首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
汤加—克马德克俯冲带是太平洋板块向澳大利亚板块俯冲碰撞的动力作用区,是全球俯冲带动力学研究的热点区域.本研究基于EHB地震目录,对汤加—克马德克俯冲带(18.5°S—28.5°S)区域进行平面拟合,得到该范围内俯冲带走向约为196°,倾角约为48°;利用该俯冲带研究区域内Global CMT目录,对不同位置、不同深度进行区域应力张量反演,得到汤加—克马德克俯冲带研究区内精细的应力图像.结果显示:(1)俯冲带浅部(60~300km)应力结构非均匀特征明显,主应力轴倾伏角变化多样,并且最大主压应力轴方位在24°S左右发生明显偏转,我们推测这可能与洋底构造路易斯维尔海链俯冲有关;(2)中部(300~500km)最大主压、主张应力轴由北向南逐渐发生偏转,这可能与由北向南流动的地幔流对俯冲板片产生推挤作用有关,并且这种推挤作用向南逐渐减弱;(3)深部(500~700km)最大主压应力轴沿俯冲方向分布;(4)本文的结果还发现了主俯冲带深部西侧"偏移"板片与主俯冲带应力结构不同,表明"偏移"板片与主俯冲带是分离的.  相似文献   

2.
本研究基于Global CMT提供的1196个1976年11月—2017年1月MW4.6地震矩心矩张量解,对西北太平洋俯冲带日本本州至中国东北段的应力场进行反演计算,得到了从浅表到深部俯冲带应力状态的完整分布.结果显示:俯冲带浅表陆壳一侧应力场呈现水平挤压、垂向拉伸状态,洋壳一侧的应力状态则相反,即近水平拉张、近垂向压缩.沿着俯冲板片向下,应力主轴逐渐向俯冲板片轮廓靠拢,其中位于双地震层(120km深度附近)之上的部分,主张应力轴沿俯冲板片轮廓展布而又比其更为陡倾;双地震层内的应力模式同典型I型双层地震带内的应力模式一致,即上层沿俯冲板片轮廓压缩、下层沿俯冲板片轮廓拉伸;双地震层之下,应力模式逐步转变为主压应力轴平行于俯冲板片轮廓.通观所研究的整个俯冲系统,水平面内主压和主张应力轴基本保持了与西北太平洋板片俯冲方向上的一致性,同经典俯冲板片的应力导管模型所预言的俯冲带应力模式相符;而主张应力轴在俯冲板片表面之下的中源地震深度范围内转向海沟走向,或许同研究区域横跨日本海沟与千岛海沟结合带,改变的浅部海沟形态致使完整俯冲板片下部产生横向变形有关.  相似文献   

3.
从Global CMT目录搜集了1976年1月至2016年6月之间的震源深度大于70km的255个震源机制解,用阻尼应力反演方法,分70~160km和170~310km两个深度,计算了帕米尔—兴都库什地区的构造应力场;同时以10km为间隔计算了兴都库什地区深度介于70~310km之间的应力形因子.得到以下初步结论:兴都库什板片向下俯冲和帕米尔地区断裂带的横向拉张,可能是导致应力场不同的原因.兴都库什俯冲带与帕米尔俯冲带碰撞,导致交汇地区(37°N—37.5°N)的应力场参数突变.兴都库什俯冲板片受到深部温度、压力等因素,出现薄弱面进而形成拆离板片.其脱离了主俯冲板片的束缚后,重力的上下拉张作用导致空区附近张轴倾伏角接近90°,拆离板片俯冲至上地幔不连续面,导致板片部分熔融进而应力形因子随着深度变小.而拆离板片受到地幔挤压其内部发生破碎,其压应力轴由西部的NS到东部NW-SE方向偏转及纵向张应力轴倾伏角变小.  相似文献   

4.
Joint bulk-sound and shear tomography for Western Pacific subduction zones   总被引:7,自引:0,他引:7  
Detailed regional body wave tomographic inversion of the Western Pacific region has been performed using P and S travel times from common sources and receivers, with a joint inversion in terms of bulk-sound and shear wave-speed variations in the mantle. This technique allows the separation of the influence of bulk and shear moduli, and hence a more direct comparison with mineral physics information. The study region is parameterized with cells of side 0.5° to 2° and 19 layers to a depth of 1500 km, while the rest of the mantle was parameterized with 5×5° cells with 16 layers between the surface and the core–mantle boundary. A simultaneous inversion is made for regional and global structures to minimize the influence of surrounding structures on the regional image. A nested iterative inversion scheme is employed with local linearization and three-dimensional ray tracing through the successive model updates. The results of the regional tomographic inversion reveal the penetration of a subducted slab below the 660 km discontinuity at the Kurile–Kamchatka trench, while flattening of slabs above this depth is observed in the Japan and Izu–Bonin subduction zones on both the bulk-sound and shear wave-speed images. The penetration of a subducted slab down to a depth of at least 1200 km is seen below the southern part of the Bonin trench, Mariana, Philippine, and Java subduction zones. Fast shear wave-speed perturbations associated with the subducted slabs, down to the 410 km transition zone, are larger than the comparable bulk-sound perturbations for all these subduction zones except the Philippines. The bulk-sound signature for the subducted slab is more pronounced than for shear in the Philippines, Talaud, New Guinea, Solomon, and Tonga subduction zones, where penetration of the slab into the middle mantle is observed. Variation in the amplitude ratio between bulk-sound and shear wave-speed anomalies correlates well with the subduction parameters of the descending slab. Slabs younger than 90 Ma at the trench show bulk-sound dominance in the upper mantle, while older slabs have a stronger shear wave-speed signature. Spreading of the fast shear wave-speed zone between 800 and 1000 km is observed in the areas of deep subducted slab penetration, but has no comparable expression in the bulk-sound images. This high-velocity feature may reflect physical or chemical disequilibria introduced to the lower mantle by subducted slabs.  相似文献   

5.
Joint hypocenter determination is performed for intermediate and deep earthquakes of the Tyrrhenian Sea region.This analysis allowed us to obtain a catalogue of 70 well-located events in this peculiar Benioff zone, which is characterized by quite low seismic activity, compared to the Pacific deep earthquake regions. The method used for the analysis is that ofFrohlich (1979), a variant of the successive approximation technique, which allows use of a great number of events and stations but saves computer memory. The results show a spoon-shaped Benioff zone, dipping NW in the Tyrrhenian Sea to 500km depth. 32 reliable fault-plane solutions have been determined using these new earthquake locations, confirming the predominance of down-dip compression in the central part of the slab and more complex motion along the borders of the zone, as previously suggested byGasparini et al. (1982).  相似文献   

6.
Using P-wave travel time data from local seismicity, the crustal structure ofthe central and southern part of Colombia was determined. A very stableand narrow range of possible velocity models for the region was obtainedusing travel time inversion. This range of models was tested with earthquakelocations to select the best velocity model. The 1D velocity modelproposed has five layers over a halfspace, with interfaces at depths of 4,25, 32, 40 and 100 km and P-wave velocities of 4.8, 6.6, 7.0, 8.0, 8.1and 8.2 km/sec, respectively. According to this model the Moho lies at32 km depth on average. For P-waves, the station corrections range from–0.62 to 0.44 sec and for S-wave they range from –1.17 to 0.62 sec.These low variations in station residuals indicate small lateral velocitychanges and therefore the velocity model found should be well suited forearthquake locations and future starting model for 3D tomography studies.Using this new velocity model, the local earthquakes were relocated. Theshallow seismicity, < 30 km, clearly shows the borders betweentectonic plates and also the main fault systems in the region. The deepseismicity, > 80 km, shows two subduction zones in the country: theCauca subduction zone with a strike of N120°E, dip of 35°and thickness of 35 km, and the Bucaramanga subduction zone which has,for the northern part, a strike of N103°E, dip of 27° andthickness undetermined and, for the southern part, a strike ofN115°E, dip of 40° and thickness of 20 km. Based ondifferences of thickness of brittle crust in the subducted slab and spatialdistribution of the seismicity, the Cauca and Bucaramanga subduction zonesseem to represent independent processes. The Cauca subduction seems tobe connected to the process of the Nazca plate being subducted under theNorth Andes Block. In the Bucaramanga subduction zone, the transitionbetween southern and northern parts and changes in geometry of the slabseem to be gradual and there is no evidence of a tear in the slab, howeverthe local seismicity does not allow us to determine which plate or plates arebeing subducted. The Bucaramanga nest appears to be included into thesubducted slab.  相似文献   

7.
—The Italian peninsula shows high complexity of the mantle-crust system and of the Plio-Quaternary magmatism. The lithospheric thickness has remarkable lateral variations from about 110 km to about 30 km. Intermediate and deep-focus earthquakes indicate the presence of a lithospheric slab under the Aeolian-Calabrian area and at the southern end of Campania. Much less extensive intermediate-depth seismicity characterizes the Roman-Tuscany region, where the existence of a relic slab has been hypothesized. The deep seismicity in the southern Tyrrhenian Sea is associated with active calcalkaline to shoshonitic volcanism in the Aeolian arc. Alkaline potassic volcanism occurs in central Italy, and potassic lamproitic magmatism coexists with crustal anatectic and various types of hybrid rocks in the Tuscany area.¶The parallelism between changing magmatism and variation of the structure of the crust-mantle system makes central-southern Italy a key place where petrological and geophysical data can be used to work out an integrated model of the structure and composition of the upper mantle. Beneath Tuscany the upper mantle has been affected by intensive subduction-related metasomatism. This caused the formation of phlogopite-rich veins that cut through residual spinel-harzburgite and dunite. These veins, possibly partially molten, may explain the unusually soft mechanical properties that are detected just below the Moho. In the Roman Province, the upper mantle is formed by a relatively thin lid (the mantle part of the lithosphere) and by metasomatic fertile peridotite, probably connected with the upraise of an asthenospheric mantle wedge above the Apennines subduction zone. Geochemical data indicate that metasomatism, though still related to subduction, had different characteristics and age than in Tuscany. In the eastern sector of the Aeolian arc and in the Neapolitan area, the upper mantle appears to be distinct from the Roman and Tuscany areas and is probably formed by fertile peridotite contaminated by the presently active subduction of the Ionian Sea floor.¶The overall picture is that of a mosaic of various mantle domains that have undergone different evolutionary history in terms of both metasomatism and pre-metasomatic events. The coexistence side by side of these sectors is a key factor that has to be considered by models of the geodynamic evolution of the Central Mediterranean area.  相似文献   

8.
马尼拉俯冲带的地震层析成像研究   总被引:2,自引:2,他引:0       下载免费PDF全文
基于国际地震中心的P波走时数据和层析成像反演方法,获得了具有较高分辨率的马尼拉俯冲带的深部速度模型.结果表明,(1)高速的南海俯冲板片沿马尼拉俯冲带的俯冲形态随纬度发生变化,在14°N和16°N之间,板片俯冲角度较大,俯冲深度可达400~500 km,在17°N附近,俯冲板片角度和深度较南部变小,而在18°N附近,俯冲板片以近垂直角度俯冲到地幔转换带;(2)17°N和18°N之间俯冲角度的变化意味着南海板片发生了撕裂;(3)在14°N附近,南海板片由300 km以上的近垂直俯冲转为200~300 km深度的近水平展布,与震源分布存在较大的差异,表明南海板片发生了撕裂,并且导致410 km间断面抬升.根据成像结果计算的不同位置南海板片的俯冲长度和时间表明,南海板片俯冲之前的面积为现今面积的两倍,14°N最先开始发生俯冲,并由南向北扩展.  相似文献   

9.
缅甸山弧地区Benioff带的形态及其应力状态   总被引:4,自引:1,他引:4       下载免费PDF全文
研究了缅甸山弧附近的中源地震分布,发现h>70km的地震主要分布在20°N-27°N之间,形成明显的条带分布,24°N以南走向近南北,24°N以北走向逐渐接近NE;通过垂直剖面的研究,发现缅甸山弧下的Benioff带形态是变化的,在南北两端倾角较小,且较为平直,延伸深度浅,小于100km;在地震带的中间部分,Benioff带的倾角逐渐加大,且倾角随深度加深而增大,延伸深度可达180km。在一些剖面上出现双地震层,一般出现在45-100km的深度范围内,两层间的距离从10-25km不等;在同一剖面上,两层间在浅部间距大,在深部间距小。研究了沉降带上的应力状态,发现沉降带上P轴的优势方向位于NE-SW,T轴分布较分散;P、T轴随深度没有明显变化;在上地震层中,T轴明显接近于Benioff带的倾向;通过地壳内及沉降带上地震机制解的对比,发现前者的优势方向相对于后者逆时针旋转了一定角度。  相似文献   

10.
中国东北地区处于古亚洲构造域、蒙古—鄂霍茨克构造域和环太平洋构造域叠加作用最为显著的地区,是地学研究的热点区域.为了探析欧亚大陆下西太平洋板片的俯冲形态以及揭示该区域深部地球动力学机制,利用卫星重力数据通过预处理共轭梯度快速密度反演算法获得了包含东北地区、华北部分地区及日本海海域在内的研究区域上地幔三维密度结构,结合天然地震三维层析成像结果共同揭示太平洋板片的俯冲形态和深部动力机制.俯冲的太平洋板片在日本海沟处呈高密度异常,向西横向持续扩张,深度方向上有逐渐增加趋势.不连续的高密度体俯冲至地幔转换带(410~660km)后继续水平西向俯冲,部分滞留板片可能进入下地幔;在大兴安岭断裂带下面转换带中同样发现水平分布的高密度体,推断是大兴安岭断裂带下方地幔岩石圈拆沉的结果,横向不均匀分布的俯冲板片边缘已抵至大兴安岭造山带附近,这对于研究东北地区深部动力学机制具有重要的意义.  相似文献   

11.
三维板块几何形态对大陆深俯冲动力学的制约   总被引:1,自引:1,他引:0       下载免费PDF全文
大陆深俯冲及超高压变质作用是大陆动力学的重要研究内容,前人进行了系统的地质、地球物理观测以及数值模拟研究.然而,自然界中大陆板块的俯冲、碰撞及造山过程大部分具有明显的沿走向的差异性,这种典型的三维特征可能很大程度上依赖于会聚大陆板块的初始几何学和运动学特征.本文采用三维高分辨率的动力学数值模拟方法,建立了方形大陆板块和楔形大陆板块两种不同的俯冲-碰撞模型,并且俯冲大陆板块侧面与大洋俯冲带相邻.数值模拟结果揭示大洋板块可以持续地俯冲到地幔之中,而大陆板块俯冲到一定深度处,其前端的俯冲板块将发生断离,并进而造成残余的大陆板块俯冲角度的减小.方形大陆俯冲板块的断离深度约为150km,而楔形大陆俯冲板块的断离深度较大,约250~300km,这很大程度上取决于俯冲带中大洋板块的牵引力和大陆板块的负浮力之间的竞争关系.同时,无论方形还是楔形大陆板块俯冲模型中,板块断离后,侧向的大洋俯冲板块仍可以拖曳约60~70km宽的大陆边缘岩石圈持续向下俯冲,揭示了新西兰东部的洋-陆空间转换俯冲带的动力学机制.并且,数值模型与喜马拉雅造山带和秦岭—大别—苏鲁造山带进行了对比,进而对其高压-超高压岩石空间展布沿走向的差异性特征和机制提供了一定的启示.  相似文献   

12.
日本海及中国东北地震的深度分布及其应力状态   总被引:25,自引:1,他引:24       下载免费PDF全文
本文分析了日本海及中国东北的地震深度分布。证实了日本本州北部至中国东北的贝尼奥夫带(Benioff)基本是连续的,该带的倾向约为北85°西,倾角约为29°,深度在150公里以下贝尼奥夫带厚度约为20公里。研究了日本本州北部至中国东北的震级M_b≥5.0地震的震源机制解,发现中国东北地壳应力场与日本海地壳的应力场方向一致,来源于太平洋板块的挤压。在俯冲带上,深度在100公里到200公里之间的情况较为复杂,大多数地震显示的主压应力方向与贝尼奥夫带的倾向、倾角一致,有的T轴取向与贝尼奥夫带的倾向、倾角一致,有的特征方向与贝尼奥夫带倾向、倾角均不一致。深度在200公里至500公里之间,主压应力方向近于水平,并与贝尼奥夫带走向垂直,张应力轴相对集中。深度大于500公里时,主压应力方向与贝尼奥夫带的倾向、倾角一致,张应力轴相对集中  相似文献   

13.
日本俯冲带与IBM俯冲带位于太平洋板块、菲律宾海板块和欧亚板块三者的交汇地带,是典型的"俯冲工厂"地区,具有重要的研究意义.本文利用震源分布资料与卫星重力数据对日本俯冲带与IBM俯冲带进行了研究.通过空间重力异常反映了俯冲带地区的区域构造形态,在此基础上基于艾利模式计算了均衡异常以反映地壳均衡特征.利用震源分布资料,分别从垂直俯冲带走向与沿俯冲带走向划定了横截剖面(cross-sections)进行了地震提取,讨论了俯冲带地区的Wadati-Benioff带形态特征,并借助于俯冲带地震等深线图直观描述了俯冲带的俯冲形态.在日本俯冲带与伊豆—小笠原俯冲带各选取了一条典型剖面进行了重力2.5D反演,研究了俯冲带地区的壳幔结构特征.研究结果表明,九州—帕劳海脊与IBM岛弧在均衡异常上存在差异,前者已逐渐趋向于地壳均衡.IBM的Wadati-Benioff带存在明显的南北差异,反映出伊豆—小笠原俯冲板片停留在了660km转换带中,而马里亚纳俯冲板片很可能垂直穿过了这一转换带,造成这种南北差异的原因与板块相对运动、岩石圈黏性和年龄差异以及俯冲板片的重力效应等因素有关.在IBM的中部和南部存在板片撕裂现象.日本俯冲带的俯冲洋壳密度随俯冲深度变化较小,洋幔存在一定程度的蛇纹岩化,地幔楔蛇纹岩化作用不典型,海沟处有一范围较小的含水畸变带;伊豆—小笠原俯冲带俯冲洋壳密度随深度增大而明显增大,洋幔蛇纹岩化程度较日本俯冲带低,地幔楔蛇纹岩化作用强烈,板块交汇处存在明显的蛇纹岩底辟.日本俯冲带与IBM俯冲带一线自北向南板片俯冲变陡,两侧板块耦合度降低,与俯冲带两侧的板块运动速率差异有关.  相似文献   

14.
The 1972 February and December Hachijo-Oki earthquakes (M s=7.3 and 7.4), in the northernmost part of the Izu-Bonin subduction zone, are the only major events (M s>7.0) in the Bonin arc for the past 80 years. Relocation of the hypocenters, using one smaller event having a wellconstrained focal depth as a master event, shows that the depth of the February event is 10 km shallower than that of the December event. We have determined the rupture process for both events by minimizing the error in waveform between observed and synthetic seismograms. Although the number of available stations are limited, the depth range of the major energy release for the December event extends deeper than for the February one. The rupture propagated up-dip for both events. It is likely that the rupture zone of the two events overlapped, and that the December event ruptured the deeper part. This suggestion is consistent with the observation that the aftershock zones of both events overlap with that of the December event shifted landward. The waveforms of the December event have a smaller high frequency component than those of the February event, suggesting that the stress at the thrust zone became more uniform or reduced after the February event.No thrust type smaller event occurred near the rupture zone. Instead, theP-axes of smaller events are parallel to the dip of the slab and theirT-axes dip to the southwest. Focal depths of these events estimated byP-wave forward modeling are generally between 40–50 km and located beneath the thrust zone. We thus interpret them as the events within the Pacific slab near the zone ruptured by the two major events. The stress concentration around the rupture zone of the major events is suggested to have triggered these slab events. After the occurrence of the large events, the slab events are concentrated near the deeper portion of the rupture zone. These events may have been caused by the loading of the down-dip compressional stress near the down-dip end of the rupture zone due to the rupture. The occurrence of the doublet of large earthquakes and a number of down-dip compressional events beneath their rupture zones in a shallow portion of the subducting slab indicates an unusual zone of seismic coupling in the Bonin arc, most of which is seismically quiescent.  相似文献   

15.
崔辉辉  周元泽 《地震学报》2016,38(5):659-670
本文基于中国数字地震台网记录的发生于日本北海道地区的一次中源地震的三重震相资料研究了日本海俯冲区地幔转换带的速度结构.结果表明,该区域P波速度结构与S波速度结构的一致性整体上较强.冷的西太平洋俯冲板块导致410 km间断面出现了10 km的抬升,660 km间断面出现了25 km的下沉;410 km和660 km间断面之上均存在与俯冲板块相关的高速层;660 km间断面下方存在厚度为65 km的低速异常.纵横波波速比vP/vS值在210—400 km深度范围内偏低,约为1.827,体现出海洋板块低泊松比的特征;在560—685 km深度范围内,该值偏高,约为1.831,可能预示地幔转换带底部含有一定量的水.   相似文献   

16.
The origin of El Chichón volcano is poorly understood, and we attempt in this study to demonstrate that the Tehuantepec Ridge (TR), a major tectonic discontinuity on the Cocos plate, plays a key role in determining the location of the volcano by enhancing the slab dehydration budget beneath it. Using marine magnetic anomalies we show that the upper mantle beneath TR undergoes strong serpentinization, carrying significant amounts of water into subduction. Another key aspect of the magnetic anomaly over southern Mexico is a long-wavelength (∼ 150 km) high amplitude (∼ 500 nT) magnetic anomaly located between the trench and the coast. Using a 2D joint magnetic-gravity forward model, constrained by the subduction PT structure, slab geometry and seismicity, we find a highly magnetic and low-density source located at 40–80 km depth that we interpret as a partially serpentinized mantle wedge formed by fluids expelled from the subducting Cocos plate. Using phase diagrams for sediments, basalt and peridotite, and the thermal structure of the subduction zone beneath El Chichón we find that ∼ 40% of sediments and basalt dehydrate at depths corresponding with the location of the serpentinized mantle wedge, whereas the serpentinized root beneath TR strongly dehydrates (∼90%) at depths of 180-200 km comparable with the slab depths beneath El Chichón (200-220 km). We conclude that this strong deserpentinization pulse of mantle lithosphere beneath TR at great depths is responsible for the unusual location, singularity and, probably, the geochemically distinct signature (adakitic-like) of El Chichón volcano.  相似文献   

17.
Makran is one of the largest accretionary prisms on Earth, formed by the closure of the Neotethys ocean which is now represented by its remnant, the Gulf of Oman. Tectonic evolution of the Makran island‐arc system is explored within the context of a north dipping subduction zone, with temporal variations in slab dip arrangement. In a Middle Jurassic–Early Paleocene steep slab dip arrangement, the Mesozoic magmatic arc and the Proto‐Jaz Murian depression, which was an intra‐arc extensional basin, were developed. This was associated with development of outer‐arc ophiolitic mélange and oceanward migration of the Bajgan–Durkan continental sliver, which is the continuation of the Sanandaj–Sirjan zone of the Zagros orogenic belt into the Makran region. In a Late Paleocene to Late Pliocene moderate to shallow slab dip arrangement, compression and tectonic inversion of the Proto‐Jaz Murian extensional basin into the Jaz Murian compressive basin was associated with the uplift of the southern part of the Jaz Murian Depression along the South Jaz Murian Fault, and emplacement of the Paleogene–Neogene magmatic arc, behind the Jaz Murian compressive basin. A shallow slab dip arrangement in the Quaternary led to the emplacement of a third magmatic arc inland, over the southern part of the Yazd–Tabas–Lut micro‐continental block. It is envisioned that the Makran island‐arc system will pass through similar tectonic events in the future, as the Zagros island‐arc system did in the past. However, a future remnant and/or residual basin similar to the present Gulf of Oman will continue to survive to the east.  相似文献   

18.
通过地震分布及地震机制解所反映的日本海-鄂霍次克海俯冲带的形态及应力状态,研究了俯冲带深部形变及650km间断面的穿透问题.日本海Benioff带较直,连续性较好;鄂霍次克海Benioff带弯度稍大,220-320km深度之间地震很少.两俯冲带在浅部及深部地震密集,100-200km深度之间有双地震层.应力状态随深度变化,200km深度以下P,T轴方向相对集中,P轴接近俯冲方向,在约100-200km深度附近,P,T轴均接近俯冲方向.观测和理论地震图拟合分析表明,地震断层面走向接近俯冲带走向,断裂的结果使俯冲带在深部倾角变小.  相似文献   

19.
利用1971年1月至1982年12月的地震资料,研究了千岛岛弧地区的地震分布及震源机制解,进而讨论了贝尼奥夫带的形态及应力状态。地震分布于沿海沟展布的NE向的弧形带上,除地壳内地震外,形成明显的贝尼奥夫带,贝尼奥夫带最深达619公里,两侧较浅,少于200公里,倾向近于NW55°,倾角为45°。地壳内的压应力轴位于NW方向,且接近于水平,反映了太平洋板块的挤压;俯冲带上应力轴随深度变化:114公里以上的T轴沿俯冲方向,114公里至175公里震源机制解分为两组,T轴沿俯冲方向和P轴沿俯冲方向;320公里至440公里范围内P轴有接近俯冲方向的趋势,但较为分散;515公里以下P轴相当集中,且沿俯冲方向。本文对这种应力分布的成因进行了讨论  相似文献   

20.
This paper describes a travel—time analysis performed for the Italian seismic stations, in particular those operating in southern Italy, in order to study the crust and upper mantle properties in the region. Average P-wave residuals of teleseisms in the distance range 30°–95° with respect to Jeffreys-Bullen tables, at thirteen permanent and temporary stations of southern Italy, are coherent with a high velocity zone beneath Calabria and northern Sicily and low velocity material in the mantle beneath the Eolian Islands. Travel—time residuals from Tyrrhenian intermediate earthquakes show a high velocity structure which extends in a NW direction from a depth of at least 200 km down to 450 km.A damped least-squares inversion applied to DSS data confirms the existence of low velocity zones in the crust beneath the Eolian Islands, at 8–12 km depth, that agrees with previous results and with the lack of S waves from local earthquakes.Publication No. 193, Progetto Finalizzato Geodinamica, CNR-Roma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号