首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In nested nonhydrostatic mesoscale model MM5,the characteristic quantities of atmospheric turbulence,i.e.,the standard deviations of the turbulent fluctuated speeds for three directions in PBL are computed by Mellor-Yamada's level 2.5 closure scheme.The magnitudes and the vertical profiles of these quantities computed from the model are closely connected with temperature and wind speed profiles as well as the type of the ground with a significant diurnal variation,and are in agreement with known magnitudes and regularities in different stratification conditions.Hence the method in this paper is reasonable and convincible.Their horizontal distribution depends on the horizontal distribution of the stratification.The method of predicted characteristic quantities of turbulence from mesoscale model in this paper can be used in the problem of atmospheric diffusion and atmospheric environment.  相似文献   

2.
吕克利  H. R. Cho 《气象学报》1991,49(3):278-287
文中利用半地转锋生模式讨论了大气层结,天气尺度位温场和中尺度位温扰动对锋区多重垂直运动带形成的影响,给出了垂直运动场的演变图。结果显示,大气层结和中尺度位温扰动对锋区垂直运动带的形成有重要影响,在合适的大气层结下,垂直伸展较高的低空中尺度位温扰动是形成锋前暖区多重雨带的可能驱动机制之一;不同高度上的中尺度位温扰动以低层扰动影响最大,中层次之;天气尺度位温扰动场的水平温差对锋生速度和锋区垂直运动带都有重要影响;中尺度位温扰动对锋生速度没有什么作用。  相似文献   

3.
Ground-based remote sensing systems have been used during the ESCOMPTE campaign, to continuously characterize the boundary-layer behaviour through many atmospheric parameters (wind, extinction and ozone concentration distribution, reflectivity, turbulence). This analysis is focused on the comparison of the atmospheric stratification retrieved from a UV angular ozone lidar, an Ultra High Frequency wind profiler and a sodar, above the area of Marseille, on June 26th 2001 (Intensive Observation Period 2b). The atmospheric stratification is shown to be very complex including two superimposed sea breezes, with an important contribution of advection. The temporal and spatial evolution of the stratification observed by the UV lidar and by the UHF radar are in good agreement although the origin of the echoes of these systems is quite different. The complexity of the dynamic situation has only partially been retrieved by a non-hydrostatic mesoscale model used with a 3 km resolution.  相似文献   

4.
This review of the last three years of progress in the understanding of wind profiles and the structure of turbulence in the planetary boundary layer is divided into three parts. The first part, by N. E. Busch, deals with the atmospheric surface layer below 30 m. It is shown that the Monin-Oboukhov similarity hypotheses fail at low frequencies and large wave-lengths, probably due to mesoscale influences. Also, it is suggested that the neutral surface layer is a poor reference state in some respects, because the structure of turbulence in unstable conditions is quite different from that in stable stratification. The second part, by H. Tennekes, is concerned with the intermittency of the dissipative structure of turbulence and its effects on the velocity and temperature structure functions. It is shown that the modified Kolmogorov-Oboukhov theory, which attempts to explain the consequences of the dissipative intermittency, is unable to predict the shape of the temperature structure functions. The third part of this review, by H. A. Panofsky, deals with wind profiles and turbulence structure above 30 m. It is shown that between 30 and 150 m, surface-layer formulas can be used, if such mesoscale effects as changes of terrain roughness are taken into account where needed. Experimental data on turbulence above 150 m are quite sparse; some of the current scaling laws that can be used in this region are described.  相似文献   

5.
Summary  High resolution aircraft observations made along flight tracks over inhomogeneous surface in the late wintertime boreal zone are described and compared to 2D mesoscale model simulations with surface properties defined at 2 km resolution from maps. All observations displayed the expected small-scale turbulence. On top of that, the near-surface wind speeds (but not directions) showed mesoscale variations related to local topography and roughness. Upward (but not downward) SW and LW radiative fluxes and ground temperature also displayed mesoscale variability; in SW radiation this was clearly due to local albedo changes. In the sensible heat flux there was strong horizontal variation near the surface in correlation with surface types. The above observed mesoscale along-track variations were reasonably well represented by the mesoscale model simulation. The track-averaged observed sensible and latent heat flux profiles were in rough agreement with a mixing length approach, which used the track-averaged wind, temperature and moisture profiles as input (mimicking a first-order turbulence closure scheme of a GCM). Received September 20, 1999 Revised January 21, 2000  相似文献   

6.
齐瑛  傅抱璞 《高原气象》1992,11(1):12-32
本文建立了一个二维定常大气中尺度数值模式,并用该模式讨论了由下垫面粗糙分布非均匀(局地动力强迫)和温度分布非均匀(局地热力强迫)而产生的局地大气环流与大气边界层湍流的相互作用。结果指出:下垫面存在温度分布非均匀时运动方程中的湍流交换项与水平气压梯项一样可促使局地热力环境的形成,由粗糙度分布非均匀强迫产生的局地环流与由下垫面温度分布非均匀强迫产和的局地热力环流间的非线笥相互作用是通过湍流交换实现的。  相似文献   

7.
HEIFE绿洲和沙漠地区大气边界层湍流混沌特性研究   总被引:8,自引:1,他引:7  
高志球  王介民 《高原气象》1998,17(4):397-402
利用“黑河实验”期间张掖、沙漠观测站加强观测期间1991年6月20日09:00至1991年10月2日09:00时段内水平风速的观测资料,计算分析了有关测量混沌的特征量:关联维数。Lyapunov指数和Kolmogorow熵。  相似文献   

8.
A mesoscale Planetary Boundary Layer (PBL) model with a simple turbulence closure scheme based on the turbulence kinetic energy (TKE) equation and the dissipation () equation is used to simulate atmospheric flow over mesoscale topography. Comparative studies with different parameterizations suggest that with a proper closure assumption for turbulence dissipation, the E-model can simulate the circulation induced by the mesoscale topography with results similar to those obtained using the E- model. On the other hand, the first-order closure using O'Brien's cubic interpolation for eddy diffusivities (K) generally produces much larger K profiles in the stable and the unstable regions, which is believed to be due to the overprediction of the height of the PBL. All models with the TKE equation yield quite similar ensemble mean fields, which are found to be little sensitive to the closure assumption for turbulence dissipation, though their predicted magnitudes of TKE and K may differ appreciably. A discussion on the diurnal evolution of the mesoscale topography-induced circulation and the spatial variations of the turbulence fluxes in the surface layer is also given based on the E- model results.  相似文献   

9.
张强  于学泉 《高原气象》2001,20(1):58-65
利用一个非静力平衡的、高分辨的、二维中尺度大气数值模式,并在仅考虑简单过程的情况下,模拟了干旱区中绿洲所诱发的中尺度运动,并进行了这种中尺度大气运动的强度对绿洲水平尺度、绿洲与周围环境的水平热力差异、大尺度背景场水平风速和大尺度地表加热率等一些重要物理参数关系的敏感性实验研究。研究发现:中尺度大气运动强度随水平热力差异的增大而加强,随背景场水平风速和大尺度地表加热率增强而分别减弱。但随绿洲水平尺度的变化并不像前三个因子一样为单调函数,而是在绿洲水平尺度为20km时中尺度大气运动最强,绿洲水平尺度更大或更小时中尺度大气运动强度均会减弱。通过统计甘肃省河西地区的绿洲水平尺度分布规律,发现绿洲分布最集中的尺度在15-25km,与模拟所得到的能源发最强中尺度运动的绿洲水平尺度基本一致。  相似文献   

10.
A series of tracer experiments studying the statistical properties of concentration fluctuations in clouds dispersing in the atmospheric surface layer is described and analyzed. Experiments were conducted at downwind fetches between about 200 and 1200 m, under a wide range of atmospheric conditions ranging from very unstable to moderately stable stratification. The present experiments have addressed basic requirements not met by past field experiments involving instantaneously released clouds; namely, the experiments provided repeat realizations of instantaneously released clouds measured with high-resolution concentration detectors, accompanied by the contemporaneous acquisition of high-quality meteorological and turbulence measurements.Extensive analyses are performed on the cloud concentration data in the framework of relative diffusion. Ensembles of cloud concentration realizations have been constructed. From these ensembles, crosswind and time profiles of the ensemble-mean concentration, concentration variance, ensemble-mean dosage, and dosage variance are obtained. The behaviour of the time profiles of the integral time scale of cloud concentration fluctuations is studied. The use of surface-layer similarity theory for the analysis of the downwind variation of a number of cloud quantities (e.g., cloud size and duration, cloud centre ensemble-mean concentration and dosage, cloud centre concentration and dosage variance, cloud centre integral time scale) is shown to be an effective basis for ordering these quantities. Furthermore, a number of approximate universal relationships describing the behavior of these cloud quantities has been derived. Finally, it is shown that the scaled crosswind and time profiles of ensemble-mean concentration and concentration variance as well as the scaled time profiles of the concentration fluctuation integral time scale exhibit self-similar forms that are independent of atmospheric stratification and downwind fetch.  相似文献   

11.
Local advection of momentum,heat, and moisture in micrometeorology   总被引:1,自引:0,他引:1  
The local advection of momentum, heat and moisture in micrometeorology due to a horizontal inhomogeneity in surface conditions is numerically investigated by a higher-order turbulence closure model which includes equations for the mean quantities, turbulent fluxes, and the viscous dissipation rate. The application of the two-dimensional model in this paper deals with the simulation of the flow from an extensive smooth dry area to a grassy wet terrain. The mean wind speed, temperature, and humidity distributions in the resulting internal boundary layer downstream of the surface discontinuity are determined such that the energy and moisture balances at the Earth's surface are satisfied.Numerical calculations of the mean temperature and humidity profiles are compared with available observed ones. The results include the advective effects on turbulent flux distributions, surface energy balance, evaporation rate, and Bowen ratio. The sensitivity of the predicted mean profiles and turbulent flux distributions to the surface relative humidity, thermal stratification, and the roughness change is discussed.NRC-NAS Resident Research Associate at AFCRL.  相似文献   

12.
A pollution-related study has been carried out for the Swiss city of Bienne that is located in complex terrain at the foot of the Jura mountains. The study consists of an analysis of pollutant transport and dispersion from various emittors located in the city, using a coupled system of mesoscale and micro-scale atmospheric numerical models. Simulations of atmospheric flow with the mesoscale model over a 20 × 20 km domain (horizontal resolution: 500 m; vertical resolution: 250 m) are used to initialize a microscale model centered over the city. The domain of this latter model is 4 × 4 km (horizontal resolution: 100 m; vertical resolution: 10 m). Plume trajectories are computed in the micro-scale model, and are a function of the regional-scale flow field previously calculated by the mesoscale model. Results show that the flow — and hence the plume trajectories embedded within this motion field — an sensitive not only to channeling effects by the local valley systems, but also to local or regional meteorological effects resulting from cloud activity, urban heat island, and the direction of the synoptic scale flow with respect to the orientation of the Jura mointains.  相似文献   

13.
Summary We have used a two dimensional version of a nonhydrostatic mesoscale model to simulate atmospheric gravity currents for different thermal stratification. The horizontal and vertical grid increments are chosen such, that the major features of a current like head and elevated nose are resolvable.When the density current propagates into a neutral stratified environment it was found, that frontspeed agrees well with an empirical formula. Also characteristic length scales like depth of the head or height of the following cold air body agree well with observations found in water tank experiments.When a stable atmosphere is adopted, the front moves faster and the generated gravity waves have a significant influence on the atmospheric variables ahead of the current. This results especially in a pressure increase before the front arrives, an effect, which was found in observations, too.Finally, it is shown, that an elevated inversion, embedded in a stable layer, intensifies the vertical velocities and therefore the mesoscale heat flux, which results in a stronger entrainment. For this case a remarkable decrease of front speed is simulated with time.With 7 Figures  相似文献   

14.
湍流动能闭合方法在中尺度模式中的应用   总被引:3,自引:1,他引:2  
唐有华  苗曼倩 《大气科学》1998,22(2):235-242
湍流动能闭合方法是近年来发展起来的用以模拟大气边界层的一种方法,本文对其做了简化,仅在边界层内使用这一方法,进一步减少计算量,使之更适用于中尺度数值模拟。对一维旺加拉(Wangara)资料进行的试验表明,这种方法保留了边界层计算的精度,又能节省机时。然后将这种方法应用于三维中尺度钟形山地形的模拟,描述了湍流动能的分布,以及湍流活动对山后回流区面积和强度的影响。  相似文献   

15.
In order to provide wind profiles for the microscale numerical simulation of wind farm with complex terrain,using the 100 m tower atmospheric turbulence observation experiment data in 2010 in Hebei Province offered by National Climate Center, the variation characteristics of wind profile under the different atmospheric stability conditions are analyzed, and the wind profile expression based on the local similarity theory is established. The results show that:(1) In spring, the occurrence probability of unstable stratification in the Hebei coastal area is as high as 28%, and the probability of stable stratification is more than 43% while, in summer, the probability of occurrence of unstable stratification is as high as 80% with a lower probability for stable stratification; and(2) for stable stratification, the characteristics of atmosphere change is dramatic in terms of the vertical direction, which need to be treated layer by layer.According to the atmospheric turbulence observation experiment data above, under stable stratification, the relationship between the dimensionless velocity gradient and the stability ζ can be expressed as 1 +βmζ, with βm changing with the height: βm takes 4.1-4.3 under 30 m, βm takes 4.6-4.7 between 30-50 m, and βm takes 6.3-6.7 over 50 m.  相似文献   

16.
Wind-turbine-wake evolution during the evening transition introduces variability to wind-farm power production at a time of day typically characterized by high electricity demand. During the evening transition, the atmosphere evolves from an unstable to a stable regime, and vertical stratification of the wind profile develops as the residual planetary boundary layer decouples from the surface layer. The evolution of wind-turbine wakes during the evening transition is examined from two perspectives: wake observations from single turbines, and simulations of multiple turbine wakes using the mesoscale Weather Research and Forecasting (WRF) model. Throughout the evening transition, the wake’s wind-speed deficit and turbulence enhancement are confined within the rotor layer when the atmospheric stability changes from unstable to stable. The height variations of maximum upwind-downwind differences of wind speed and turbulence intensity gradually decrease during the evening transition. After verifying the WRF-model-simulated upwind wind speed, wind direction and turbulent kinetic energy profiles with observations, the wind-farm-scale wake evolution during the evening transition is investigated using the WRF-model wind-farm parametrization scheme. As the evening progresses, due to the presence of the wind farm, the modelled hub-height wind-speed deficit monotonically increases, the relative turbulence enhancement at hub height grows by 50%, and the downwind surface sensible heat flux increases, reducing surface cooling. Overall, the intensifying wakes from upwind turbines respond to the evolving atmospheric boundary layer during the evening transition, and undermine the power production of downwind turbines in the evening.  相似文献   

17.
The estimates of 137Cs emissions from the accident happened in Elektrostal at the beginning of April 12, 2013 are presented. The transport of radionuclides and their dry and wet deposition on the surface are computed using the Lagrangian stochastic model of the NOSTRADAMUS software package worked out by Nuclear Safety Institute of Russian Academy of Sciences. Prognostic fields of wind (horizontal and vertical components) in the lower troposphere, precipitation, and vertical and horizontal turbulence diffusivity coefficients in the lower atmosphere (up to 4 km) were used as input data. Prognostic fields were obtained using the WRF-ARW numerical mesoscale model.  相似文献   

18.
Instrumented wind towers are used to measure the three components of wind about a simulated block building. The mean horizontal wind profiles over the building are compared with wind profiles measured in the absence of the building and the wind speed deficit in the wake of the building is correlated.Horizontal mean wind speeds measured in the natural atmospheric boundary layer with and without the presence of a simulated building show excellent reproducibility and agreement with fundamental concepts of fluid mechanics. The data possess all the characteristic features reported from wind-tunnel studies of building flows. In the present study the turbulence intensity is of the order of 20% in the undisturbed flow whereas the free stream turbulence intensity of wind-tunnel studies is generally not more than 5%. The effect of smaller averaging periods and the structure of the turbulence will be reported at a later time.The velocity profiles measured in the undisturbed flow zones support the representation of a neutrally stable atmospheric boundary layer with a logarithmic wind profile.  相似文献   

19.
Summary The dynamical effect of land surface heterogeneity on heat fluxes in the atmospheric boundary layer (ABL) is investigated using numerical simulations with a non-hydrostatic model over a wide range of grid resolutions. It is commonly assumed that mesoscale or dynamical fluxes associated with mesoscale and convective circulations simulated by a high-resolution model (subgrid (SG) model) on the subgrid scale of a climate model (large-scale (LS) model) represent additional processes in the ABL, which are not considered by the turbulence scheme of the LS-model, and which can be parameterized using the SG-model. The present study investigates the usefulness of this methodology for small-scale and large-scale idealized heterogeneities using a SG-model resolving mesoscale or even microscale circulations to compute the mesoscale fluxes on the scale of the LS-model. It is shown that the dynamical transports as derived from the SG-model should not be used to correct the parameterized turbulent fluxes of the LS-model. The reason is that the subgrid circulations simulated by the SG-model interact with the fields of wind and scalars in the ABL, which results in reduced turbulent fluxes in the ABL. Thus the methodology of previous studies to use mesoscale/dynamical fluxes for the correction of flux profiles simulated by climate models seems to be questionable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号