首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
活化天然磷灰石用于去除水溶液中铅离子   总被引:3,自引:0,他引:3  
活化天然磷灰石用于去除水溶液中铅离子刘羽胡文云钟康年(武汉化工学院资源工程系,武汉430073)关键词磷灰石活化除铅铅作为一种具有强烈生物毒性的重金属元素,是国家严格控制的环境污染物。近年来发现,天然和人工合成磷灰石均能去除水溶液中的重金属元素。实验...  相似文献   

2.
齐勇  刘羽 《地质学报》2006,80(4):560
本文研究了在Pb~(2+),Cd~(2+)和Cu~(2+)等离子共存的条件下,羟基磷灰石对溶液中Zn~(2+)离子的吸附行为,讨论了Pb~(2+),Cd~(2+)和Cu~(2+)离子对Zn~(2+)吸附行为的影响;比较了羟基磷灰石对上述离子的吸附能力。实验结果表明:随着Cd~(2+)离子浓度增大,对Zn~(2+)的去除率逐渐增高,羟基磷灰石对Cd~(2+)和Zn~(2+)离子无吸附选择性。而随着Cu~(2+)离子浓度增大,对Zn~(2+)的去除率急剧下降,表现出明显的吸附选择性。另一方面,对Zn~(2+)的去除率几乎不随Pb~(2+)离子浓度的变化而改变,这是由于羟基磷灰石对这两种离子的吸附行为与机理不同。上…  相似文献   

3.
利用合成磷灰石可以从水溶液中除去铅和其它重金属离子,对于含有大约100ppm二价铅的水溶液少量的羟基磷灰石就可以很容易地把铅的浓度减小到ppb级水平,或者到检出水平以下。这一反应取决于溶液中Pb~(2+)的含量和羟基磷灰石的含量,反应可以很快,几分钟内即可完成。通常认为反应机理主要是铅磷酸盐的沉淀作用。在自然界的地球化学条件下,溶液中的铅趋向于沉淀转变成相当难溶和稳定的磷氯铅矿。扫描电子显微镜  相似文献   

4.
用滚动成型的方法将改性天然磷灰石粉末制备成颗粒状水处理剂,并对工业含铅废水进行了静态和动态处理研究.静态实验中该水处理剂去除铅离子的能力可达到661.10 mg/g;动态实验结果表明该水处理剂每1 kg可以处理Pb2 浓度为58.3 mg/L的废水3 m3,出水达到排放标准.对使用过的水处理剂进行高温固化或者添加到粘土中制砖,可避免二次污染.经济分析显示该水处理剂具有很好的应用潜力和开发价值.  相似文献   

5.
羟基磷灰石吸附剂去除铬黄工业废水中铅离子的研究   总被引:14,自引:1,他引:14       下载免费PDF全文
羟基磷灰石吸附剂对铬黄废水中Pb^2 吸附的间歇实验结果表明:当每吨废水中吸附剂用量为200~400g时,常温搅拌60min后,在弱酸性或中性废水中,铅离子质量浓度由2.74mg/L降至0.5mg/L以下,完全符合GB8978-1996工业废水排放标准1.0mg/L。  相似文献   

6.
铀污染地下水分布于世界多国,其危害备受关注。本文基于溶胶-凝胶法制备方解石负载羟基磷灰石复合材料(CLHC),通过静态与动态对比试验,探讨了PRB活性介质对水中铀离子的吸附机理和去除效果。试验结果表明,制备的CLHC表面被羟基磷灰石覆盖,对铀离子具有较强的吸附能力。当U的初浓度为5.0 mg/L、试验周期为2 h、溶液pH值为4、CLHC用量为0.5 g/L时,CLHC可以吸附水中所有的铀离子。CLHC对铀离子的吸附过程可以用Langmuir等温吸附模型、粒子内扩散吸附动力学模型和准二级吸附动力学模型较好地进行描述。石英砂负载羟基磷灰石与CLHC相比,后者具有更强的吸附能力,而且具有更长的使用寿命。CLHC在吸附铀的过程中没有价态变化,其对铀离子的吸附主要为离子交换的化学吸附。本研究的成果可为可渗透反应墙被应用于铀污染地下水修复提供试验依据。  相似文献   

7.
磷灰石广泛存在于生物体和各种地质体中,其形成机制随物理化学条件变化而变化。本文采用Raman光谱、扫描电镜和X射线谱仪等技术研究了水热条件下,方解石向羟基磷灰石转变过程中矿物物相的变化,探讨了羟基磷灰石的形成机制。结果表明,在弱酸性环境下,方解石中的碳酸根离子先被溶液中的磷酸氢根离子交代,形成二水合磷酸氢钙(DCPD),随后部分DCPD经过脱水脱氢作用逐步转变为羟基磷灰石(HAP),还有部分磷酸氢钙溶解在水溶液中;但在碱性环境下,仅有少量的方解石转变为HAP。由此可知,磷酸盐流体中,羟基磷灰石替代方解石的生长是一种溶解-沉淀耦合的过程。低温条件下,酸性缓冲溶液条件首先生成DCPD,而后转变为HAP,碱性条件直接生成HAP。温度升高能加速方解石向HAP的转变,并且未发现DCPD的中间相。  相似文献   

8.
通过改进滤失试验研究典型钠化改性钙基和天然钠基膨润土在重金属铅-镉以及铬作用下渗透系数的变化规律。研究发现,膨润土试样渗透系数在重金属铅-镉浓度小于6mmol/L时增幅较小,为2~3倍;当浓度超过10mmol/L时呈急剧增大的趋势。铬酸钾溶液作用下,钠化改性钙基膨润土的渗透系数低于未污染试样;天然钠基膨润土的渗透系数则增大2~8倍。两者差异归因于土-液相互作用下铬在不同pH-Eh环境中化学形态的不同。研究中钠化改性钙基膨润土浆液中铬以阴离子络合的六价铬形态存在,使得膨润土颗粒表面负电荷密度趋于增加,因而保持和促进膨润土的分散状态。天然钠基膨润土浆液中铬则出现以阳离子形态存在的三价铬,显著挤压膨润土颗粒双电层,导致膨润土颗粒团聚。综合国内外研究总结无机盐溶液作用下膨润土化学相容性随污染程度变化规律,发现渗透系数比与离子强度关系存在一临界值,当离子强度达到该临界值则渗透系数将呈数量级增大。  相似文献   

9.
利用天然磷矿粉为原料制备的羟基磷灰石(HAP)研究其去除水溶性Fe3+作用机理。结果表明:HAP对水溶液中Fe3+离子的去除过程是一个复杂的非均相固-液反应,分为两个阶段:初期阶段(t≤20 min)反应速度快,动力学过程复杂;后期阶段(t20min)反应速度较慢,符合一级反应动力学方程。HAP去除水溶性Fe3+离子的主要作用机理是溶解-沉淀和表面吸附作用。  相似文献   

10.
国内矿物治理重金属废水研究进展与展望   总被引:7,自引:4,他引:3  
综述了我国利用天然矿物治理重金属废水方面的研究新成果。天然铁的硫化物、天然铁锰的氧化物、方解石与磷灰石等具有良好的表面吸附与氧化还原化学活性;不同介质中它们能不同程度地表现出对Cr^6 、Pb^2 、Hg^2 、Cd^2 等重金属离子的吸附作用,可广泛用于重金属废水处理。矿物吸附重金属离子机理的研究表明,矿物对重金属的吸附是矿物表面与无机重金属离子之间的表面作用过程,包括矿物表面功能基与重金属离子的配位反应、矿物表面氧化还原反应和沉淀转化作用,以及矿物表面离子交换吸附作用等。  相似文献   

11.
In this study, the adsorption kinetics, equilibrium and thermodynamics of Fe3+ ions on natural (NAP) and synthetic (HAP) apaties were examined. The adsorption efficiency of Fe3+ onto the NAP and HAP was increased with increasing temperature. The kinetics of adsorption of Fe3+ ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 37.15 and 49.84 kJ·mol 1 for NAP and HAP, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin–Redushkevich (D–R) isotherm equations at different temperatures. RL separation factor for Langmuir and the n value for Freundlich isotherm show that Fe3+ ions are favorably adsorbed by NAP and HAP. Various thermodynamic parameters such as enthalpy (ΔH), Gibbs free energy (ΔG) and entropy (ΔS) changes were computed and the results showed that the adsorption of Fe3+ ions onto NAP and HAP were spontaneous and endothermic in nature.  相似文献   

12.
The present work shows that U can be effectively removed from groundwater using permeable reactive barriers with hydroxyapatite (HAP) as reactive material. The main factor influencing the removal processes is the composition of the groundwater, namely the concentration of Ca and carbonate. Sorption of U onto the HAP surface seems to be the dominant removal process with the possibility of remobilisation. Newly formed U-phosphate minerals were detected by ESEM/EDX and XRD in samples with high U content indicating either a dissolution-precipitation mechanism or sorption onto the apatite surface followed by alteration of the structure. The formed U-phosphate minerals are stable under common groundwater conditions and can be remobilised only at high pH-values and high carbonate concentrations.  相似文献   

13.
The Olympic iron oxide–copper–gold province in South Australia contains numerous deposits and prospects, including the Olympic Dam Cu–U–Au–Ag deposit and the Acropolis prospect. The Acropolis prospect comprises massive, coarse-grained magnetite–apatite veins partly replaced by a hematite-stable assemblage. The apatite grains in the veins contain zones with abundant inclusions of other minerals (including monazite and xenotime) and low trace-element concentrations relative to the inclusion-free zones. The inclusion-rich apatite zones are interpreted to be formed from the recrystallisation of the inclusion-free apatite and remobilisation of U, Th and rare earth element (REE) from apatite into monazite and xenotime. Apatite, monazite and xenotime are all established U–Th–Pb geochronometers and offer the potential to constrain the alteration history of the Acropolis prospect. The LA-ICPMS U–Pb age of inclusion-free apatite is within error of the age of the host volcanic units (ca 1.59 Ga). Inclusion-rich apatite yields both near-concordant analyses that are within error of the inclusion-free apatite as well as highly disturbed (discordant) analyses. The most concordant analyses of monazite (Th–Pb) inclusions and xenotime (U–Pb) inclusions and rim grains indicate an alteration event occurred at ca 1.37 Ga and possibly also at ca 500 Ma. The disparity in age of the inclusion-rich apatite and the REE-phosphate inclusions (and rim grains) is suggested to be owing to the apatite being initially recrystallised at ca 1.59 Ga and modified again by a later event that also formed (or coarsened) most of the inclusions. Partial resetting of the majority of the monazite inclusions as well as the presence of significant amounts of common Pb has complicated the interpretation of the monazite results. In contrast, xenotime is a more robust geochronometer in this setting. The ages of the two post-1.59 Ga events that appear to have affected the Acropolis prospect do not correspond to any events known to have occurred in the Gawler Craton. The earlier (ca 1.37 Ga) age instead corresponds best with metamorphic–magmatic–hydrothermal activity in Laurentia, consistent with the proximity of Laurentia and the Gawler Craton inferred from palaeogeographic reconstructions. The later (ca 500 Ma) event corresponds to the Delamerian Orogeny and has been shown by prior studies to have also affected the Olympic Dam deposit.  相似文献   

14.
Previous studies on waters of a streamlet in the Vosges Mountains (Eastern France) have shown that strontium and rare earth elements (REE) mainly originate from preferential dissolution of apatite during weathering. However, stream water REE patterns normalized to apatite are still depleted in the light REE (LREE, La-Sm) pointing to the presence of an additional LREE depleting process. Vegetation samples are strongly enriched in LREE compared to stream water and their Sr and Nd isotopic compositions are comparable with those of apatite and stream water. Thus, the preferential LREE uptake by vegetation might lead to an additional LREE depletion of surface runoff in the forested catchment. Mass balance calculations indicate, that the yearly LREE uptake by vegetation is comparable with the LREE export by the streamlet and, therefore, might be an important factor controlling LREE depletion in river water. This is underlined by the observation that rivers from arctic and boreal regions with sparse vegetation appear to be less depleted in LREE than rivers from tropical environments or boreal environments with a dense vegetation cover.  相似文献   

15.
Apatite is a common U- and Th-bearing accessory mineral in igneous and metamorphic rocks, and a minor but widespread detrital component in clastic sedimentary rocks. U–Pb and Th–Pb dating of apatite has potential application in sedimentary provenance studies, as it likely represents first cycle detritus compared to the polycyclic behavior of zircon. However, low U, Th and radiogenic Pb concentrations, elevated common Pb and the lack of a U–Th–Pb apatite standard remain significant challenges in dating apatite by LA-ICPMS, and consequently in developing the chronometer as a provenance tool.This study has determined U–Pb and Th–Pb ages for seven well known apatite occurrences (Durango, Emerald Lake, Kovdor, Mineville, Mud Tank, Otter Lake and Slyudyanka) by LA-ICPMS. Analytical procedures involved rastering a 10 μm spot over a 40 × 40 μm square to a depth of 10 μm using a Geolas 193 nm ArF excimer laser coupled to a Thermo ElementXR single-collector ICPMS. These raster conditions minimized laser-induced inter-element fractionation, which was corrected for using the back-calculated intercept of the time-resolved signal. A Tl–U–Bi–Np tracer solution was aspirated with the sample into the plasma to correct for instrument mass bias. External standards (Ple?ovice and 91500 zircon, NIST SRM 610 and 612 silicate glasses and STDP5 phosphate glass) along with Kovdor apatite were analyzed to monitor U–Pb, Th–Pb, U–Th and Pb–Pb ratiosCommon Pb correction employed the 207Pb method, and also a 208Pb correction method for samples with low Th/U. The 207Pb and 208Pb corrections employed either the initial Pb isotopic composition or the Stacey and Kramers model and propagated conservative uncertainties in the initial Pb isotopic composition. Common Pb correction using the Stacey and Kramers (1975) model employed an initial Pb isotopic composition calculated from either the estimated U–Pb age of the sample or an iterative approach. The age difference between these two methods is typically less than 2%, suggesting that the iterative approach works well for samples where there are no constraints on the initial Pb composition, such as a detrital sample. No 204Pb correction was undertaken because of low 204Pb counts on single collector instruments and 204Pb interference by 204Hg in the argon gas supply.Age calculations employed between 11 and 33 analyses per sample and used a weighted average of the common Pb-corrected ages, a Tera–Wasserburg Concordia intercept age and a Tera–Wasserburg Concordia intercept age anchored through common Pb. The samples in general yield ages consistent (at the 2σ level) with independent estimates of the U–Pb apatite age, which demonstrates the suitability of the analytical protocol employed. Weighted mean age uncertainties are as low as 1–2% for U- and/or Th-rich Palaeozoic–Neoproterozoic samples; the uncertainty on the youngest sample, the Cenozoic (31.44 Ma) Durango apatite, ranges from 3.7–7.6% according to the common Pb correction method employed. The accurate and relatively precise common Pb-corrected ages demonstrate the U–Pb and Th–Pb apatite chronometers are suitable as sedimentary provenance tools. The Kovdor carbonatite apatite is recommended as a potential U–Pb and Th–Pb apatite standard as it yields precise and reproducible 207Pb-corrected, 232Th–208Pb, and common Pb-anchored Tera–Wasserburg Concordia intercept ages.  相似文献   

16.
荆襄地区陡山沱组磷块岩的类型、成因和沉积环境   总被引:1,自引:0,他引:1       下载免费PDF全文
赵东旭 《地质科学》1983,(4):392-401
本文根据野外调查和室内初步研究成果并结合有关地质资料,分析、讨论了荆襄陡山沱组含磷岩系的磷块岩类型、成因和沉积环境。通过分析可知,组成磷块岩的磷灰石有不同的形成方式;磷块岩沉积在海退旋回中粘土和硅质沉积向碳酸盐沉积的转变阶段;磷块岩矿床形成在陆缘海内与深水有联系的浅水地带。 矿区含磷岩系特征综合于图1。  相似文献   

17.
Iron oxide–apatite (IOA) deposits, often referred to as Kiruna-type iron ore deposits, are known to have formed from the Proterozoic to the Tertiary. They are commonly associated with calc–alkaline volcanic rocks and regional- to deposit-scale metasomatic alteration. In the Bafq District in east Central Iran, economic iron oxide–apatite deposits occur within felsic volcanic tuffs and volcanosedimentary sequences of Early Cambrian age. In order to constrain the age of formation of these ores and their relationship with the Early Cambrian magmatic event, we have determined the U–Pb apatite age for five occurrences in the Bafq District. In a 206Pb/238U vs. 207Pb/235U diagram, apatite free of or poor in inclusions of other minerals plots along the Concordia between 539 and 527 Ma with four out of five samples from one deposit clustering at the upper end of this range. For this deposit, we interpret this cluster to represent the age of apatite formation, whereas the spread towards younger ages may reflect either minor Pb loss or several events of IOA formation. Apatite with inclusions of monazite (±xenotime) yields disturbed systems with inclusions having developed after formation of the iron ore–apatite deposits, possibly as late as 130–140 Ma ago. Obtained apatite ages confirms that (IOA) and the apatite-rich rocks (apatites) of the Bafq district formed coevally with the Early Cambrian magmatic (-metasomatic) events.  相似文献   

18.
The Uzbek Tian Shan is a prominent metal-rich belt, hosting world-class orogenic Au deposits such as Muruntau. However, its post-collisional history in relation to fluid alteration and mineralisation remains elusive. We present apatite U–Pb dates and rare earth element geochemistry for 44 granitoids, revealing a prolonged history of low-grade metamorphism and associated fluid alteration between ~285 and ~240 Ma. A resulting apatite U–Pb age interpolation map reveals two young anomalies that are interpreted as post-orogenic fluid circulation cells. In addition, the extent of Meso-Cenozoic denudation is presented using apatite fission track (FT) age data. In areas of good data coverage, the combined Apatite U–Pb and FT anomalies reveal a correlation with the locations of orogenic Au mineralisation. Although more data is required to further evaluate such correlation, our study illustrates that integrated multi-method apatite thermochronology and geochemistry may have the potential to become a novel viable tool for mineral exploration.  相似文献   

19.
Previous studies on waters of a streamlet in the Vosges mountains (eastern France) have shown that Sr and rare earth elements (REE) principally originate from apatite dissolution during weathering. However, stream water REE patterns normalized to apatite are still depleted in light REE (LREE, La–Sm) pointing to the presence of an additional LREE depleting process. Speciation calculations indicate that complexation cannot explain this additional LREE depletion. In contrast, vegetation samples are strongly enriched in LREE compared to water and their Sr and Nd isotopic compositions are comparable with those of apatite and waters. Thus, the preferential LREE uptake by the plants at the root–water–soil (apatite) interface might lead to an additional LREE depletion of the waters in the forested catchment. Mass balance calculations indicate that the yearly LREE uptake by vegetation is comparable with the LREE export by the streamlet and, therefore, might be an important factor controlling the LREE depletion in river waters.  相似文献   

20.
To evaluate in situ Pb dating by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), we analysed apatite, sphene, and monazite from Paleoproterozoic metamorphic rocks from West Greenland. Pb isotope ratios were also determined in the National Institute of Standards and Technology (NIST) 610 glass standard and were corrected for mass fractionation by reference to the measured thallium isotope ratio. The NIST 610 glass was used to monitor Pb isotope mass fractionation in the low Tl/Pb accessory minerals. Replicate analyses of the glass (1 to 2 min) yielded ratios with an external reproducibility comparable to conventional analyses of standard reference material 981 by thermal ionisation mass spectrometry (TIMS). Mineral grains were generally analysed with a 100-μm laser beam, although some monazite crystals were analysed at smaller spot sizes (10 and 25 μm). The common Pb isotope ratios required for age calculations were either measured on coexisting plagioclase by LA-MC-ICP-MS or could be ignored, as individual crystals exhibit sufficient Pb isotopic heterogeneity to perform isochron calculations on replicate analyses of single crystals. Mean mineral ages with the 204Pb ion beam measured in the multiplier were as follows: apatite, 1715 ± 23 m.y.; sphene, 1789 ± 11 m.y.; and monazite, 1783 to 1888 m.y., with relative uncertainties on individual monazite ages of <0.2% but highly reproducible age determinations on single monazite crystals (?1%). Isochron ages calculated from several mineral analyses without assumption of common Pb also yield precise age determinations. Apatite and monazite Pb ages determined by in situ Pb isotope analysis are identical to those determined by conventional TIMS analysis of bulk mineral separates, and the analytical uncertainties of these short laser analyses with no prior mechanical or chemical separation are comparable to those obtained by TIMS. Detailed examination of the sphene in situ age data does, however, show a small discrepancy between the LA-MC-ICP-MS and TIMS ages (∼1% younger). High-resolution mass scans of the sphene during ablation clearly showed several small and as yet unidentified isobaric interferences that overlap with the 207Pb peak at the resolution conditions for measurement of isotope ratios. These might account for the age discrepancy between the LA-MC-ICP-MS and TIMS sphene ages. LA-MC-ICP-MS is a rapid, accurate, and precise method for in situ determination of Pb isotope ratios that can be used for geochronological studies in a manner similar to an ion microprobe, albeit currently at a somewhat degraded spatial resolution. Further modifications to the LA-MC-ICP-MS system, such as improved sensitivity, ion transmission, and LA methodology, may lead to this type of instrument becoming the method of choice for many types of in situ Pb isotope dating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号