首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we investigate p‐mode power variation with solar atmosphere. To this aim, we use THÉMIS observations of the Na D1 (λ 5896 Å) and K (λ 7699 Å) spectral lines. While the formation heights of the K spectral line are essentially located in the photospheric layer, the formation heights of the Na D1 line span a much wider region: from photosphere up to chromosphere. Hence, we had the opportunity to infer p‐mode power variation up to the chromospheric layer. By analyzing power spectra obtained by temporal series at different points of the Na D1 and K spectral lines, we confirm and quantify the increase in p‐mode power towards higher atmospheric layers. Furthermore, the large span in formation heights of the Na D1 line induces a larger enhancement of p‐mode power with solar atmosphere compared to the K spectral line. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Stellmacher  G.  Wiehr  E.  Dammasch  I.E. 《Solar physics》2003,217(1):133-155
We present a comprehensive set of spectral data from two quiescent solar prominences observed in parallel from space and ground: with the VTT, simultaneous two-dimensional imaging of H4862 Å and Caii 8542 Å yields a constant ratio, indicating small spatial pressure variations over the prominence. With the Gregory, simultaneous spectra of Caii 8542 Å and Hei 10830 Å were taken, their widths yielding 8000 K <T kin<9000 K and 3<v nth<8 km s–1. The integrated line intensities show a distinct relation E(Hei) versus E(Caii) for each prominence (`branching'). The intensity ratio of the helium triplet components is used for a simple estimate of the optical thickness, which is <1.0 for the fainter prominence but reaches up to =2.0 for the brighter one. The 0 values allow us to deduce the source function from the central line intensities and thus a mean excitation temperature Tex mean=3750 K, which determines the relative populations of the helium 3 S and 3 P levels. With SUMER, we sequentially observed six spectral windows containing higher Lyman lines, `cool' emission lines from neutrals and singly charged atoms, as well as `hot' emission lines from ions like Oiv, Sv, Nv, Ov, and Svi. The spatial variation of the EUV lines along the SUMER slit shows a pronounced maximum at the main prominence body and `side-regions' where the `hot' lines are significantly enhanced with respect to the `cool' lines from neutral and singly-ionized atoms. These selected locations were averaged over 7 and the resulting mean EUV lines were fitted by Gaussians yielding realistic widths and integrated line intensities. The intensities of `hot' lines blue-wards of the Lyman series limit appear reduced in the main prominence body but enhanced in the `side-regions'. This absorption is also visible in TRACE images of Feix/x171 Å as fine dark structure which covers only parts of the main (`cool') prominence body. The Lyman lines show a smooth decrease of both line widths and integrated emission, with increasing upper level k=5 to k=19; the widths are smaller for the prominence that yields lower T kin from the ground-based spectra. The level populations along the line of sight follow for 5 lek le a smooth Boltzmann distribution with T ex>6×104 K, the levels k>8 appearing more and more overpopulated. The larger widths of the Lyman lines require high non-thermal broadening close to that of `hot' EUV lines. In contrast, the Heii emission is more related to the `cool' lines.  相似文献   

3.
Analysis of spectral data of two neighboring infrared lines, Fe I 15648.5 Å (g = 3) and FeI 15652.9 Å (geff = 1.53) are carried out for a simple sunspot when it was near the solar disk center (μ = 0.92), to understand the basic structure of sunspot magnetic field. Inversions of Stokes profiles are carried out to derive different atmospheric parameters both as a function of location within the sunspot and height in the atmosphere. As a result of the inversion we have obtained maps of magnetic field strength, temperature, line‐of‐sight velocity, field inclination and azimuth for different optical depth layers between log(τ5) = 0 and log(τ5) = –2.0. In this paper we present few results from our inversion for a layer averaged between log(τ5) from 0.0 to –0.5.  相似文献   

4.
We have observed about 15 active regions on the Sun, with the Advanced Stokes Polarimeter and Dick Dunn Telescope at NSO/SP to map the Stokes parameters in the photospheric Fe 6302.5 Å and chromospheric Mg I 5173 Å lines, during 1999‐2002. The observations are corrected for dark current, gain, instrumental polarization and cross‐talk using ASP pipeline. The wavelength calibration is carried out using the O2 telluric line 6302 Å which is also present in the observations. The photospheric and chromospheric longitudinal magnetograms are made from the Stokes V profiles, which were intercalibrated with the Kitt Peak magnetograms. The plasma motions are inferred from the line bisector measurements at different positions of the spectral line. In this paper we present the height dependence of Doppler velocity scatter plots of a sunspot in the photospheric Fe I 6302 Å line.  相似文献   

5.
We determine abundances from the absorption spectrum of the magnetic Herbig Ae star HD 190073 (V1295 Aql). The observations are primarily from HARPS spectra obtained at a single epoch. We accept arguments that the presence of numerous emission lines does not vitiate a classical abundance analysis, though it likely reduces the achievable accuracy. Most abundances are closely solar, but several elements show departures of a factor of two to three, as an earlier study has also shown. We present quantitative measurements of more than 60 emission lines, peak intensities, equivalent widths, and FWHM's. The latter range from over 200 km s–1(Hα, He D3) down to 10–20 km s–1(forbidden lines). Metallic emission lines have intermediate widths. We eschew modeling, and content ourselves with a presentation of the observations a successful model must explain. Low‐excitation features such as the Na I D‐lines and [O I] appear with He I D3, suggesting proximate regions with widely differing Te and Ne as found in the solar chromosphere. The [O I] and [Ca II] lines show sharp, violet‐shifted features. Additionally, [Fe II] lines appear tobe weakly present in emission (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
UARS SOLSTICE data have been subjected to Fourier and wavelet analyses in order to search for the signature of the solar rotation law in the disk‐integrated irradiance of UV lines. Lyman‐α, Mg II, and Ca II data show a different behaviour. In the SOLSTICE data there are significant temporal variations of the rotation rate of the UV tracers over 5—6 years. Often several distinct rotation periods appear almost simultaneously. Beside the basic period around 27 days there are signals at 32—35 days corresponding to the rotation rate at very high latitudes. For more than 5 years during another period of the solar cycle the rotational behaviour is quite different; there is an indication of differential rotation of active regions in these Ca II ground‐based data. The data contain a wealth of information about the solar differential rotation, but it proves difficult to disentangle the effects of the different emitting sources.  相似文献   

7.
The GREGOR Fabry‐Pérot Interferometer (GFPI) is one of three first‐light instruments of the German 1.5‐meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large‐format, high‐cadence CCD detectors with sophisticated computer hard‐ and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field‐of‐view (FOV) of 50″×38″is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25″×38″. The spectral coverage in the spectroscopic mode extends from 530–860 nm with a theoretical spectral resolution of R ≈250 000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580–660 nm. The combination of fast narrow‐band imaging and post‐factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to ∼50 km on the solar surface (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We report preliminary results from a targeted investigation on quasars containing damped Lyman‐α absorption (DLA) lines as well strong metal absorption lines, carried out with the Potsdam Multi Aperture Spectrophotometer (PMAS). We search for line‐emitting objects at the same redshift as the absorption lines and close to the line of sight of the QSOs. We have observed and detected the already confirmed absorbing galaxies in Q2233+131 (zabs = 3.15) and Q0151+045 (zabs=0.168), while failing to find spectral signatures for the z = 0.091 absorber in Q0738+313. From the Q2233+131 DLA galaxy, we have detected extended Lyα emission from an area of 3″ ×5″. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We propose chromospheric models of plages to explain profiles of the Ca ii H, K, λl8498, λ8542, and λ8662 lines described in Paper I. These models are consistent with boundary conditions imposed by the photosphere and the Lyman continuum. We find that increasing emission in these lines is consistent with a picture of increasing temperature gradient in the low chromosphere and the resulting increase in pressure and electron density at similar line optical depths. With this picture we suggest how to empirically determine the distribution of chromospheric parameters across the solar disk directly from Ca ii filtergrams. We also propose that the high density aspects of solar activity are produced by steep temperature gradients in the low chromosphere and thus by the enhanced heating mechanisms that steepen these gradients.  相似文献   

10.
The hydrogen and helium lines are the most prominent lines in the solar prominences spectra. Observations with the SUMER spectrometer onboard SOHO showed that there are weak lines in the blue wings of the Lyman series which affect their profiles. They were all identified as He ii lines in the Lyman series wings, except for the Lα line whose profile was affected by the use of an attenuator. The He ii lines are the even Balmer lines of the He ii system, a set of lines that we complete with the odd ones. We characterize them by comparison with the blue wings of the Lyman series in order to improve the H Lyman series observations and modeling, on one hand and to provide He ii lines observations for further combined H – He i – He ii modeling, on the other hand.  相似文献   

11.
The dependence on the temperature of photospheric line‐depth ratios (LDRs) in the spectral range 6190–6280 Å is investigated by using a sample of 174 ELODIE Archive stellar spectra of luminosity class from V to III. The rotational broadening effect on LDRs is also studied. We provide useful calibrations of effective temperature versus LDRs for giant and main sequence stars with 3800 ≃ Teff ≃6000 K and v sin i in the range 0–30 km s–1. We found that, with the exception of very few line pairs, LDRs, measured at a spectral resolution as high as 42 000, depend on v sin i and that, by neglecting the rotational broadening effect, the Teff determination can be wrong by ∼100 K in the worst cases. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present Very Large Array observations at wavelengths of 2, 3.5, 6, and 20 cm, of angular broadening of radio sources due to the solar wind in the region 2–16 solar radii. Angular broadening is anisotropic with axial ratios in the range 2–16. Larger axial ratios are observed preferentially at smaller solar distances. Assuming that anisotropy is due to scattering blobs elongated along magnetic field lines, the distribution of position angles of the elliptically broadened images indicates that the field lines are non-radial even at the largest heliocentric distances observed here. At 5R⊙, the major axis scattering angle is ∼ 0.7" atλ= 6 cm and it varies with heliocentric distance asR -1.6. The level of turbulence, characterized by the wave structure function at a scale of 10 km along the major axis, normalized toλ = 20 cm, has a value 20 ± 7 at 5R⊙and varies with heliocentric distance asR -3. Comparison with earlier resu lts suggest that the level of turbulence is higher during solar maximum. Assuming a power-law spectrum of electron density fluctuations, the fitted spectral exponents have values in the range 2.8–3.4 for scale sizes between 2–35 km. The data suggests temporal fluctuations (of up to 10%) in the spectral exponent on a time scale of a few tens of minutes. The observed structure functions at different solar distances do not show any evidence for an inner scale; the upper limits are l k m at 2R⊙ and 4 km at 13R⊙. These upper limits are in conflict with earlier determinations and may suggest a reduced inner scale during solar maximum.  相似文献   

13.
The present work is about the interpretation of the linear polarization of the O VI D2 (λ1032) coronal line observed by SUMER/SoHO. We take into account the effect of the Doppler redistribution due to the scattering ions motion. We consider the cases of isotropic and anisotropic velocity field distributions. The latter can be interpreted by the ioncyclotron effect that affects heavy ions in the solar corona. The comparison of the numerical results with the observations yields constraints on the solar wind outflow speed and on the velocity field distribution of the O5+ ions at low coronal altitudes in the polar holes.  相似文献   

14.
The observations of the solar radio emission on September 11, 2001, with the RATAN-600 radio telescope (southern sector) at four centimeter wavelengths (1.92, 2.24, 2.74, and 3.21 cm) revealed synchronous brightenings in solar radio sources. These were identified on the solar photosphere with active regions that were spaced up to ~106 km apart (AR 9608 and AR 9616). We discuss manifestations of the possible mechanisms of synchronous brightenings in solar sources in a narrow microwave spectral band. The significant linear correlation (ρc = 0.84–0.92) between the relative fluxes of AR 9610 and AR 9608 at 1.92 and 2.24 cm and the significant linear correlation (ρc = 0.65–0.84) between the relative fluxes of AR 9606 and AR 9608 at 3.21 cm in a two-hour interval of observations are indicative of the interconnection between these active regions not only during flares and bursts, but also in the periods of their absence. This confirms the existence of a large-scale temporal component in the dynamics of the radio flux variations for these active regions. We found a difference between the temporal variations of the radio emission from the halo and the solar radio sources under consideration. The times of increase in the total solar soft X-ray (0.5–4.0 Å, 1.0–8.0 Å; GOES 8, GOES 10) flux are shown to coincide with the times of increase in the fluxes from the solar radio sources at short centimeter wavelengths.  相似文献   

15.
We present continuous and time‐resolved R = 55 000 optical échelle spectroscopy of ε Aurigae from 2006–2013. Data were taken with the STELLA Echelle Spectrograph of the robotic STELLA facility at the Observatorio del Teide in Tenerife. Contemporaneous photometry with the Automatic Photoelectric Telescopes at Fairborn Observatory in Arizona is presented for the years 1996–2013. Spectroscopic observations started three years prior to the photometric eclipse and are still ongoing. A total of 474 high‐resolution échelle spectra are analyzed and made available in this paper. We identify 368 absorption lines of which 161 lines show the characteristic sharp disk lines during eclipse. Another 207 spectral lines appeared nearly unaffected by the eclipse. From spectrum synthesis, we obtained the supergiant atmospheric parameters Teff = 7395 ± 70 K, log g ≈ 1, and [Fe/H] = +0.02 ± 0.2 with ξt = 9 km s–1, ζRT = 13 km s–1, and v sin i = 28 ± 3 km s–1. The residual average line broadening expressed in km s–1 varies with a period of 62.6 ± 0.7 d, in particular at egress and after the eclipse. Two‐dimensional line‐profile periodograms show several periods, the strongest with ≈110 d evident in optically thin lines as well as in the Balmer lines. Center‐of‐intensity weighted radial velocities of individual spectral lines also show the 110‐d period but, again, additional shorter and longer periods are evident and are different in the Balmer lines. The two main spectroscopic Hα periods, ≈ 116 d from the line core and ≈ 150 d from the center‐of‐intensity radial velocities, appear at 102 d and 139 d in the photometry. The Hβ and Johnson V I photometry on the other hand shows two well‐defined and phase‐coherent periods of 77 d and 132 d. We conclude that Hα is contaminated by changes in the circumstellar environment while the Hβ and V I photometry stems predominantly from the non radial pulsations of the F0 supergiant. We isolate the disk‐rotation profile from 61 absorption lines and found that low disk eccentricity generally relates to low disk rotational velocity (but not always) while high disk eccentricity always relates to high velocity. There is also the general trend that the disk‐absorption in spectral lines with higher excitation potential comes from disk regions with higher eccentricity and thus also with higher rotational velocity. The dependency on transition probability is more complex and shows a bi‐modal trend. The outskirts of the disk is distributed asymmetrically around the disk and appears to have been built up mostly in a tail along the orbit behind the secondary. Our data show that this tail continues to eclipse the F0 Iab primary star even two years after the end of the photometric eclipse. High‐resolution spectra were also taken of the other, bona‐fide, visual‐binary components of ε Aur (ADS 3605BCDE). Only the C‐component, a K3‐4‐giant, appears at the same distance than ε Aur but its radial velocity is in disagreement with a bound orbit. The other components are a nearby (≈ 7 pc) cool DA white dwarf, a G8 dwarf, and a B9 supergiant, and not related to ε Aur. The cool white dwarf shows strong DIB lines that suggest the existence of a debris disk around this star. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present the first ever study of the bright star HD 1. The star was chosen arbitrarily just because of its outstanding Henry Draper number. Surprisingly, almost nothing is known about this bright 7.m4 star. Our observations were performed as part of the commissioning of the robotic telescope facility STELLA and its fiber‐fed high‐resolution optical echelle spectrograph SES in the years 2007–2010. We found long‐term radial velocity variations with a full amplitude of 9 km s–1 with an average velocity of –29.8 km s–1 and suggest the star to be a hitherto unknown single‐lined spectroscopic binary. A preliminary orbit with a period of 6.2 years (2279±69 days) and an eccentricity of 0.50±0.01 is given. Its rms uncertainty is just 73 m s–1. HD 1 appears to be a G9‐K0 giant of luminosity class IIIa with Teff = 4850±100 K, logg = 2.0±0.2, L ≈ 155 L, a mass of 3.0±0.3 M, a radius of 17.7 R, and an age of ≈350 Myr. A relative abundance analysis led to a metallicity of [Fe/H] = –0.12 ± 0.09. The α ‐element silicon may indicate an overabundance of +0.13 though. The low strengths of some s‐process lines and a lower limit for the 12C/13C isotope ratio of ≥16 indicate that HD 1 is on the first ascend of the RGB. The absorption spectral lines appear rotationally broadened with a v sin i of 5.5±1.2 km s–1 but no chromospheric activity is evident. We also present photometric monitoring BV (RI)C data taken in parallel with STELLA. The star is likely a small‐amplitude (<10 mmag) photometric variable although no periodicity was found (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
An analysis of the spectral distribution of intensity of the Hei recombination continuum is probably the only direct method for determination of the electron temperature of helium emission regions on the Sun. On the basis of data on the Hei Lyman continuum, obtained by Dupree and Reeves from OSO-4, the electron temperature of undisturbed helium regions is determined: T e = = 12500 K. Such a low T e value is a serious argument in favour of the predominant role of UV coronal radiation in the helium ionization on the Sun. Comparison of the Hei Lyman continuum data with results of observations of the 10830 line showed that the visible helium lines and Hei Lyman continuum are produced within the same regions of the undisturbed solar atmosphere at T e = 12500 K.  相似文献   

18.
The PICARD mission is a CNES micro‐satellite to be launched in 2009. Its goal is to better understand the Sun and the potential impact of its activity on earth climate by measuring simultaneously the solar total and spectral irradiance, diameter, shape and oscillations. We present the scientific objectives, instrumental requirements and data products of the helioseismology program of PICARD which aims to observe the low to medium l p‐mode oscillations in intensity and search for g‐mode oscillation signatures at the limb. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Wilhelm  K.  Lemaire  P.  Curdt  W.  Schühle  U.  Marsch  E.  Poland  A. I.  Jordan  S. D.  Thomas  R. J.  Hassler  D. M.  Huber  M. C. E.  Vial  J.-C.  Kühne  M.  Siegmund  O. H. W.  Gabriel  A.  Timothy  J. G.  Grewing  M.  Feldman  U.  Hollandt  J.  Brekke  P. 《Solar physics》1997,170(1):75-104
SUMER – the Solar Ultraviolet Measurements of the Emitted Radiation instrument on the Solar and Heliospheric Observatory (SOHO) – observed its first light on January 24, 1996, and subsequently obtained a detailed spectrum with detector B in the wavelength range from 660 to 1490 Å (in first order) inside and above the limb in the north polar coronal hole. Using detector A of the instrument, this range was later extended to 1610 Å. The second-order spectra of detectors A and B cover 330 to 805 Å and are superimposed on the first-order spectra. Many more features and areas of the Sun and their spectra have been observed since, including coronal holes, polar plumes and active regions. The atoms and ions emitting this radiation exist at temperatures below 2 × 106 K and are thus ideally suited to investigate the solar transition region where the temperature increases from chromospheric to coronal values. SUMER can also be operated in a manner such that it makes images or spectroheliograms of different sizes in selected spectral lines. A detailed line profile with spectral resolution elements between 22 and 45 mÅ is produced for each line at each spatial location along the slit. From the line width, intensity and wavelength position we are able to deduce temperature, density, and velocity of the emitting atoms and ions for each emission line and spatial element in the spectroheliogram. Because of the high spectral resolution and low noise of SUMER, we have been able to detect faint lines not previously observed and, in addition, to determine their spectral profiles. SUMER has already recorded over 2000 extreme ultraviolet emission lines and many identifications have been made on the disk and in the corona.  相似文献   

20.
Time variations in the solar flux between 1000 and 4000 Å induce changes in the concentrations of minor constituents in the upper stratosphere and mesosphere. The response of mesospheric ozone to variations in the Lyman α line over the course of several solar rotations may be of measurable magnitude. Large Lyman α fluxes lead to small O3 densities above 65 km due to the enhanced dissociation of H2O and resultant destruction of odd oxygen by odd hydrogen. An increase in continuum and Lyman α fluxes causes a slight enhancement in both the odd oxygen and hydrogen concentrations in the upper stratosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号