首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8.  相似文献   

2.
Introduction The Taigu fault is located on the eastern boundary of the Jinzhong basin in the Shanxi fault depression system, which is one of the 12 major active basin boundary faults, and is also less studied among them. The reason for this is, firstly, the Jinzhong basin has no historical earth-quakes with M 7, while the two basins linked together in the northern and southern sides, the Linfen and Xinding basins all have had historical earthquakes with M 7; secondly, because the Jiaochen…  相似文献   

3.
最新调查结果表明,太谷断裂断错山前冲沟Ⅰ级阶地以及在黄土台地前缘形成断坎,在地表及探槽中多处见到断裂断错全新世地层,断裂的最新活动是1303年洪洞8级地震,活动方式为右旋走滑兼正倾滑活动. 在该次地震中,太谷断裂与灵石隆起上的绵山西侧断裂、临汾盆地东边界的霍山山前断裂一起活动,形成长约160 km的地表破裂带. 除此之外,该断裂曾在全新世中期及距今7 700年以后有过活动. 由此得到,在山西断陷系,两个断陷盆地边界断裂的贯通活动发生8级特大大震.   相似文献   

4.
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990‘s up to the present, the characteristics of distribution and displacement of surface rupture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M ≈ 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.  相似文献   

5.
Surface rupture zone of the 1303 Hongtong M=8 earthquake, Shanxi Province   总被引:1,自引:0,他引:1  
Introduction The 1303 Shanxi Hongtong M=8 earthquake is the earliest M=8 event determined in histori-cal records in China and the largest recorded in Shanxi fault-depression system in history. Some researchers have discussed the tectonic environment of this earthquake (DENG, et al, 1973; DENG, 1984; DENG, XU, 1994, 1995; Seismo-geological Brigade, State Seismological Bureau, Depart-ment of Geology and Geography, Peking University, 1979; LIU, XIAO, 1982; ZHANG, JIA, 1986; SU, …  相似文献   

6.
In this paper, according to the results of the satellite imagery interpretation and field investigation, we study the active features and the latest active times of the Chuxiong-Nanhua fault, the Quaternary basins formation mechanism, and the relationship between the fault and the 1680 Chuxiong MS6 ¾ earthquake. Several Quaternary profiles at Lvhe, Nanhua reveal that the fault has offset the late Pleistocene deposits of the T2 and T3 terraces of Longchuan river, indicating that the fault was obviously active in late Quaternary. The Chuxiong-Nanhua fault has been dominated by dextral strike slip motion in the late Quaternary, with an average rate of 1.6-2.0mm/a. Several pull apart Quaternary basins of Chuxiong, Nanhua, and Ziwu etc. have developed along the fault. The 1680 Chuxiong MS6 ¾ earthquake and several moderate earthquakes have occurred near the fault. The Chuxiong-Nanhua fault are the seismogenic structure of those earthquakes, the latest fault movement was in the late-Pleistocene, and even the Holocene. In large area, the Chuxiong-Nanhua fault and the eastern Qujiang fault and the Shiping fault composed a set of NW-trending oblique orientation active faults, and the motion characteristics are all mainly dextral strike slip. The motion characteristics, like the red river fault of the Sichuan-Yunnan Rhombic Block southwestern boundary, are concerned with the escaping movement of the Sichuan-Yunnan Rhombic Block.  相似文献   

7.
We have selected 171 near-field records from 391 aftershock records of the Lulong, Hebei Province, earthquake in October 1982 and relocated the hypocenter of 45 aftershocks using the program Hypoinverse. The distribution of aftershocks reveals a set of earthquake faults: a WNW stretching fault truncates two NNE stretching faults. The two branches of faults show the conjugate structure which is often seen in brittle fracture. The NNE stretching faults are connected together. The Luanhe river valley near Lulong developed to a rudiment rift basin surrounded by a series of faults. The fault of Lulong earthquake is a strike-slip fault with tension component. This fault type matches with the activity of Zhangjiakou-Bohai seismic belt (Zhang-Bo belt) and also shows the action of Zhang-Bo belt as a boundary of two secondary active blocks that truncates the NNE fault. Foundation item: National Natural Science Foundation of China (40234038). Contribution No. 05FE3016, Institute of Geophysics, China Earthquake Administration.  相似文献   

8.
2 Conclusion Fenghuangshan-Tianshui fault is a Holocene active fault. It laterally slips at the average rate of 1.1 mm/a during 6.4 ka and vertically slips at the average rate of 0.37 mm/a and 0.16 mm/a since the time 16.6 ka and 6.4 ka before respectively. Diaogoumeng-Dongjiawan segment has occurred an abrupt event in the period of 6.4 ka BP, which is assumed to be related to the 734 Tianshui M=7 earthquake, but further work is still necessary. Foundation item: Chinese Joint Seismological Science Foundation (198023).  相似文献   

9.
郯庐断裂带莒县胡家孟晏地震破裂带的发现   总被引:4,自引:3,他引:1       下载免费PDF全文
郯庐断裂带是中国东部最主要的一条活动断裂带。在该断裂带中部,沂沭断裂东地堑的潍坊—嘉山段中发育了1条长360km的全新世活动断裂带(F5),在该全新世断裂带的北段和中段分别发生了公元70年的安丘地震和公元1668年的郯城地震。2003年底我们考察沭河断裂带时,在莒县境内发现了1条长约7km的地震破裂带,作为活动断层应该归属于F5断裂带,但其是一条独立的地震破裂段还是归属于1668年郯城8.5级地震破裂带有待于进一步的研究。尽管如此,探槽揭示出的上覆未经破坏的地层的14C年代表明,该破裂带在(2140±190)aBP以来没有过活动,因此我们认为其作为1条独立破裂段的可能性较大  相似文献   

10.
天祝盆地边缘断层的全新世活动及盆地的演化与形成   总被引:3,自引:0,他引:3  
根据作者1/50,000活断层地质填图的资料,讨论了天祝盆地内断层的全新世活动及盆地的形成与演化历史。结果表明,天祝盆地内断层的全新世活动强烈,上窑洞沟深槽揭示3980±50aB.P.曾发生过一次古地震事件,天祝盆地是一个典型的拉分盆地,其形成及演化与断裂活动密切相关.  相似文献   

11.
The M5.7 Jiujiang earthquake in 2005 was a mid-strong one, stronger than expected to occur in the region. This paper discusses the neo-tectonic settings of this earthquake, and it is thought that the earthquake region is located in the transitional belt, a potential area inducing weak to moderately strong earthquakes, between two large different tectonic units. The results of the reconnaissance work and on-the-spot investigation after earthquake indicate that the occurrence of the M5.7 Jiujiang earthquake is closely related with the NE-trending fault on the western margin of Ruichang Basin. From its controlling to the landforms and Quaternary depositions, geological profiles, ESR dating, etc., the activity of the Dingjiashan-Langjunshan fault bounding the basin is discussed. It suggests that this fault displays an active one in Middle Pleistocene by the outcrop. Based on the activity of the fault, and the direction and location of the ground fissures, the isoseismal lines and the nodal plane of the focal mechanism solution, it is inferred that the Dingjiashan-Langjunshan fault is the seismogenic tectonics of the M5.7 Jiujiang earthquake, and the intersection point between this fault and the active NW ones is the possible origin of location of this earthquake. Our study shows that this earthquake is not an event exceeding expectation, and that the active and invisible characteristics of the causative fault are typical in the eastern area of China. Supported by the National Development and Reform Commission (Grant No. 20041138) and the National Natural Science Foundation of China (Grant No. 40602019)  相似文献   

12.
新疆伊宁盆地活动断裂新活动特征研究   总被引:3,自引:0,他引:3  
新疆伊宁盆地主要分布有巩留南、喀什河、雅马特等6条活动断裂,断裂走向近东西向与北酉一北北西向。其中巩留南断裂、喀什河断裂、雅马特断裂等在晚更新世一全新世时期有过多次显著的新活动,切错了晚更新世一全新世堆积物。在喀什河断裂上1812年发生了8级大展,形成长约100km的地震形变带。在巩留南断裂、雅马特断裂、伊宁断裂上也有受控于断裂近代新活动的中等地震发生。  相似文献   

13.
The Anninghe fault is one of the significant earthquake-generating fault zones in the Southwest China. Local his-torical record shows that a M≥7 strong earthquake occurred in the year of 1536. On the basis of the detailed air-photographic interpretation and field investigation, we have acquired the following knowledge: 1 The average sinistral strike-slip rate since the Late Pleistocene is about 3~7 mm/a; 2 There is important reverse faulting along the fault zone besides the main left-lateral strike-slip motion, and the shortening rate across the Anninghe fault zone due to the reverse faulting is about 1.7~4.0 mm/a. If the Xianshuihe fault zone is simply partitioned into the Anninghe and Daliangshan faults, we can also get a slip rate of 3~7 mm/a along the Daliangshan fault zone, which is the same as that on the Anninghe fault zone. Moreover, on the basis of our field investigation and the latest knowledge concerning the active tectonics of Tibetan crust, we create a dynamic model for the Anninghe fault zone.  相似文献   

14.
通过对汗母坝-澜沧断裂晚第四纪地质、地貌实地调查与测量,并结合前人研究成果,讨论了该断裂晚第四纪最新构造活动特征。综合分析认为,汗母坝-澜沧断裂为一条以右旋走滑为主的全新世活动断裂,长约120 km,整体走向NNW。该断裂活动习性具有明显的分段特征,北段称为汗母坝断裂,是1988年耿马7.2级地震的发震断裂;南段称为澜沧断裂,是1988年澜沧7.6级地震的发震断裂之一。晚第四纪以来其新活动形成了丰富的断错地貌现象,如冲沟和山脊右旋位错、断层沟槽、断层垭口、断层陡坎、断陷凹坑等。根据断裂断错地貌特征的相应资料估计,该断裂晚第四纪右旋走滑速率约为(4.7±0.5) mm/a。  相似文献   

15.
郯庐断裂带是中国东部重要的活动断裂带和边界构造带,其鲁苏段全新世活动断层的空间展布和古地震序列是地学关注的焦点问题,也是准确评价区域地震危险性的重要参数.以往研究工作多集中在郯庐断裂带地表地貌现象明显且有强震记录的山东段,而江苏段则研究程度相对较低,有关郯庐断裂带江苏段全新世活动断层范围和古地震序列问题存在争议.本文利用野外地质地貌调查、浅层地震勘探、钻孔联合剖面以及古地震探槽等多层次综合方法,重点开展郯庐断裂带江苏段全新世活动断层的分布和古地震序列研究.结果显示全新世时期,安丘-莒县断裂是郯庐断裂带江苏段的主要活动断层,且江苏全段该断层都是全新世活动断层.通过对比宿迁闸-皂河镇断裂南北安丘-莒县断裂的断层地貌和断层最新活动时间,并结合宿迁闸-皂河镇断裂在第四纪没有活动过等证据,推测该断层在全新世时期并不是区域阻碍破裂的断层.探槽揭示郯庐断裂带江苏段全新世两次古地震事件,事件Ⅰ限定在(6.2±0.3)-(13.4±0.7)ka B.P.之间,而事件Ⅱ限定在(2.5±0.1)ka B.P.到现今,全新世两次古地震间隔较长.基于构造类比法,安丘-莒县断裂具有深部孕震的构造特点,是区域未来强震的潜在发震构造.  相似文献   

16.
Paleo-earthquake studies on the eastern section of the Kunlun fault   总被引:1,自引:0,他引:1  
Introduction East Kunlun active fault is one of the largest sinistral slip fault zones in northern Tibetan Pla-teau. The fault tails primarily after the ancient eastern Kunlun suture zone, which was reactivatedby the northward subduction of the Indian plate beneath the Eurasian plate. The western end of thefault starts near the western flank of the Buxedaban peak in Qinghai Province. The fault then ex-tends eastwards through the Kusai Lake, Xidatan, Dongdatan, Alag Lake, Tuosuo Lak…  相似文献   

17.
闻学泽  徐锡伟 《地震地质》2003,25(4):509-524
综合探查表明 ,福州盆地的主要断层均无全新世活动。通过区域地壳动力学与地震构造背景分析、地震活动水平统计对比等 ,综合判定了福州盆地的地震环境及主要断层潜在地震的最大震级。结果表明 :福州盆地位于台湾动力触角对大陆作用的弱影响区 ,但靠近强、弱影响区的过渡边界 ,处于有、无≥ 6级强震区的过渡地带。与福建—粤东北沿海发生过强震的地段相比 ,福州盆地及附近主要断裂的最晚活动时代偏老 ,壳内的低速层不显著。另外 ,在福建及邻区的 12个地震构造单元中 ,福州盆地单元的地震活动水平最低。该盆地西缘和南缘的闽候 -南屿断层和五虎山北麓断层是具有发生中等地震潜势的相对危险断层段 ,潜在地震的最大震级估值为MS6 .0和 5 .6  相似文献   

18.
深井盆地南缘断裂特征与活动性研究   总被引:1,自引:0,他引:1  
深井盆地是山西断陷盆地带北段内部一个规模很小的次级盆地,为中更新世以来发育的三角型山间小型盆地。盆地附近断裂发育,构造复杂,深井盆地南缘断裂为主控边界断裂,控制着盆地的发展演化。本文通过对地形地貌、断裂剖面、地层测年及地震活动等方面的分析和研究,获得了断裂活动时代和活动速率等参数,综合阐述了断裂的空间展布及活动特征。研究表明:深井盆地南缘断裂晚第四纪期间仍在活动,最新活动时代为晚更新世晚期;断裂具有分段性,西段长约6km,多处可见断裂错断晚更新世地层剖面,属正断倾滑性质;东段表现为盆地与黄土斜坡直接接触,由西向东断裂地貌表现逐渐减弱,未见明显的断裂剖面,止于NW向构造,附近发生的4次4 3/4级地震与该段断裂关系密切。  相似文献   

19.
-- The main active faults of the Granada Basin are located in its central-eastern sector, where the most important tectonic activity is concentrated, uplifting its eastern part and sinking the western border. Several parameters related to the seismic potentiality of these active, or in some cases probably active, faults in this basin are used for the first time. Many of these faults can generate earthquakes with magnitudes larger than 6.0 MW, although this is not the general case. The fault situated to the N of Sierra Tejeda, probably the one responsible for the big earthquake of 25/12/1884, stands out, because it could generate an earthquake with magnitude 6.9 MW. Although at present all the data needed are not fully known, we consider that the final results show, as a whole, the average expected return periods of the faults in the Granada Basin.  相似文献   

20.
The Tan-Lu Fault Zone(TLFZ), a well-known lithosphere fault zone in eastern China, is a boundary tectonic belt of the secondary block within the North China plate, and its seismic risk has always been a focus problem. Previous studies were primarily conducted on the eastern graben faults of the Yishu segment where there are historical earthquake records, but the faults in western graben have seldom been involved. So, there has been no agreement about the activity of the western graben fault from the previous studies. This paper focuses on the activity of the two buried faults in the western graben along the southern segment of Yishu through combination of shallow seismic reflection profile and composite drilling section exploration. Shallow seismic reflection profile reveals that the Tangwu-Gegou Fault(F4)only affects the top surface of Suqian Formation, therefore, the fault may be an early Quaternary fault. The Yishui-Tangtou Fault(F3)has displaced the upper Pleistocene series in the shallow seismic reflection profile, suggesting that the fault may be a late Pleistocene active fault. Drilling was implemented in Caiji Town and Lingcheng Town along the Yishui-Tangtou Fault(F3)respectively, and the result shows that the latest activity time of Yishui-Tangtou Fault(F3)is between(91.2±4.4)ka and(97.0±4.8)ka, therefore, the fault belongs to late Pleistocene active fault. Combined with the latest research on the activity of other faults along TLFZ, both faults in eastern and western graben were active during the late Pleistocene in the southern segment of the Yishu fault zone, however, only the fault in eastern graben was active in the Holocene. This phenomenon is the tectonic response to the subduction of the Pacific and Philippine Sea Plate and collision between India and Asian Plate. The two late Quaternary active faults in the Yishu segment of TLFZ are deep faults and present different forms on the surface and in near surface according to studies of deep seismic reflection profile, seismic wave function and seismic relocation. Considering the tectonic structure of the southern segment of Yishu fault zone, the relationship between deep and shallow structures, and the impact of 1668 Tancheng earthquake(M=8(1/2)), the seismogenic ability of moderate-strong earthquake along the Yishui-Tangtou Fault(F3)can't be ignored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号