首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
哈尔滨2002年3月20日沙尘暴沉降物的粒度特征及其意义   总被引:7,自引:1,他引:6  
哈尔滨2002年3月20日的沙尘沉降物以粉砂(4~63 μm)为主,占71.18%,砂粒组分(>63 μm)占 21.7%,粘土(<4 μm)组分含量最少,仅占7.13%。哈尔滨2002年3月20日沙尘沉降物的粒度是迄今为止有见报道中最粗的。沉降物粒度为多峰态分布,29.16~34.67μm粒级的粗粉砂组成第一主峰,含量约占7.4%,420.45~500 μm粒级的中砂组分组成第二主峰,含量约占1.29%,而0.69~0.82 μm粒级的细粘土组分形成第三主峰,含量约占0.52%。沉降物的平均粒径Mz为28.4 μm,分选系数为1.81,偏态为0.044,峰态为1.494,粉粘比为7.3。粒度特征显示,哈尔滨沙尘沉降物是不同来源沙尘远距离和近距离搬运的混合体,粗颗粒为低空气流搬运的近源物质。哈尔滨沙尘源区的生物状况和生态环境较为恶劣,该地区沙尘暴工作的重点应放在哈尔滨周边沙尘源区的治理上。  相似文献   

2.
哈尔滨沙尘沉降物的化学风化特征及物源区意义   总被引:1,自引:0,他引:1  
对哈尔滨2006年3月10日沙尘沉降物的化学组成及化学风化特征进行研究,结果表明:SiO2、Al2O3和TFe2O3含量分别为54.87%、13.27%和5.63%,三者之和达73.77%;CaO、MgO、K20、Na2O、TiO2、P2O5和MnO含量分别为3.78%、2.57%、2.63%、1.76%、O.77%、0.24%和O.11%.沉降物中的常量元素多表现为迁移淋失,Mn和Ti明显富集而Mg和Fe轻微富集,元素的迁移淋失率依次为:Na>P>K>Si>Al>Ca>Fe>Mg>Ti>Mn;微量元素除Nb、Sr迁移淋失外,其余元素表现出富集特征.与哈尔滨2002年沙尘沉降物、黄土高原第四纪黄土与古土壤、晚第三纪红粘土、镇江下蜀土及宣城风成红土等典型风成堆积物进行对比分析,(A1+Fe+Ti+Mn)/(Mg+Ca+K+Na)比值、成分变异指数ICV、CIA等化学风化参数及A-CN-K化学风化趋势图均显示,哈尔滨沙尘沉降物经历了低等化学风化程度,明显强于兰州黄土和古土壤,弱于洛川黄土,显著弱于洛川古土壤、西峰红粘土、镇江下蜀土和宣城风成红土.哈尔滨沙尘源区处于大陆化学风化的早期,气候生物状况好于西北地区,包括沙漠和黄土高原在内的西北地区不会是哈尔滨沙尘沉降物的物源区,或者至少不是主要物源区.  相似文献   

3.
哈尔滨沙尘暴的化学特征及其物质源探讨   总被引:12,自引:0,他引:12  
谢远云  何葵  周嘉  康春国 《地理研究》2006,25(2):255-261
对哈尔滨2002年3月20日的沙尘沉降物进行了收集。地球化学元素分析表明,哈尔滨沙尘暴沉降物化学成分以SiO2、Al2O3和Fe2O3为主,三者之和达77.8%,比兰州沙尘暴沉积物高8.72%,比兰州黄土高7.06%。V、Rb、Nb、Ba等微量元素含量要明显高于兰州沙尘,而Ni、Cu、Pb、Zn、As、Sr则低于兰州沙尘。Ca、Na、Sr元素的富集因子明显小于1,为亏损元素;Mg、K、Si、Fe、Mn、P、Ti、Co、Ni、V等元素的富集因子都在1左右,主要是地壳来源,来源于地表土的风力起尘。Cu、Pb、Zn、Cr、Se等元素有一部分来自于地壳源之外的其他污染源;As、Cd和Sb元素的富集因子大于10,为大气污染来源。沙尘的化学组成及富集因子、判别函数、物源指数、地表土的粘粒率、化学风化指标等分析表明,西北黄土的元素组成非常接近兰州沙尘,而明显不同于哈尔滨沙尘,哈尔滨沙尘源区不同于西北黄土及兰州沙尘,其气候生物状况和化学风化程度要明显好于或高于西北沙尘源区。  相似文献   

4.
哈尔滨沙尘暴沉降物特征研究   总被引:1,自引:0,他引:1  
从沉积学角度对哈尔滨2002年3月20日的沙尘暴沉降物进行了粒度组成和化学成分分析。研究结果表明,沙尘含有大量的粗颗粒物质,表现出明显的三峰分布特征,说明它是由多种成因的组分构成。其粒度组成以粉砂(4~8Ф)为主,占71.18%,大于4Ф的砂粒组分占21.69%,小于8Ф的粘土组分仅占7.13%,平均粒径Mz为5.14Ф。沙尘主要化学成分为SiO2、Al2O3和Fe2O3,三者之和达77.8%。Mg、K、Si、Fe、Mn、P、Ti、Co、Ni、V等元素的富集因子都在1左右,主要是地壳来源;Cu、Pb、Zn、Cr、Se等元素有一部分来自于地壳源之外的其他污染源;而As、Cd和Sb元素主要来自于大气污染源。粒度组成、化学组成及富集因子、判别函数、物源指数等分析表明,哈尔滨沙尘的粒度及元素组成明显异于兰州黄土及沙尘,其沙尘源区不同于西北黄土及兰州沙尘。强风作用下较粗颗粒的沙尘就地扬起,与长距离搬运的粉尘相互混合,形成了哈尔滨沙尘暴沉降物。  相似文献   

5.
哈尔滨沙尘沉降物物源敏感粒度组分的提取及来源分析   总被引:1,自引:0,他引:1  
采用粒级-标准偏差算法对哈尔滨2006年3月10日沙尘沉降物进行了物源区敏感粒度组分的提取,获得各来源组分的粒级范围和含量,并进一步分析了不同粒级成因组分的来源.研究认为:1)19.2 μm是哈尔滨2006年沙尘天气颗粒短期悬浮和长期悬浮之界限,而152.4 μm是沙尘颗粒悬浮搬运的粒径上限.2)20 μm作为粉尘物质短期悬浮颗粒与长期悬浮颗粒之界限具有普遍性,而悬浮载荷的粒径上限则与一定的风力条件和地表状况密切相关.3)沙尘沉降物包含4个物源区组分,粒径范围分别为:<1 μm(组分1)、1~19.2 μm(组分2)、19.2~152.4 μm(组分3)和>152.4 μm(组分4).前2个组分属长期悬浮组分,其中组分1代表大气粉尘的本底值;组分2代表非本地源的远距离外源输入,可能与高空气流的搬运有关,包括甘肃和内蒙古在内的半干旱地区为哈尔滨沙尘提供了一定量的粉尘物质;组分3为短期悬浮组分,主要是区域内部沙尘天气产生,松散地表裸土是该组分的重要物源;组分4为跳跃或滚动组分,源于近源物质堆积,是就地起沙.4)哈尔滨2006年沙尘天气外源输入约占63.8%,近源和内源输入占36.2%.松散地表裸土的治理仍是哈尔滨防治沙尘天气的工作重点.  相似文献   

6.
对科尔沁沙地、松嫩沙地及哈尔滨道路松散裸土等不同区域表土样品进行粒度分级,分别测定碳酸盐含量和碳同位素组成,发现大部分沙地样品和全部道路表土样品的碳酸盐含量随粒度变细而增大.松嫩沙地的部分样品和科尔沁沙地的大部分样品碳酸盐含量随粒度变化还表现出其它复杂关系,风成砂和经历过强烈成壤作用改造的沙地样品中的碳酸盐含量与粒度的关系皆表现为随粒度变细而减小;大部分沙地样品和道路表土样品不同粒级组分的碳酸盐δ13C组成表现出随粒度变细而趋于偏正的特征,但变化范围较小.松嫩沙地和科尔沁沙地碳酸盐含量的地区差异性极不明显,且各粒级组分碳酸盐含量的变化幅度大大超过了其碳酸盐区域差异值,故不能作为区分松嫩沙地和科尔沁沙地风尘源区的示踪指标;而科尔沁沙地和松嫩沙地碳酸盐δ13C组成存在明显差异,且不同粒级组分碳酸盐δ13C值差别较小,是一个比碳酸盐含量更好的风尘源区示踪指标.  相似文献   

7.
通过对我国典型干旱区表土分粒级样品的碳酸盐含量及其碳氧同位素的测试,结果显示:我国西北干旱区表土不同粒级样品的碳酸盐含量以及碳氧稳定同位素组成存在较大的差异。随着粒径的减小,碳酸盐含量逐渐升高,氧同位素逐渐偏正,碳同位素逐渐偏负。可以认为细颗粒组分中土壤次生碳酸盐相对比例大,而粗颗粒组分中原生碳酸盐相对占优势。而次生碳酸盐氧同位素可能受蒸发的控制,碳同位素更多的受植被的影响,所以表现出细颗粒组分较粗颗粒组分碳酸盐的氧同位素更偏正,而碳同位素更偏负。因此,干旱区表土细颗粒组分碳酸盐能更好地反映成壤过程中次生碳酸盐形成时期的气候环境信息。  相似文献   

8.
为揭示银川平原降水稳定同位素的时间尺度效应及水汽来源,采用后向轨迹模型聚类分析法、潜在源贡献分析法(PSCF)和浓度权重轨迹分析法(CWT)解析水汽来源及潜在蒸发源区.结果表明:(1)银川平原降水氢氧稳定同位素组成存在明显的季节性变化,冬半年降水氢氧稳定同位素组成(-38.6‰±51.6‰和-4.5‰±5.2‰)明显偏...  相似文献   

9.
曾承  吴鑫  钱晨阳 《盐湖研究》2010,18(1):21-28
湖积物中不同无机碳酸盐矿物常常混杂在一起,其氧同位素组成(δ18O)差异会影响碳酸盐δ18O环境信息提取的可靠性。不同矿物之间δ18O差值明显且幅度不一。20~25℃时生成的白云石比共生的方解石富集18O可能为0‰~9‰不等,亦或方解石比白云石可能更富集18O达0‰~12.3‰。常温状态,相同条件下形成的文石δ18O值较方解石高出0‰~1‰,或者方解石较文石δ18O值高出0‰~4.47‰。镁方解石中MgCO3的mol百分含量每增加1%,其δ18O值相对于纯方解石δ18O值增加0.06‰~0.17‰。在利用碳酸盐δ18O进行气候及环境研究时,不能根据某种差值进行校正,而应进行单矿物测试。由此,对不同无机碳酸盐矿物的分离及同位素测试、推算方法进行了归纳和述评。  相似文献   

10.
闫慧  侯刚 《热带地理》2011,31(6):545-548
判断生命效应存在与否是利用双壳类壳体碳同位素提取古水体信息首要面临的问题.以2007-01-09和2007-08-10在贵州花溪河采集的河蚬作为样品数据源,对该地区河蚬壳体碳同位素进行了研究.结果表明:1号壳体和2号壳体的δ13Car变化范围分别为-11.12%~-7.45%和-11.36‰~-8.42‰,δ13Car...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号