
Laboratory measurements of Steffes (1986) have suggested that the intensity and shape of the microwave spectrum of Venus might be especially sensitive to the subcloud abundance of constituents such as SO2 and gaseous H2SO4. It was likewise suggested that some variations of the shape of the emission spectrum might occur between 1.5 and 3 cm (10 to 20 GHz), a wavelength range which had previously only been sparsely observed. As a result, coordinated observations of Venus emission were conducted at four wavelengths between 1.35 cm (22.2 GHz) and 3.6 cm (8.42 GHz) using the 43-m NRAO antenna at Green Bank, West Virginia, and the 64-m antenna at NASA's Deep Space Communication Complex, Goldstone, California. In this paper, we report the methodology and results of these observations, and compare the results with other observations and with calculated emission spectra. We conclude that the observed emission spectrum is consistent with an average subcloud abundance of gaseous H2SO4 in equatorial and midlatitude regions which is approximately 5 ppm. It is suggested that additional measurements of atmospheric microwave opacity be made with the Pioneer-Venus Orbiter Radio Occultation experiment to search for temporal and spatial variations in gaseous H2SO4 abundance in the Venus atmosphere. An upper limit for the subcloud abundance of SO2 is also determined.  相似文献   

7.
A condensing cloud parameterization is included in a super-rotating Venus General Circulation Model. A parameterization including condensation, evaporation and sedimentation of mono-modal sulfuric acid cloud particles is described. Saturation vapor pressure of sulfuric acid vapor is used to determine cloud formation through instantaneous condensation and destruction through evaporation, while pressure dependent viscosity of a carbon dioxide atmosphere is used to determine sedimentation rates assuming particles fall at their terminal Stokes velocity. Modifications are described to account for the large range of the Reynolds number seen in the Venus atmosphere.Two GCM experiments initialized with 10 ppm-equivalent of sulfuric acid are integrated for 30 Earth years and the results are discussed with reference to “Y” shaped cloud structures observed on Venus. The GCM is able to produce an analog of the “Y” shaped cloud structure through dynamical processes alone, with contributions from the mean westward wind, the equatorial Kelvin wave, and the mid-latitude/polar Mixed Rossby/Gravity waves. The cloud top height in the GCM decreases from equator to pole and latitudinal gradients of cloud top height are comparable to those observed by Pioneer Venus and Venus Express, and those produced in more complex microphysical models of the sulfur cycle on Venus. Differences between the modeled cloud structures and observations are described and dynamical explanations are suggested for the most prominent differences.  相似文献   

8.
A.T. Young 《Icarus》1973,18(4):564-582
Water solutions of sulfuric acid, containing about 75% H2SO4 by weight, have a refractive index within 0.01 of the values deduced from polarimetric observations of the Venus clouds. These solutions remain liquid at the cloud temperature, thus explaining the spherical shape of the cloud particles (droplets). The equilibrium vapor pressure of water above such solutions is 0.01 that of liquid water or ice, which accounts for the observed dryness of the cloud region. Furthermore, H2SO4 solutions of such concentration have spectra very similar to Venus in the 8–13 μm region; in particular, they explain the 11.2 μm band. Cold sulfuric acid solutions also seem consistent with Venus spectra in the 3–4 μm region. The amount of acid required to make the visible clouds is quite small, and is consistent with both the cosmic abundance of sulfur and the degree of out-gassing of the planet indicated by known atmospheric constituents. Sulfuric acid occurs naturally in volcanic gases, along with known constituents of the Venus atmosphere such as CO2, HCl, and HF ; it is produced at high temperature by reactions between these gases and common sulfate rocks. The great stability and low vapor pressure of H2SO4 and its water solutions explain the lack of other sulfur compounds in the atmosphere of Venus—a lack that is otherwise puzzling.Sulfuric acid precipitation may explain some peculiarities in Venera and Mariner data. Because sulfuric acid solutions are in good agreement with the Venus data, and because no other material that has been proposed is even consistent with the polarimetric and spectroscopic data, H2SO4 must be considered the most probable constituent of the Venus clouds.  相似文献   

9.
Bjarne S. Haugstad 《Icarus》1978,35(3):410-421
Turbulence in planetary atmospheres leads to both fluctuating and systematic errors in atmospheric profiles derived from Doppler measurements during radio occultation. If the upper atmospheres of Venus and Jupiter are about as turbulent as the earth's troposphere, we deduce rms fractional errors in temperature and pressure of less than ~ 10?2 for the Mariner 10 and Pioneer 10/11 occultation experiments. Fractional systematic errors are typically of the order of 10?6. These estimates depende rather weakly on quantities characterizing the atmosphere and the occultation, and it is conjectured that turbulence-induced errors in atmospheric profiles derived from Doppler measurements are always very small in the weak scattering limit  相似文献   

10.
Andrew T. Young 《Icarus》1983,56(3):568-577
Because sulfuric acid does not wet sulfur, composite drops in the atmosphere of Venus cannot have sulfur “cores,” but must instead have sulfur coats. Both components then communicate with the vapor phase. Drops that are fully coated with sulfur are immune to coalescence; this sets a limit to growth that may explain “Mode 3” particles. The sulfur coating is probably responsible for the anomalously low refractive indices derived from entry-probe nephelometer data. There appears to be about an order of magnitude less elemental sulfur than sulfuric acid in the clouds.  相似文献   

11.
《Planetary and Space Science》2006,54(13-14):1389-1397
We review the progress in our understanding of the composition of the Venus atmosphere since the publication of the COSPAR Venus International Reference Atmosphere volume in 1985. Results presented there were derived from data compiled in 1982–1983. More recent progress has resulted in large part from Earth-based studies of the near-infrared radiation from the nightside of the planet. These observations allow us to probe the atmosphere between the cloud tops and the surface. Additional insight has been gained through: (i) the analysis of ultraviolet radiation by satellites and rockets; (ii) data collected by the Vega 1 and 2 landers; (iii) complementary analyses of Venera 15 and 16 data; (iv) ground-based and Magellan radio occultation measurements, and (v) re-analyses of some spacecraft measurements made before 1983, in particular the Pioneer Venus and Venera 11, 13 and 14 data. These new data, and re-interpretations of older data, provide a much better knowledge of the vertical profile of water vapor, and more information on sulfur species above and below the clouds, including firm detections of OCS and SO. In addition, some spatial and/or temporal variations have been observed for CO, H2O, H2SO4, SO2, and OCS. New values of the D/H ratio have also been obtained.  相似文献   

12.
Paul G. Steffes 《Icarus》1985,64(3):576-585
Microwave absorption observed in the 35- to 48-km-altitude region of the Venus atmosphere has been attributed to the presence of gaseous sulfuric acid (H2SO4) in that region. This has motivated the laboratory measurement of the microwave absorption at 13.4- and 3.6-cm wavelengths from gaseous H2SO4 in a CO2 atmosphere under simulated conditions for that region. As part of the same experiments, upper limits on the saturation vapor pressure of gaseous H2SO4 have also been determined. The measurements for microwave absorption have been made in the 1- to 6-atm pressure range, with temperatures in the 500 to 575°K range. Using a theoretically derived temperature dependence, the best-fit expression for absorption from gaseous H2SO4 in a CO2 atmosphere at the 13.4-cm wavelength is 9.0 × 109 q(P)12T?3 (dB km?1), where q is the H2SO4 number mixing ratio, P is the pressure in atmospheres, and T is the temperature in degrees Kelvins. The best-fit expression for absorption at the 3.6-cm wavelength is 4.52 × 1010q(P)0.85T?3 (dB km?1). The inferred H2SO4 vapor pressure above liquid H2SO4 corresponds to ln p = 8.84 ? 7220/t where p is the H2SO4 vapor pressure (in atm) and T is the temperature in degrees Kelvins. These results suggest that abundances of gaseous H2SO4 on the order of 15 to 30 ppm could account for the microwave absorption observed by radio occultation experiments at 13.3- and 3.6-cm wavelengths. They also suggest that such abundances would correspond to saturation vapor pressure existing at or above the 46- to 48-km range, which correlates with the observed cloud base. It is suggested that future measurements of absorption in the 1- to 3-cm wavelength range will provide additional tools for monitoring variations in H2SO4 abundance via radio occultation and radio astronomical observations.  相似文献   

13.
J.T. Schofield  F.W. Taylor 《Icarus》1982,52(2):245-262
Improved calculations of net emission from the northern hemisphere of Venus are presented. These are based on temperature profiles, water vapor mixing ratio profiles, and cloud models retrieved in 120 solar-fixed latitude-longitude bins from infrared measurements in six spectral channels made over a period of 72 days by the orbiter infrared radiometer (OIR) instrument of the Pioneer Venus mission. Only carbon dioxide, sulfuric acid cloud, and water vapor are considered as significant sources of atmospheric opacity, and the role of the latter component is found to be minor. The sensitivity of the calculations to extreme alternative cloud models, measurement errors, and calibration errors is also discussed. Net emission is found to be only weakly dependent on latitude and longitude during the period of observation with the exception of the high-latitude polar collar region, where emission is low. Mean net emission from the northern hemisphere is 157.0 ± 6.9 W.m?2, corresponding to an equivalent temperature of 229.4 ± 2.5°K. If this figure is characteristic of the whole planet and if thermal balance is assumed, the bolometric albedo of Venus is 0.762 ± 0.011. This value is consistent with the latest estimates within experimental error.  相似文献   

14.
Régis Courtin 《Icarus》1982,51(3):466-475
The pressure-induced absorptions of gaseous nitrogen (N2) and methane (CH4) are computed on the basis of the collisional lineshape theory of G. Birnhaum and E.R. Cohen [Canad. J. Phys.54, 593–602 (1976)]. Laboratory data at 300 and 124°K for N2 and at 296 and 195°K for CH4 are used to determine the collisional time constant and their temperature dependence. The spectrum of Titan from the microwave to the far-infrared region (0.1–600 cm?1) is then modeled using these opacities and a temperature profile of Titan's atmosphere derived from the Voyager 1 radio occultation experiment. The model atmosphere is composed of N2 and CH4, their relative proportions being determined by the vapor pressure law of CH4. A model with gaseous opacity alone is ruled out by the far-infrared observations. An additional opacity, thought to be associated with a methane cloud, is confirmed. The effective temperature of Titan is estimated at Te = 83.2 ± 1.4°K.  相似文献   

15.
Clouds and hazes composed of sulfuric acid are observed to exist or postulated to have once existed on each of the terrestrial planets with atmospheres in our solar system. Venus today maintains a global cover of clouds composed of a sulfuric acid/water solution that extends in altitude from roughly 50 km to roughly 80 km. Terrestrial polar stratospheric clouds (PSCs) form on stratospheric sulfuric acid aerosols, and both PSCs and stratospheric aerosols play a critical role in the formation of the ozone hole. Stratospheric aerosols can modify the climate when they are enhanced following volcanic eruptions, and are a current focus for geoengineering studies. Rain is made more acidic by sulfuric acid originating from sulfur dioxide generated by industry on Earth. Analysis of the sulfur content of Martian rocks has led to the hypothesis that an early Martian atmosphere, rich in SO2 and H2O, could support a sulfur-infused hydrological cycle. Here we consider the plausibility of frozen sulfuric acid in the upper clouds of Venus, which could lead to lightning generation, with implications for observations by the European Space Agency's Venus Express and the Japan Aerospace Exploration Agency's Venus Climate Orbiter (also known as Akatsuki). We also present simulations of a sulfur-rich early Martian atmosphere. We find that about 40 cm/yr of precipitation having a pH of about 2.0 could fall in an early Martian atmosphere, assuming a surface temperature of 273 K, and SO2 generation rates consistent with the formation of Tharsis. This modeled acid rain is a powerful sink for SO2, quickly removing it and preventing it from having a significant greenhouse effect.  相似文献   

16.
Radio occultation studies of the structure of planetary atmospheres have generally involved relatively shallow penetration of the spacecraft behind the limb of the planet in the plane of the sky. Current radio link sensitivities allow detection of the radio signals at all occultation depths, whenever the planet-spacecraft distance is sufficiently large for the refraction to occur at atmospheric heights where microwave absorption is not too large. Voyager 1 at Jupiter and Voyager 2 at Saturn will pass almost directly behind the planets as viewed from the Earth. Thus they will pass through the caustics that corresponds to the focal line of a spherical planet, expanded by oblateness into a surface approximating a four-cusp cylinder. In the plane of the sky, the projection of this surface approximates the evolute of the planet's limb. As the spacecraft passes behind the planet with its antenna tracking the occulting limb, the strength of the radio signals received on Earth will at first decrease due to defocusing in the atmosphere, but then increase as the evolute is approached, because of the focusing caused by limb curvature. Inside the evolute there are four simultaneous signal paths over four limb positions. If we neglect absorption, focused signals for an instant could become orders of magnitude stronger than for the unocculted spacecraft. Measurements of the frequency and intensity of deep occultation signals, and of the timing and character of these “evolute flashes”, could provide information on atmospheric absorption, turbulence, and structure, and on details of the shape of the atmosphere at the focusing limbs as affected, for example, by planetary gravitational moments, rotation, and zonal winds. Such observations will be attempted with Voyager and potentially could be very fruitful in the Pioneer Venus and Galileo (Jupiter) orbiting missions.  相似文献   

17.
Two recent papers, one by A.J. Kliore, C. Elachi, I.R. Patel, and J.B. Cimeno, Icarus37, 51-2- 72, 1979, and one by B. Lipa and G.L. Tyler, Icarus39, 192–208, 1979, reach fundamentally different conclusions concerning microwave absorption in the atmosphere of Venus, even though they are based on the same Mariner 10 radio occultation data. The Lipa and Tyler results are in general agreement with earlier Mariner 5 measurements analyzed by G. Fjeldbo, A.J. Kliore, and V.R. Eshleman, Astron. J.76, 123–140, 1971. We find that in the Kliore et al. treatment: (1) the effects of measurements and analysis uncertainties in the derived values of absorption are underestimated; (2) an incorrect formula is used for computation of the refractive effects needed to determine the absorption; (3) detailed features of a derived profile of absorption would have been created in an optically thin region by known motions of the spacecraft antenna, if its axial direction were biased about 0.5° from the computed directions; and (4) this particular angular bias is consistent with other available information about an apparent residual difference between true and reconstructed antenna pointing directions. We conclude that: (1) there is no credible evidence for measurable microwave absorption in the atmosphere of Venus at heights greater than 55 km for any of the wavelengths that have been used in radio occultation experiments, even though Kliore et al. indicate that there are significant amounts up to at least 70 km for both Mariner 10 wavelengths (13 and 3.6 cm); (2) absorption in the region 35 to 50 km has been reasonably well determined from the two concordant Mariner 5 and 10 analyses, but only at one wavelength (13 cm); and (3) improved instrumentation and careful planning and analysis will be required for the radio occultation technique to realize its potential for the study of absorbing regions in the atmospheres of Venus and the major planets.  相似文献   

18.
Detection and measurement of atmospheric water vapor in the deep jovian atmosphere using microwave radiometry has been discussed extensively by Janssen et al. (Janssen, M.A., Hofstadter, M.D., Gulkis, S., Ingersoll, A.P., Allison, M., Bolton, S.J., Levin, S.M., Kamp, L.W. [2005]. Icarus 173 (2), 447-453.) and de Pater et al. (de Pater, I., Deboer, D., Marley, M., Freedman, R., Young, R. [2005]. Icarus 173 (2), 425-447). The NASA Juno mission will include a six-channel microwave radiometer system (MWR) operating in the 1.3-50 cm wavelength range in order to retrieve water vapor abundances from the microwave signature of Jupiter (see, e.g., Matousek, S. [2005]. The Juno new frontiers mission. Tech. Rep. IAC-05-A3.2.A.04, California Institute of Technology). In order to accurately interpret data from such observations, nearly 2000 laboratory measurements of the microwave opacity of H2O vapor in a H2/He atmosphere have been conducted in the 5-21 cm wavelength range (1.4-6 GHz) at pressures from 30 mbars to 101 bars and at temperatures from 330 to 525 K. The mole fraction of H2O (at maximum pressure) ranged from 0.19% to 3.6% with some additional measurements of pure H2O. These results have enabled development of the first model for the opacity of gaseous H2O in a H2/He atmosphere under jovian conditions developed from actual laboratory data. The new model is based on a terrestrial model of Rosenkranz et al. (Rosenkranz, P.W. [1998]. Radio Science 33, 919-928), with substantial modifications to reflect the effects of jovian conditions. The new model for water vapor opacity dramatically outperforms previous models and will provide reliable results for temperatures from 300 to 525 K, at pressures up to 100 bars and at frequencies up to 6 GHz. These results will significantly reduce the uncertainties in the retrieval of jovian atmospheric water vapor abundances from the microwave radiometric measurements from the upcoming NASA Juno mission, as well as provide a clearer understanding of the role deep atmospheric water vapor may play in the decimeter-wavelength spectrum of Saturn.  相似文献   

19.
GPS掩星折射率剖面一维变分同化   总被引:11,自引:1,他引:10  
洪振杰  郭鹏  刘敏  黄珹 《天文学报》2006,47(1):100-110
近年来,GPS/LEO(全球定位系统/低地球轨道)卫星无线电掩星技术给出了地球大气探测的新途径.从LEO卫星观测到的掩星数据可以反演的地球大气的气压、水汽、温度等剖面;它们对气象和大气科学研究,是具有潜在价值的数据资源.掩星数据资料的同化技术可以有效地改进这些气象参数的剖面,从而改进目前的数值天气预报模式.在当前采用的一维变分同化反演技术中,可以用掩星观测资料的大气折射率或弯曲角剖面进行同化,来反演大气水汽和温度剖面以及海平面压强.作为独立自主开发的GPD/LEO掩星技术系统的一部分,以欧洲中尺度天气预报分析(ECMWF)资料为背景场,CHAMP 掩星观测得到的折射率剖面为观测值,采用Levenberg—Marquardt方法实行GPS掩星资料一维变分同化.在讨论中,用掩星观测点附近相应的探空气球资料来检验CHAMP掩星资料变分同化的结果.  相似文献   

20.
Spacecraft radio occultation measurements planned for outer planet missions may yield profiles in height of atmospheric refractivity and microwave loss above the super-refractive regions of the giant planets. In a planetary ionosphere, the refractivity determines the electron number density distribution. At lower levels, the loss and the refractivity may be used to study the density, pressure, temperature and composition of the atmosphere. In order to maximize the scientific yield of outer planet occultation experiments, it is necessary to consider the effects of atmospheric refraction, multipath propagation, navigation errors and spacecraft accelerations in the design of the radio system and the spacecraft attitude control system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号