首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure of melt flow channels in the mantle   总被引:1,自引:0,他引:1  
Structural events during the formation of the mantle peridotite section in the Voikar-Syn’ya massif of the Polar Urals are considered. The structural units of the mantle section were formed during several deformation stages. Dunite bodies in restitic peridotites were formed in the course of deformation that completed the formation of large-scale folds of high-temperature plastic flow of mantle material. The final stage of deformation accompanied by migration of melt through harzburgite occurred in the shallow mantle in the setting of suprasubduction spreading related to the ascent of a mantle diapir. The rate of plastic deformation was relatively low. As a result, the intracrystal translation gliding of dislocations in olivine was the main mechanism in both harzburgite and dunite. The paths of focused melt flow are marked by dunite veins and associated pyroxenite and chromitite. It is suggested that stress concentration in fold hinges and their abrupt relaxation with formation of orthogonal network of weakened zones with high permeability was one of the possible mechanisms of the formation of melt conduits. The dispersed melt ascending from a great depth spontaneously migrated toward these zones. The distribution and structure of chromitite bodies reflect multistage formation of dunite, nonstationary dynamics of melt flow through restite, and abrupt variations of local stress fields in the areas adjacent to melt conduits.  相似文献   

2.
We present results of field, microstructural, and textural studies in the Twin Sisters ultramafic complex (Washington State) that document localized deformation associated with the formation of dunite channels in naturally deformed upper mantle. The Twin Sisters complex is a well-exposed, virtually unaltered section of upper mantle lithosphere comprised largely of dunite and harzburgite (in cm- to m-scale primary compositional layers), and variably deformed orthopyroxenite and clinopyroxenite dikes. A series of ∼N–S striking, m-scale dunite bands (typically with porphyroclastic texture) occur throughout the study area and crosscut both the primary compositional layers and older orthopyroxenite dikes. Structural relationships suggest that these dunite bands represent former zones of channelized melt migration (i.e., dunite channels), and that strain localization was associated with melt migration. Early formed orthopyroxenite dikes are either absent within cross-cutting dunite channels, or have been displaced within channels relative to their position in the adjacent host rocks. These pre-existing orthopyroxenite dikes provide strain markers illustrating that displacement was localized primarily along channel margins, which have opposite senses of shear. In all cases where offsets were noted, the center of the channel was moved southward relative to its margins. Material flow and strain was, therefore, partitioned within channels during melt migration, and dunite channels did not accommodate net shear displacement of the adjacent host peridotites. Primary compositional layers adjacent to dunite channels document opposite rotation of olivine [100] crystallographic axes on either side of channel margins, consistent with the kinematic reversal inferred from offset markers at the outcrop scale, suggesting that the formation of dunite channels also induced host rock deformation proximal to channels. Strain localization that was focused at the margin of the bands was likely facilitated by melt-induced weakening. Channelized movement within the dunite bands may have resulted from matrix compaction within channels, pressure gradients during melt migration, or a combination of these processes during coaxial deformation.  相似文献   

3.
This paper presents field, petrographic–structural and geochemical data on spinel and plagioclase peridotites from the southern domain of the Lanzo ophiolitic peridotite massif (Western Alps). Spinel lherzolites, harzburgites and dunites crop out at Mt. Arpone and Mt. Musinè. Field evidence indicates that pristine porphyroclastic spinel lherzolites are transformed to coarse granular spinel harzburgites, which are in turn overprinted by plagioclase peridotites, while strongly depleted spinel harzburgite and dunite bands and bodies replace the plagioclase peridotites. On the northern flank of Mt. Arpone, deformed, porphyroclastic (lithospheric) lherzolites, with diffuse pyroxenite banding, represent the oldest spinel-facies rocks. They show microstructures of a composite subsolidus evolution, suggesting provenance from deeper (asthenospheric) mantle levels and accretion to the lithosphere. These protoliths are locally transformed to coarse granular (reactive) spinel harzburgites and dunites, which show textures reminiscent of melt/rock reaction and geochemical characteristics suggesting that they are products of peridotite interaction with reactively percolating melts. Geochemical data and modelling suggest that <1–5% fractional melting of spinel-facies DMM produced the injected melts. Plagioclase peridotites are hybrid rocks resulting from pre-existing spinel peridotites and variable enrichment of plagioclase and micro-gabbroic material by percolating melts. The impregnating melts attained silica-saturation, as testified by widespread orthopyroxene replacement of olivine, during open system migration in the lithosphere. At Mt. Musinè, coarse granular spinel harzburgite and dunite bodies replace the plagioclase peridotites. Most of these replacive, refractory peridotites have interstitial magmatic clinopyroxene with trace element compositions in equilibrium with MORB, while some Cpx have REE-depleted patterns suggesting transient geochemical features of the migrating MORB-type melts, acquired by interaction with the ambient plagioclase peridotite. These replacive spinel harzburgite and dunite bodies are interpreted as channels exploited for focused and reactive migration of silica-undersaturated melts with aggregate MORB compositions. Such melts were unrelated to the silica-saturated melts that refertilized the pre-existing plagioclase peridotites. Finally, MORB melt migration occurred along open fractures, now recorded as gabbroic dikes.

Our data document the complexity of rock-types and mantle processes in the South Lanzo peridotite massif and describe a composite tectonic and magmatic scenario that is not consistent with the “asthenospheric scenario” proposed by previous authors. We envisage a “transitional scenario” in which extending subcontinental lithospheric mantle was strongly modified (both depleted and refertilized) by early melts with MORB-affinity formed by decompression partial melting of the upwelling asthenosphere, during pre-oceanic rifting and lithospheric thinning in the Ligurian Tethys realm.  相似文献   


4.
Several lines of evidence suggest that the melt generation and segregation regions of the mantle are heterogeneous, consisting of chemically and lithologically distinct domains of variable size and dimension. Partial melting of such heterogeneous mantle source regions gives rise to a diverse range of basaltic magmas. In order to better assess the role of source heterogeneity during mantle melting, we have undertaken a theoretical study of trace element distribution and fractionation during concurrent melting and melt migration in an upwelling, chemically heterogeneous, two-porosity double lithology melting column. Analytical solutions for the abundance of a trace element in the matrix and channel were obtained under the assumptions that the porosity, melt and solid velocities, and solid-melt partition coefficients are constant and uniform. For simplicity, we neglected diffusion and dispersion in the melt. Chemical source heterogeneities of arbitrary size and shape were integrated into the simple melting models by allowing trace element abundance in the source region to vary as a function of time and space. Concurrent melting and melt migration in an upwelling heterogeneous mantle may be approximated as a quasi-steady state problem in which time-dependent concentration patterns produced by melting of heterogeneous source regions are superimposed on a reference steady-state concentration distribution established by melting of the ambient or background mantle. Chromatographic fractionation is especially important for the matrix melt and solid when chemical heterogeneities are involved during melting and melt migration in the mantle, giving rise to significant phase-shift between two incompatible trace elements in the matrix melt and scattered correlations among incompatible trace elements in residual peridotites. Mixing is the chief mass transfer process in the dunite channel where the chromatographic effect is negligible for most of the incompatible trace elements. The lack of chromatographic fractionation among incompatible trace elements and isotopic ratios in MORB suggests either most MORB are channel melts or mixing in magma conduit and chamber is very efficient such that the phase-shift is averaged out during magma transport and storage processes. Advection brings melt produced by smaller-degree of melting in the deeper part of the melting column to the overlying melting region, increasing the incompatible trace element abundance in the matrix and the channel. This advection-induced self-enrichment is especially important when heterogeneous sources are involved and may account for some of the enriched incompatible trace element patterns observed in residual peridotite that were previously interpreted to be a result of mantle metasomatism. Systematic studies of high-resolution spatially correlated mantle samples may help to constrain the melting history and the size and nature of chemical heterogeneities in the mantle.  相似文献   

5.
Podiform chromitites include both high-Cr and high-Al varieties with distinctly different geochemical characteristics. A comparison of high-Cr and high-Al deposits in western China has demonstrated that both varieties are magmatic in origin and that chromite compositions reflect the degree of partial melting in the mantle source area. The chromitites of the Sartohay ophiolite of Xinjiang Province have chromites with low Cr numbers (<70) and are hosted in highly depleted harzburgites. In both deposits melt/wall rock interaction has produced highly depleted dunite envelopes around the chromitites. In Sartohay, high-Al magmas reacted with lherzolites to produce high-Al dunites and harzburgites, whereas in Luobusa the reaction between more refractory melts and depleted harzburgites yielded only highly depleted dunite envelopes. This study suggests that high-Al deposits can occur in weakly depleted mantle sequences (lherzolite ophiolite type or transitional type) that are locally depleted by melt/rock reaction in the immediate vicinity of the chromitite pods.  相似文献   

6.
The Massif du Sud is a large ophiolitic complex that crops out in the southern region of New Caledonia (SW Pacific). It is dominated by harzburgite tectonite that locally shows a transitional gradation to massive dunite up section. Clinopyroxene, orthopyroxene and plagioclase progressively appear in dunite up to the transition to layered wehrlite and orthopyroxene–gabbro. The dunite–wehrlite and wehrlite–gabbro contacts are parallel and the latter defines the paleo-Moho.Highly depleted modal, mineral and bulk rock compositions indicate that harzburgites are residues after high degrees (20–30%) of partial melting mainly in the spinel-stability field. Their relative enrichment in HFSE, LREE and MREE is due to re-equilibration of melting residues with percolating melts. Dunite formed in the Moho transition zone by reaction between residual mantle harzburgite and olivine-saturated melts that led to pyroxene dissolution and olivine precipitation. Rare clinopyroxene and plagioclase crystallized in interstitial melt pores of dunite from primitive, low-TiO2, ultra-depleted liquids with a geochemical signature transitional between those of island arc tholeiites and boninites.Ascending batches of relatively high-SiO2, ultra-depleted melts migrated through the Moho transition zone and generated wehrlite by olivine dissolution and crystallization of clinopyroxene, orthopyroxene and plagioclase in variable amounts. These liquids were more evolved and were produced by higher degrees of melting or from a more depleted source compared with melts that locally crystallized clinopyroxene in dunite. Ultra-depleted magmas, non-cogenetic with those that formed the Moho transition zone, ascended to the lower crust and generated gabbroic cumulates with subduction-related affinity. Thus, the ultramafic and mafic rocks in the Moho transition zone and lower crust of the Massif du Sud ophiolite are not products of fractional crystallization from a single magma-type but are the result of migration and accumulation of different melts in a multi-stage evolution.The record of high partial melting in the mantle section, and migration and accumulation of ultra-depleted subduction-related melts in the Moho transition zone and lower crust support that the Massif du Sud ophiolite is a portion of forearc lithosphere generated in an extensional regime during the early phases of the subduction zone evolution. Our results show the existence of different types of ultra-depleted melt compositions arriving at the Moho transition zone and lower crust of an infant intraoceanic paleo-arc. Ultra-depleted melts may thus be a significant component of the melt budget generated in oceanic spreading forearcs prior to aggregation and mixing of a large range of melt compositions in the crust.  相似文献   

7.
The kinetics of lherzolite dissolution in an alkali basalt and a basaltic andesite was examined experimentally at 1,300°C and 1 GPa using the dissolution couple method. Dissolution of lherzolite in basaltic liquids produces either the melt-bearing dunite–harzburgite–lherzolite (DHL) sequence or the melt-bearing harzburgite–lherzolite sequence depending on whether the reacting melt is or close to olivine saturation (alkali basalt) or olivine + orthopyroxene saturation (basaltic andesite). The dunite in the DHL sequence is pyroxene-free and the harzburgites in both sequences are clinopyroxene-free. The melt fraction and olivine grain size in the dunite are larger than those in the harzburgite. The olivine grain size in the dunite and harzburgite in the DHL sequence also increases as a function experimental run time. Across the sharp dunite–harzburgite and harzburgite–lherzolite interfaces, systematic compositional variations are observed in the reacting melt, interstitial melt, olivine, and to a lesser extent, pyroxenes as functions of distance and time. The systematic variations in lithology, grain size, mineral chemistry, and melt compositions are broadly similar to those observed in the mantle sections of ophiolites. The processes of lherzolite dissolution in basaltic liquids involve dissolution, precipitation, reprecipitation, and diffusive transport in the interstitial melts and surrounding minerals. Preferential dissolution of olivine and clinopyroxene and precipitation of orthopyroxene in the basaltic andesite produces the melt-bearing harzburgite–lherzolite sequence. Preferential dissolution of clinopyroxene and orthopyroxene and precipitation of olivine results in the melt-bearing DHL sequence. Preferential mineral dissolution can also affect the composition of the through-going melt in a dunite channel or harzburgite matrix. Systematic variations in melt fraction and mineral grain size in the peridotite sequences are likely to play an important role in the development of channelized or diffuse porous melt flow in the mantle.An erratum to this article can be found at  相似文献   

8.
鲁西中生代辉长-闪长质岩石中纯橄岩捕虏体的岩石学、矿物化学及微量元素地球化学研究表明,纯橄岩捕虏体代表了古老岩石圈地幔的残留;地幔纯橄岩捕虏体中存在两种类型的交代作用,一是以填隙型金云母为代表的早期富含CO_2和H_2O的不活动流体的交代作用;二是以斜方辉石交代脉和网络状斜方辉石为代表的晚期富硅质熔(流)体的交代作用。后者代表了起源于软流圈的富硅质熔(流)体对古老岩石圈地幔的一种化学侵蚀。这对认识华北地块东部中生代岩石圈地幔的性质以及岩石圈减薄机制具有重要意义。  相似文献   

9.
The GyPSM-S (Geodynamic and Petrological Synthesis Model for Subduction) scheme couples a petrological model with a 2-D thermal and variable viscosity flow model to describe and compare fundamental processes occurring within the subduction mantle wedge, including the development of a low-viscosity channel (LVC) (Hebert et al., 2009, Earth and Planetary Science Letters, v. 278, p. 243–256). Here we supplement the basic coupled model result with more sophisticated treatments of trace element partitioning in the fluid phase and melt transport regimes. We investigate the influences of slab fluid source lithology and fluid transport mechanisms on melt geochemistry, the implications of mantle source depletion related to fluid fluxing, and potential melt migration processes. This study describes two model cases that can be compared to geochemical datasets for the Izu–Bonin intra-oceanic subduction system and the Central Costa Rican part of the Central American arc. We find that there is a progression of geochemical characteristics described in studies of cross-arc and along-arc lavas that can be approximated assuming (i) limited fluid–rock interaction within the mantle wedge and (ii) that melt migration preserves the spatial distinction among melts initiated in different areas of the wedge. Specifically, volcanic front lavas have significant contributions from shallower slab fluid sources, and rear-arc lavas have significant contributions from deeper slab fluid sources. Evidence for limited fluid–rock interaction could imply either a rapid fluid transport mechanism or a fluid-dominated trace element budget within the LVC. Although we do not include a back-arc in these models, interpretations of the results lead to several potential mechanisms to explain hydrous inputs to back-arc source regions.  相似文献   

10.
苏鲁超高压变质带胡家林超镁铁质岩成因及构造意义   总被引:1,自引:1,他引:0  
胡家林超镁铁质杂岩体产于苏鲁超高压变质带中部,纯橄岩和(石榴)单斜辉石岩呈不连续透镜体产于蛇纹石化橄榄岩中。纯橄岩遭受了部分蛇纹石化(烧失量=6.6%~13.2%),全岩富集强相容元素(Ni、Cr、Co)和Ir族PGE(IPGE;Ir、Os、Ru)及高IPGE/PPGE值,亏损Al、Ti、V,具高Mg~#橄榄石(Fo=91.7~92.4)和高Cr~#(0.68~0.76)尖晶石。纯橄岩高耐熔地球化学及矿物化学特征和古老的大陆岩石圈地幔相一致,表明其原岩来源于弧前地幔,代表了华北克拉通古老的大陆岩石圈地幔残留。(石榴)单斜辉石岩全岩呈相对低含量的强相容元素(Cr、Ni、Co)和IPGE,高含量的Al、Ti、V和流体迁移元素(Sr、Pb和Ba),球粒陨石标准化REE配分图呈明显"上凸"型,具低Mg~#橄榄石(Fo=76.6~76.8)和低Al_2O_3(2.76%)和高SiO_2(54.56%~56.87%)的单斜辉石。全岩组成和矿物化学表明其原岩为俯冲带内超镁铁质火成堆晶岩,最初岩浆由地幔岩高程度部分熔融的熔体和俯冲带中富H_2O流体和/或熔体构成。(石榴)单斜辉石岩原岩曾被地幔流带入扬子大陆俯冲板片和上覆地幔楔之间的俯冲通道,经历了超高压变质作用和生成大量石榴石。(石榴)单斜辉石岩在折返过程中,与大陆岩石圈地幔楔剥离的蛇纹石化橄榄岩及纯橄岩相结合,形成超镁铁质杂岩体,整体被低密度的俯冲板片(主要由花岗质片麻岩和变质沉积岩组成)裹挟,折返至地壳浅部。  相似文献   

11.
上地幔熔体-岩石相互作用与大陆地幔演化   总被引:11,自引:2,他引:9  
根据实验岩石学、幔源岩石的岩石地球化学资料以及微量元素地球化学理论模拟等,评述了上地幔熔体岩石相互作用研究领域的最新进展,指出熔体岩石相互作用不仅深刻地制约了岩石圈地幔的矿物学、地球化学和物理性质的变化以及地幔不均一性的形成及演化,而且也会最终控制各种构造环境下喷出岩浆的地球化学特征,以及深部岩浆的分离机制。  相似文献   

12.
Systematic variations in mineralogy and chemical composition across dunite-harzburgite (DH) and dunite-harzburgite-lherzolite (DHL) sequences in the mantle sections of ophiolites have been widely observed. The compositional variations are due to melt-rock reactions as basaltic melts travel through mantle peridotite, and may be key attributes to understanding melting and melt transport processes in the mantle. In order to better understand melt-rock reactions in the mantle, we conducted laboratory dissolution experiments by juxtaposing a spinel lherzolite against an alkali basalt or a mid-ocean ridge basalt. The charges were run at 1 GPa and either 1,300°C or 1,320°C for 8–28 h. Afterward, the charges were slowly cooled to 1,200°C and 1 GPa, which was maintained for at least 24 h to promote in situ crystallization of interstitial melts. Cooling allowed for better characterization of the mineralogy and mineral compositional trends produced and observed from melt-rock reactions. Dissolution of lherzolite in basaltic melts with cooling results in a clinopyroxene-bearing DHL sequence, in contrast to sequences observed in previously reported isothermal-isobaric dissolution experiments, but similar to those observed in the mantle sections of ophiolites. Compositional variations in minerals in the experimental charges follow similar melt-rock trends suggested by the field observations, including traverses across DH and DHL sequences from mantle sections of ophiolites as well as clinopyroxene and olivine from clinopyroxenite, dunite, and wehrlite dikes and xenoliths. These chemical variations are controlled by the composition of reacting melt, mineralogy and composition of host peridotite, and grain-scale processes that occur at various stages of melt-peridotite reaction. We suggest that laboratory dissolution experiments are a robust model to natural melt-rock reaction processes and that clinopyroxene in replacive dunites in the mantle sections of ophiolites is genetically linked to clinopyroxene in cumulate dunite and pyroxenites through melt transport and melt-rock reaction processes in the mantle.  相似文献   

13.
The Luobusa ophiolite, Southern Tibet, lies in the Indus–YarlungZangbo suture zone that separates Eurasia to the north fromthe Indian continent to the south. The ophiolite contains awell-preserved mantle sequence consisting of harzburgite, clinopyroxene(cpx)-bearing harzburgite and dunite. The harzburgite containsabundant pods of chromitite, most of which have dunite envelopes,and the cpx-bearing harzburgites host numerous dunite dykes.Dunite also exists as a massive unit similar to those of themantle–crust transition zones in other ophiolites. Allof the dunites in the ophiolite have a similar mineralogy, comprisingmainly olivine with minor orthopyroxene and chromite and tracesof clinopyroxene. They also display similar chemical compositions,including U-shaped chondrite-normalized REE patterns. Mantle-normalizedPGE patterns show variable negative Pt anomalies. Detailed analysisof a chromite-bearing dunite dyke, which grades into the hostcpx-bearing harzburgite, indicates that LREE and Ir decrease,whereas HREE, Pd and Pt increase away from the dunite. Thesefeatures are consistent with formation of the dunite dykes byinteraction of MORB peridotites with boninitic melts from whichthe chromitites were formed. Because the transition-zone dunitesare mineralogically and chemically identical to those formedby such melt–rock reaction, we infer that they are ofsimilar origin. The Luobusa ultramafic rocks originally formedas MORB-source upper mantle, which was subsequently trappedas part of a mantle wedge above a subduction zone. Hydrous meltsgenerated under the influence of the subducted slab at depthmigrated upward and reacted with the cpx-bearing harzburgitesto form the dunite dykes. The modified melts ponded in smallpockets higher in the section, where they produced podiformchromitites with dunite envelopes. At the top of the mantlesection, pervasive reaction between melts and harzburgite producedthe transition-zone dunites. KEY WORDS: melt–rock interaction; REE; PGE; hydrous melt; mantle; ophiolite; Tibet  相似文献   

14.
The compositional variability of the lithospheric mantle at extensional settings is largely caused by the reactive percolation of uprising melts in the thermal boundary layer and in lithospheric environments.The Alpine-Apennine(A-A)ophiolites are predominantly constituted by mantle peridotites and are widely thought to represent analogs of the oceanic lithosphere formed at ocean/continent transition and slow-to ultraslow-spreading settings.Structural and geochemical studies on the A-A mantle peridotites have revealed that they preserve significant compositional and isotopic heterogeneity at variable scale,reflecting a long-lived multi-stage melt migration,intrusion and melt-rock interaction history,occurred at different lithospheric depths during progressive uplift.The A-A mantle peridotites thus constitute a unique window on mantle dynamics and lithosphere-asthenosphere interactions in very slow spreading environments.In this work,we review field,microstructural and chemical-isotopic evidence on the major stages of melt percolation and melt-rock interaction recorded by the A-A peridotites and discuss their consequences in creating chemical-isotopic heterogeneities at variable scales and enhancing weakening and deformation of the extending mantle.Focus will be on three most important stages:(i)old(pre-Jurassic)pyroxenite emplacement,and the significant isotopic modification induced in the host mantle by pyroxenite-derived melts,(ii)melt-peridotite interactions during Jurassic mantle exhumation,i.e.the open-system reactive porous flow at spinel facies depths causing bulk depletion(origin of reactive harzburgites and dunites),and the shallower melt impregnation which originated plagioclase-rich peridotites and an overall mantle refertilization.We infer that migrating melts largely originated as shallow,variably depleted,melt fractions,and acquired Si-rich composition by reactive dissolution of mantle pyroxenes during upward migration.Such melt-rock reaction processes share significant similarities with those documented in modern oceanic peridotites from slow-to ultraslow-spreading environments and track the progressive exhumation of large mantle sectors at shallow depths in oceanic settings where a thicker thermal boundary layer exists,as a consequence of slow-spreading rate.  相似文献   

15.
E.S. Farahat 《Lithos》2010,120(3-4):293-308
Ophiolites are widely distributed in the Central Eastern Desert (CED) of Egypt, occurring as clusters in the northern (NCEDO) and southern (SCEDO) segments. Mineralogical and geochemical data on the volcanic sections of Wizer (WZO) and Abu Meriewa (AMO) ophiolites as representatives of the NCEDO and SCEDO, respectively, are presented.The WZO volcanic sequence comprises massive metavolcanics of MORB-like compositions intruded by minor boninitic dykes and thrust over island-arc metavolcanic blocks in the mélange matrix. Such transitional MORB-IAT-boninitic magmatic affinities for the WZO metavolcanics suggest that they most likely formed in a protoarc–forearc setting. Chemical compositions of primary clinopyroxene and Cr-spinel relicts from the WZO volcanic section further confirm this interpretation. The compositional variability in the WZO volcanic sequence is comparable with the associated mantle rocks that vary from slightly depleted harzburgites to highly depleted harzburgites containing small dunite bodies, which are residues after MORB, IAT and boninite melt formation, respectively. Source characteristics of the different lava groups from the WZO indicate generation via partial melting of a MORB source which was progressively depleted by melt extraction and variably enriched by subduction zone fluids. MORB-like magma may have been derived from ~ 20% partial melting of an undepleted lherzolite source, leaving slightly depleted harzburgite as a residuum. The generation of island-arc magma can be accounted for by partial melting (~ 15%) of the latter harzburgitic mantle source, whereas boninites may have been derived from partial melting (~ 20%) of a more refractory mantle source previously depleted by melt extraction of MORB and IAT melts, leaving ultra-refractory dunite bodies as residuum.The AMO volcanic unit occurs as highly deformed pillowed metavolcanic rocks in a mélange matrix. They can be categorized geochemically into LREE-depleted (La/YbCN = 0.41–0.50) and LREE-enriched (La/YbCN = 4.7–4.9) lava types that show an island arc to MORB geochemical signature, respectively, signifying a back-arc basin setting. This is consistent, as well, with their mantle section. Source characteristics indicate depleted to slightly enriched mantle sources with overall slight subduction zone geochemical affinities as compared to the WZO.Generally, CED ophiolites show supra-subduction zone geochemical signature with prevalent island arc tholeiitic and minor boninitic affinities in the NCEDO and MORB/island-arc association in the SCEDO. Such differences in geochemical characteristics of the NCEDO and SCEDO, along with the abundance of mature island arc metavolcanics which are close in age (~ 750 Ma) to the ophiolitic rocks, general enrichment in HFSE of ophiolites from north to south, and lack of a crustal break and major shear zones, is best explained by a geotectonic model whereby the CED represents an arc–back-arc system above a southeast-dipping subduction zone.  相似文献   

16.
The petrological and geochemical study of harzburgitic and dunitic xenoliths from the melilititic district of In Teria (Algerian Sahara) shows that the lighospheric mantle of this region has been affected by a multi-stage metasomatism. The first metasomatic event is related to the injection of alkali silicated (basaltic or kimberlitic) melt and was responsible for the crystallization of phlogopite at depths ranging between 80 and 100 km and the crystallization of amphibole at about 60 km. During this first event, carbonate probably precipitated in the garnet stability field. In a second stage, the spinal peridotites suffered strong mineral changes resulting in an extensive formation of high-Cr endiopside and leading to conversion of harzburgite and dunite into lherzolite and wehrlite. These changes are associated with an enrichment in the most incompatible trace elements including light REE (rare-earth elements), Ta, Th and variable values of ratios such as Th/La and Ta/La. This second event is atributed to the injection (under conditions of decarbonatation and release of CO2) of a carbonatitic melt resulting from incipient melting of the garnet peridotites, which were previously carbonated. This interpretation is corroborated by the calculation of a diffusion-percolation model which reproduces well the observed distribution of incompatible trace elements in the spinel peridotites. Given the proposed sequence of events, it appears that most of the specificities of the In Teria xenoliths can be explained by the successive geochemical modifications induced within the lithospheric mantle during reheating.  相似文献   

17.
We found fine-grained Fe-rich orthopyroxene-rich xenoliths (mainly orthopyroxenite) containing partially digested dunite fragments of Group I from Takashima, Southwest Japan. Orthopyroxenite veinlets, some of which contain plagioclase at the center, also replace olivine in dunite and wehrlite xenoliths of Group I. This shows high reactivity with respect to olivine of the melt involved in orthopyroxenite formation, indicating its high SiO2 activity. The secondary orthopyroxene of this type is characterized by low Mg# [= Mg/(Mg + total Fe) atomic ratio] (down to 0.73) and high Al2O3 contents (5–6 wt%). It is different in chemistry from other secondary orthopyroxenes found in peridotite xenoliths derived from the mantle wedge. Clinopyroxenes in the Fe-rich orthopyroxenite show a convex-upward REE pattern with a crest around Sm. This pattern is strikingly similar to that of clinopyroxenes of Group II pyroxenite xenoliths and of phenocrystal and xenocrystal clinopyroxenes, indicating involvement of similar alkali basaltic melts. The Fe-rich orthopyroxenite xenoliths from Takashima formed by reaction between evolved alkali basalt melt and mantle olivine; alkali basalt initially slightly undersaturated in silica might have evolved to silica-oversaturated compositions by fractional crystallization at high-pressure conditions. The Fe-rich orthopyroxenites occur as dikes within the uppermost mantle composed of dunite and wehrlite overlying pockets of Group II pyroxenites. The orthopyroxene-rich pyroxenites of this type are possibly common in the uppermost mantle beneath continental rift zones where alkali basalt magmas have been prevalent.  相似文献   

18.
This paper presents an updated review of recent field/structural and petrologic/geochemical studies on orogenic peridotites from the Alpine–Apennine ophiolites (NW Italy). Results provide determinant constraints to the evolution of the lithospheric mantle during passive rifting of the fossil Ligurian Tethys oceanic basin.The pre-rift, spinel lherzolites precursors, preserved in the mantle section of the Ligurian ophiolites, were resident in the lithosphere along an intermediate geothermal gradient (T about 1000 °C, P compatible with spinel-peridotite facies). Passive rifting by far-field tectonic forces induced whole-lithosphere extension and thinning (the a-magmatic stage). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent decompression melting along the axial zone of extension. Silica-undersaturated melt fractions infiltrated via diffuse/focused porous-flow through the lithospheric mantle under extension (the magmatic stage) and underwent pyroxenes-dissolving/olivine-crystallizing interaction with the percolated host peridotite.Pyroxenes assimilation and olivine deposition modified the melt compositions into silica-saturated. These derivative liquids migrated to shallower, plagioclase-peridotite facies levels, where they stagnated and impregnated/refertilized the lithospheric mantle. Melt thermal advection by melt infiltration heated to temperatures higher than 1200 °C the lithospheric mantle column above the melting asthenosphere.The syn-rift magmatic and tectonic processes induced significant rheological softening/weakening that destabilized the lithospheric mantle of the Europe–Adria plate along the axial zone of extension. The presence of destabilized lithospheric mantle between the future continental margins played a determinant role in promoting the geodynamic evolution from pre-oceanic rifting to oceanic spreading.The active upwelling of hotter/deeper asthenosphere inside the destabilized axial zone promoted transition to active rifting, enhancing continent break-up. Asthenosphere underwent partial melting and formed aggregated MORB liquids that migrated inside high-porosity dunite channels. The MORB liquids formed olivine-gabbro intrusions and pillowed lava flows (the oceanic crustal rocks).This paper evidences the primary role of mantle destabilization by melt infiltration in the geodynamic evolution of the Ligurian Tethys rifting.  相似文献   

19.
大洋橄榄岩和洋中脊玄武岩是地幔熔融和熔体萃取过程中的互补产物 ,地幔熔融和熔体萃取过程形成洋壳 ,因此大洋橄榄岩和洋中脊玄武岩的研究可提供这一过程的独立信息。通过大洋橄榄岩和洋中脊玄武岩的岩石学与地球化学研究 ,特别是痕量元素在熔融和熔体演化过程中地球化学行为的研究 ,对定量描述洋中脊下地幔熔融动力学和认识化学地球动力学模式是十分重要的。目前 ,大洋橄榄岩的研究 ,已成为岩石学研究的前沿领域之一。  相似文献   

20.
阿尔巴尼亚布尔其泽纯橄岩壳非常新鲜,主要由橄榄石、尖晶石和单斜辉石等矿物组成.其中橄榄石存在单斜辉石和铬尖晶石(磁铁矿)共生包裹体现象,包裹体矿物粒度在1~10 μm,有些甚至为纳米级200~500 nm.纯橄岩橄榄石的Fo值为94.7~96.0,铬尖晶石的Cr#为76.5~82.4,远高于蛇绿岩地幔橄榄岩中常见纯橄岩的铬值(Cr#>60).基于前人研究结果,提出这种现象是由于亏损方辉橄榄岩与含钛、铬、铁熔体发生交代作用,从而形成橄榄石的固溶体并存在Ti4+、Al3+、Ca2+、Fe3+,而部分Cr3+进入铬尖晶石结晶.后期由于岩体在抬升过程中降温,橄榄石中混溶的组分析出包裹体形成磁铁矿和铬尖晶石.并且依据铬尖晶石-橄榄石的矿物化学成分,识别出岩体内方辉橄榄岩相对较低的部分熔融程度约为30%~40%,纯橄岩部分熔融程度约为40%,表明不同岩相间其形成背景存在明显差异.因此,认为布尔奇泽蛇绿岩具有多阶段的过程,首先是在洋中脊环境下经历部分熔融作用形成了方辉橄榄岩,后受到俯冲环境(SSZ)的岩石-熔体反应生成更富Mg、Si和Cr等的熔体,致使地幔橄榄岩高度部分熔融,形成此类纯橄岩.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号