首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere.  相似文献   

2.
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.  相似文献   

3.
In this study, a coupled atmosphere-surface “climate feedback-response analysis method” (CFRAM) was applied to the slab ocean model version of the NCAR CCSM3.0 to understand the tropospheric warming due to a doubling of CO2 concentration through quantifying the contributions of each climate feedback process. It is shown that the tropospheric warming displays distinct meridional and vertical patterns that are in a good agreement with the multi-model mean projection from the IPCC AR4. In the tropics, the warming in the upper troposphere is stronger than in the lower troposphere, leading to a decrease in temperature lapse rate, whereas in high latitudes the opposite it true. In terms of meridional contrast, the lower tropospheric warming in the tropics is weaker than that in high latitudes, resulting in a weakened meridional temperature gradient. In the upper troposphere the meridional temperature gradient is enhanced due to much stronger warming in the tropics than in high latitudes. Using the CFRAM method, we analyzed both radiative feedbacks, which have been emphasized in previous climate feedback analysis, and non-radiative feedbacks. It is shown that non-radiative (radiative) feedbacks are the major contributors to the temperature lapse rate decrease (increase) in the tropical (polar) region. Atmospheric convection is the leading contributor to temperature lapse rate decrease in the tropics. The cloud feedback also has non-negligible contributions. In the polar region, water vapor feedback is the main contributor to the temperature lapse rate increase, followed by albedo feedback and CO2 forcing. The decrease of meridional temperature gradient in the lower troposphere is mainly due to strong cooling from convection and cloud feedback in the tropics and the strong warming from albedo feedback in the polar region. The strengthening of meridional temperature gradient in the upper troposphere can be attributed to the warming associated with convection and cloud feedback in the tropics. Since convection is the leading contributor to the warming differences between tropical lower and upper troposphere, and between the tropical and polar regions, this study indicates that tropical convection plays a critical role in determining the climate sensitivity. In addition, the CFRAM analysis shows that convective process and water vapor feedback are the two major contributors to the tropical upper troposphere temperature change, indicating that the excessive upper tropospheric warming in the IPCC AR4 models may be due to overestimated warming from convective process or underestimated cooling due to water vapor feedback.  相似文献   

4.
On tropospheric adjustment to forcing and climate feedbacks   总被引:1,自引:1,他引:0  
Motivated by findings that major components of so-called cloud ??feedbacks?? are best understood as rapid responses to CO2 forcing (Gregory and Webb in J Clim 21:58?C71, 2008), the top of atmosphere (TOA) radiative effects from forcing, and the subsequent responses to global surface temperature changes from all ??atmospheric feedbacks?? (water vapour, lapse rate, surface albedo, ??surface temperature?? and cloud) are examined in detail in a General Circulation Model. Two approaches are used: applying regressions to experiments as they approach equilibrium, and equilibrium experiments forced separately by CO2 and patterned sea surface temperature perturbations alone. Results are analysed using the partial radiative perturbation (??PRP??) technique. In common with Gregory and Webb (J Clim 21:58?C71, 2008) a strong positive addition to ??forcing?? is found in the short wave (SW) from clouds. There is little evidence, however, of significant global scale rapid responses from long wave (LW) cloud, nor from surface albedo, SW water vapour or ??surface temperature??. These responses may be well understood to first order as classical ??feedbacks????i.e. as a function of global mean temperature alone and linearly related to it. Linear regression provides some evidence of a small rapid negative response in the LW from water vapour, related largely to decreased relative humidity (RH), but the response here, too, is dwarfed by subsequent response to warming. The large rapid SW cloud response is related to cloud fraction changes??and not optical properties??resulting from small cloud decreases ranging from the tropical mid troposphere to the mid latitude lower troposphere, in turn associated with decreased lower tropospheric RH. These regions correspond with levels of enhanced heating rates and increased temperatures from the CO2 increase. The pattern of SW cloud fraction response to SST changes differs quite markedly to this, with large positive radiation responses originating in the upper troposphere, positive contributions in the lowest levels and patterns of positive/negative contributions in mid latitude low levels. Overall SW cloud feedback was diagnosed as negative, due to the substantial negative SW feedback in cloud optical properties more than offsetting these. This study therefore suggests the rapid response to CO2 forcing is (apart from a possible small negative response from LW water vapour) essentially confined to cloud fraction changes affecting SW radiation, and further that significant feedbacks with temperature occur in all cloud components (including this one), and indeed in all other classically understood ??feedbacks??.  相似文献   

5.
R. A. Colman 《Climate Dynamics》2001,17(5-6):391-405
This study addresses the question: what vertical regions contribute the most to water vapor, surface temperature, lapse rate and cloud fraction feedback strengths in a general circulation model? Multi-level offline radiation perturbation calculations are used to diagnose the feedback contribution from each model level. As a first step, to locate regions of maximum radiative sensitivity to climate changes, the top of atmosphere radiative impact for each feedback is explored for each process by means of idealized parameter perturbations on top of a control (1?×?CO2) model climate. As a second step, the actual feedbacks themselves are calculated using the changes modelled from a 2?×?CO2 experiment. The impact of clouds on water vapor and lapse rate feedbacks is also isolated using `clear sky' calculations. Considering the idealized changes, it is found that the radiative sensitivity to water vapor changes is a maximum in the tropical lower troposphere. The sensitivity to temperature changes has both upper and lower tropospheric maxima. The sensitivity to idealized cloud changes is positive (warming) for upper level cloud increases but negative (cooling) for lower level increases, due to competing long and shortwave effects. Considering the actual feedbacks, it is found that water vapor feedback is a maximum in the tropical upper troposphere, due to the large relative increases in specific humidity which occur there. The actual lapse rate feedback changes sign with latitude and is a maximum (negative) again in the tropical upper troposphere. Cloud feedbacks reflect the general decrease in low- to mid-level low-latitude cloud, with an increase in the very highest cloud. This produces a net positive (negative) shortwave (longwave) cloud feedback. The role of clouds in the strength of the water vapor and lapse rate feedbacks is also discussed.  相似文献   

6.
The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land.  相似文献   

7.
 This study performs a comprehensive feedback analysis on the Bureau of Meteorology Research Centre General Circulation Model, quantifying all important feedbacks operating under an increase in atmospheric CO2. The individual feedbacks are analysed in detail, using an offline radiation perturbation method, looking at long- and shortwave components, latitudinal distributions, cloud impacts, non-linearities under 2xCO2 and 4xCO2 warmings and at interannual variability. The water vapour feedback is divided into terms due to moisture height and amount changes. The net cloud feedback is separated into terms due to cloud amount, height, water content, water phase, physical thickness and convective cloud fraction. Globally the most important feedbacks were found to be (from strongest positive to strongest negative) those due to water vapour, clouds, surface albedo, lapse rate and surface temperature. For the longwave (LW) response the most important term of the cloud ‘optical property’ feedbacks is due to the water content. In the shortwave (SW), both water content and water phase changes are important. Cloud amount and height terms are also important for both LW and SW. Feedbacks due to physical cloud thickness and convective cloud fraction are found to be relatively small. All cloud component feedbacks (other than height) produce conflicting LW/SW feedbacks in the model. Furthermore, the optical property and cloud fraction feedbacks are also of opposite sign. The result is that the net cloud feedback is the (relatively small) product of conflicting physical processes. Non-linearities in the feedbacks are found to be relatively small for all but the surface albedo response and some cloud component contributions. The cloud impact on non-cloud feedbacks is also discussed: greatest impact is on the surface albedo, but impact on water vapour feedback is also significant. The analysis method here proves to be a␣powerful tool for detailing the contributions from different model processes (and particularly those of the clouds) to the final climate model sensitivity. Received: 15 June 2000 / Accepted: 10 January 2001  相似文献   

8.
In an ensemble of general circulation models, the global mean albedo significantly decreases in response to strong CO2 forcing. In some of the models, the magnitude of this positive feedback is as large as the CO2 forcing itself. The models agree well on the surface contribution to the trend, due to retreating snow and ice cover, but display large differences when it comes to the contribution from shortwave radiative effects of clouds. The ??cloud contribution?? defined as the difference between clear-sky and all-sky albedo anomalies and denoted as ??CC is correlated with equilibrium climate sensitivity in the models (correlation coefficient 0.76), indicating that in high sensitivity models the clouds to a greater extent act to enhance the negative clear-sky albedo trend, whereas in low sensitivity models the clouds rather counteract this trend. As a consequence, the total albedo trend is more negative in more sensitive models (correlation coefficient 0.73). This illustrates in a new way the importance of cloud response to global warming in determining climate sensitivity in models. The cloud contribution to the albedo trend can primarily be ascribed to changes in total cloud fraction, but changes in cloud albedo may also be of importance.  相似文献   

9.
 A general circulation model is used to examine the effects of reduced atmospheric CO2, insolation changes and an updated reconstruction of the continental ice sheets at the Last Glacial Maximum (LGM). A set of experiments is performed to estimate the radiative forcing from each of the boundary conditions. These calculations are used to estimate a total radiative forcing for the climate of the LGM. The response of the general circulation model to the forcing from each of the changed boundary conditions is then investigated. About two-thirds of the simulated glacial cooling is due to the presence of the continental ice sheets. The effect of the cloud feedback is substantially modified where there are large changes to surface albedo. Finally, the climate sensitivity is estimated based on the global mean LGM radiative forcing and temperature response, and is compared to the climate sensitivity calculated from equilibrium experiments with atmospheric CO2 doubled from present day concentration. The calculations here using the model and palaeodata support a climate sensitivity of about 1 Wm-2 K-1 which is within the conventional range. Received: 8 February 1997 / Accepted: 4 June 1997  相似文献   

10.
由于全球变暖,极地地区的气候经历了明显的变暖放大.在本项研究中,我们根据CMIP6模式的三种变暖情景(SSP1-2,6,SSP2-4.5和SSP5-8.5)下,极地放大变化对各个反馈机制(包括普朗克,温度递减率,云,水蒸气,反照率反馈,CO2强迫,海洋热吸收和大气热传输)的响应进行了分析.结果表明,通过用“辐射核”方法量化不同反馈机制对地表温度的增温贡献,北极放大(AA)强于南极放大(ANA),由温度递减率反馈主导,其次是反照率和普朗克反馈.此外,海洋的热吸收导致冬季比夏季有更强的极地变暖.在冬季,温度递减率反馈主导了AA大于ANA.AA和ANA的模式间差异随着全球变暖的增强而减小.  相似文献   

11.
The surface energy fluxes simulated by the CSIRO9 Mark 1 GCM for present and doubled CO2 conditions are analyzed. On the global scale the climatological flux fields are similar to those from four GCMs studied previously. A diagnostic calculation is used to provide estimates of the radiative forcing by the GCM atmosphere. For 1 × CO2, in the global and annual mean, cloud produces a net cooling at the surface of 31 W m–2. The clear-sky longwave surface greenhouse effect is 311 W m–2, while the corresponding shortwave term is –79 W m–2. As for the other GCM results, the CSIRO9 CO2 surface warming (global mean 4.8°C) is closely related to the increased downward longwave radiation (LW ). Global mean net cloud forcing changes little. The contrast in warming between land and ocean, largely due to the increase in evaporative cooling (E) over ocean, is highlighted. In order to further the understanding of influences on the fluxes, simple physically based linear models are developed using multiple regression. Applied to both 1 × CO2 and CO2 December–February mean tropical fields from CSIRO9, the linear models quite accurately (3–5 W m–2 for 1 × CO2 and 2–3 W m–2 for CO2) relate LW and net shortwave radiation to temperature, surface albedo, the water vapor column, and cloud. The linear models provide alternative estimates of radiative forcing terms to those from the diagnostic calculation. Tropical mean cloud forcings are compared. Over land, E is well correlated with soil moisture, and sensible heat with air-surface temperature difference. However an attempt to relate the spatial variation of LWt within the tropics to that of the nonflux fields had little success. Regional changes in surface temperature are not linearly related to, for instance, changes in cloud or soil moisture.  相似文献   

12.
The sensitivity of the climate system to anthropogenic perturbations over the next century will be determined by a combination of feedbacks that amplify or damp the direct radiative effects of increasing concentrations of greenhouse gases. A number of important geophysical climate feedbacks, such as changes in water vapor, clouds, and sea ice albedo, are included in current climate models, but biogeochemical feedbacks such as changes in methane emissions, ocean CO2 uptake, and vegetation albedo are generally neglected. The relative importance of a wide range of feedbacks is assessed here by estimating the gain associated with each individual process. The gain from biogeochemical feedbacks is estimated to be 0.05–0.29 compared to 0.17–0.77 for geophysical climate feedbacks. The potentially most significant biogeochemical feedbacks are probably release of methane hydrates, changes in ocean chemistry, biology, and circulation, and changes in the albedo of the global vegetation. While each of these feedbacks is modest compared to the water vapor feedback, the biogeochemical feedbacks in combination have the potential to substantially increase the climate change associated with any given initial forcing.The views expressed are the author's: They do not express official views of the U.S. Government or the Environmental Protection Agency.  相似文献   

13.
A recent modelling study has shown that precipitation and runoff over land would increase when the reflectivity of marine clouds is increased to counter global warming. This implies that large scale albedo enhancement over land could lead to a decrease in runoff over land. In this study, we perform simulations using NCAR CAM3.1 that have implications for Solar Radiation Management geoengineering schemes that increase the albedo over land. We find that an increase in reflectivity over land that mitigates the global mean warming from a doubling of CO2 leads to a large residual warming in the southern hemisphere and cooling in the northern hemisphere since most of the land is located in northern hemisphere. Precipitation and runoff over land decrease by 13.4 and 22.3%, respectively, because of a large residual sinking motion over land triggered by albedo enhancement over land. Soil water content also declines when albedo over land is enhanced. The simulated magnitude of hydrological changes over land are much larger when compared to changes over oceans in the recent marine cloud albedo enhancement study since the radiative forcing over land needed (?8.2?W?m?2) to counter global mean radiative forcing from a doubling of CO2 (3.3?W?m?2) is approximately twice the forcing needed over the oceans (?4.2?W?m?2). Our results imply that albedo enhancement over oceans produce climates closer to the unperturbed climate state than do albedo changes on land when the consequences on land hydrology are considered. Our study also has important implications for any intentional or unintentional large scale changes in land surface albedo such as deforestation/afforestation/reforestation, air pollution, and desert and urban albedo modification.  相似文献   

14.
The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGCM2.0.1) developed by the National Climate Center(NCC) of the China Meteorological Administration(CMA).The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m 2,with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m 2.The global annual mean surface temperature increased 0.071 C due to BC in snow/ice.Positive surface radiative forcing was clearly shown in winter and spring and increased the surface temperature of snow/ice in the Northern Hemisphere.The surface temperatures of snow-covered areas of Eurasia and North America in winter(spring) increased by 0.83 C(0.6 C) and 0.83 C(0.46 C),respectively.Snowmelt rates also increased greatly,leading to earlier snowmelt and peak runoff times.With the rise of surface temperatures in the Arctic,more water vapor could be released into the atmosphere,allowing easier cloud formation,which could lead to higher thermal emittance in the Arctic.However,the total cloud forcing could decrease due to increasing cloud cover,which will offset some of the positive feedback mechanism of the clouds.  相似文献   

15.
This study examines in detail the ‘atmospheric’ radiative feedbacks operating in a coupled General Circulation Model (GCM). These feedbacks (defined as the change in top of atmosphere radiation per degree of global surface temperature change) are due to responses in water vapour, lapse rate, clouds and surface albedo. Two types of radiative feedback in particular are considered: those arising from century scale ‘transient’ warming (from a 1% per annum compounded CO2 increase), and those operating under the model’s own unforced ‘natural’ variability. The time evolution of the transient (or ‘secular’) feedbacks is first examined. It is found that both the global strength and the latitudinal distributions of these feedbacks are established within the first two or three decades of warming, and thereafter change relatively little out to 100 years. They also closely approximate those found under equilibrium warming from a ‘mixed layer’ ocean version of the same model forced by a doubling of CO2. These secular feedbacks are then compared with those operating under unforced (interannual) variability. For water vapour, the interannual feedback is only around two-thirds the strength of the secular feedback. The pattern reveals widespread regions of negative feedback in the interannual case, in turn resulting from patterns of circulation change and regions of decreasing as well as increasing surface temperature. Considering the vertical structure of the two, it is found that although positive net mid to upper tropospheric contributions dominate both, they are weaker (and occur lower) under interannual variability than under secular change and are more narrowly confined to the tropics. Lapse rate feedback from variability shows weak negative feedback over low latitudes combined with strong positive feedback in mid-to-high latitudes resulting in no net global feedback—in contrast to the dominant negative low to mid-latitude response seen under secular climate change. Surface albedo feedback is, however, slightly stronger under interannual variability—partly due to regions of extremely weak, or even negative, feedback over Antarctic sea ice in the transient experiment. Both long and shortwave global cloud feedbacks are essentially zero on interannual timescales, with the shortwave term also being very weak under climate change, although cloud fraction and optical property components show correlation with global temperature both under interannual variability and transient climate change. The results of this modelling study, although for a single model only, suggest that the analogues provided by interannual variability may provide some useful pointers to some aspects of climate change feedback strength, particularly for water vapour and surface albedo, but that structural differences will need to be heeded in such an analysis.  相似文献   

16.
The radiative forcings and feedbacks that determine Earth’s climate sensitivity are typically defined at the top-of-atmosphere (TOA) or tropopause, yet climate sensitivity itself refers to a change in temperature at the surface. In this paper, we describe how TOA radiative perturbations translate into surface temperature changes. It is shown using first principles that radiation changes at the TOA can be equated with the change in energy stored by the oceans and land surface. This ocean and land heat uptake in turn involves an adjustment of the surface radiative and non-radiative energy fluxes, with the latter being comprised of the turbulent exchange of latent and sensible heat between the surface and atmosphere. We employ the radiative kernel technique to decompose TOA radiative feedbacks in the IPCC Fourth Assessment Report climate models into components associated with changes in radiative heating of the atmosphere and of the surface. (We consider the equilibrium response of atmosphere-mixed layer ocean models subjected to an instantaneous doubling of atmospheric CO2). It is shown that most feedbacks, i.e., the temperature, water vapor and cloud feedbacks, (as well as CO2 forcing) affect primarily the turbulent energy exchange at the surface rather than the radiative energy exchange. Specifically, the temperature feedback increases the surface turbulent (radiative) energy loss by 2.87 W m?2 K?1 (0.60 W m?2 K?1) in the multimodel mean; the water vapor feedback decreases the surface turbulent energy loss by 1.07 W m?2 K?1 and increases the surface radiative heating by 0.89 W m?2 K?1; and the cloud feedback decreases both the turbulent energy loss and the radiative heating at the surface by 0.43 and 0.24 W m?2 K?1, respectively. Since changes to the surface turbulent energy exchange are dominated in the global mean sense by changes in surface evaporation, these results serve to highlight the fundamental importance of the global water cycle to Earth’s climate sensitivity.  相似文献   

17.
Radiative forcing has been widely used as a metric of climate change, i.e. as a measure by which various contributors to a net surface temperature change can be quantitatively compared. The extent to which this concept is valid for spatially inhomogeneous perturbations to the climate system is tested. A series of climate model simulations involving ozone changes of different spatial structure reveals that the climate sensitivity parameter is highly variable: for an ozone increase in the northern hemisphere lower stratosphere, it is more than twice as large as for a homogeneous CO2 perturbation. A global ozone perturbation in the upper troposphere, however, causes a significantly smaller surface temperature response than CO2. The variability of the climate sensitivity parameter is shown to be mostly due to the varying strength of the stratospheric water vapour feedback. The variability of the sea-ice albedo feedback modifies climate sensitivity of perturbations with the same vertical structure but a different horizontal structure. This feedback is also the origin of the comparatively larger climate sensitivity to perturbations restricted to the northern hemisphere extratropics. As cloud feedback does not operate independently from the other feedbacks, quantifying its effect is rather difficult. However, its effect on the variability of for horizontally and vertically inhomogeneous perturbations within one model framework seems to be comparatively small.This revised version was published online March 2005 with corrections to table 5.  相似文献   

18.
Surface albedo feedback is widely believed to be the principle contributor to polar amplification. However, a number of studies have shown that coupled ocean-atmosphere models without ice albedo feedbacks still produce significant polar amplification in 2 × CO2 runs due to atmospheric heat transports and their interaction with surface conditions. In this article, the relative importance of atmospheric heat transport and surface albedo is assessed using a conceptual 2-box energy balance model in a variety of different model climates. While both processes are shown to independently contribute to the polar amplified response of the model, formal feedback analysis indicates that a strong surface albedo response will tend to reduce the effect of atmospheric heat transport in the full model. We identify several scenarios near the present day climate in which, according to this formal feedback analysis, atmospheric heat transport plays no role in shaping the equilibrium warming response to uniform forcing. However, a closer analysis shows that even in these scenarios the presence of atmospheric heat transport feedback does play a significant role in shaping the trajectory by which the climate adjusts to its new equilibrium.  相似文献   

19.
Summary A coupled 1-D time-dependent radiative-convective-photochemical diffusion model which extends from the surface to 60 km is used to investigate the potential impact of greenhouse trace gas emissions on long-term changes in global climate, atmospheric ozone and surface UV-B radiation, taking into accoont the influence of aerosol loading into the atmosphere from major volcanic eruptions, of thermal inertia of the upper mixed layer of the ocean and of other radiativephotochemical feedback mechanisms. Experiments are carried out under global and annual average insolation and cloudiness conditions. The transient calculations are made for three different growth scenarios for increase in trace gas concentrations. Scenario 1, which begins in 1850, uses the best estimate values for future trace gas concentrations of CO2, CH4, N2O, CFC-11, CFC-12 and tropospheric O3, based on current observational trends. Scenarios 2 and 3, which begin in 1990, assume lower and upper ranges, respectively, of observed growth rates to estimate future concentrations.The transient response of the model for Scenario 1 suggests that surface warming of the ocean mixed layer of about 1 K should have taken place between 1850 and 1990 due to a combined increase of atmospheric CO2 and other trace gases. For the three scenarios considered in this study, the cumulative surface warming induced by all major trace gases for the period 1850 to 2080 ranges from 2.7 K to 8.2 K with the best estimate value of 5 K. The results indicate that the direct and the indirect chemistry-climate interactions of non-CO2 trace gases contribute significantly to the cumulative surface warming (up to 65% by the year 2080). The thermal inertia of a mixed layer of the ocean is shown to have the effect of delaying equilibrium surface warming by almost three decades with an e-folding time of about 5 years. The volcanic aerosols which would result from major volcanic eruptions play a significant role by interrupting the long-term greenhouse surface warming trend and replacing it by a temporary cooling on a time scale of a decade or less. Furthermore, depending on the scenario used, a reduction in the net ozone column could result in an increase in the solar UV-B radiation at the surface by as much as 300% towards the end of 21st century.With 14 Figures  相似文献   

20.
Vegetation is a major component of the climate system because of its controls on the energy and water balance over land. This functioning changes because of the physiological response of leaves to increased CO2. A climate model is used to compare these changes with the climate changes from radiative forcing by greenhouse gases. For this purpose, we use the Community Earth System Model coupled to a slab ocean. Ensemble integrations are done for current and doubled CO2. The consequent reduction of transpiration and net increase of surface radiative heating from reduction in cloudiness increases the temperature over land by a significant fraction of that directly from the radiative warming by CO2. Large-scale atmospheric circulation adjustments result. In particular, over the tropics, a low-level westerly wind anomaly develops associated with reduced geopotential height over land, enhancing moisture transport and convergence, and precipitation increases over the western Amazon, the Congo basin, South Africa, and Indonesia, while over mid-latitudes, land precipitation decreases from reduced evapotranspiration. On average, land precipitation is enhanced by 0.03 mm day?1 (about 19 % of the CO2 radiative forcing induced increase). This increase of land precipitation with decreased ET is an apparent negative feedback, i.e., less ET makes more precipitation. Global precipitation is slightly reduced. Runoff increases associated with both the increased land precipitation and reduced evapotranspiration. Examining the consistency of the variations among ensemble members shows that vegetation feedbacks on precipitation are more robust over the tropics and in mid to high latitudes than over the subtropics where vegetation is sparse and the internal climate variability has a larger influence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号