首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
官寨井田位于贵州省黔西县东部,4、9号煤层为井田全区可采煤层。根据大量瓦斯地质资料分析,发现4号煤层大部分区块瓦斯含量大于15.0mL/g·daf,其中大于20.0mL/g·daf的区块主要分布在井田西部边缘;在井田西部瓦斯含量一般为10.0~15.0mL/g·daf;西部煤层露头和张性断层附近含量均小于10.0mL/g·daf。9号煤层瓦斯含量大于20.0mL/g·daf分布于井田中东及北东部,并由往西南及中部逐渐降低的趋势;其含量小于10.OmL/g·daf分布于井田南部煤层露头附近。由于井田构造复杂,瓦斯含量明显受断层和煤层埋深影响,数据显示:闭合断层附近瓦斯含量明显增高,张性断层附近含量变小,同一煤层随埋藏深度增加瓦斯含量增大。  相似文献   

2.
为查明贵州金沙县官田坝向斜瓦斯赋存规律,保证后续煤矿开采工作的有序进行,基于研究区地质勘探钻孔资料、试井资料及井田地质条件的详细分析,结合实测瓦斯数据,借助于瓦斯地质理论,从垂向和平面两方面对不同煤层进行瓦斯赋存规律分析探讨,结果表明:在取样深度范围内,可采煤层CH4浓度分布变化较大,N2浓度分布变化较小。各层位煤层在埋深处于500600m普遍存在明显的"转折点",推测可能与地层层序格架控制的煤储层物性有关;随着煤层层位的加深,瓦斯含量与埋深的关系逐渐趋于弱化,一定程度上表明埋深因素对于瓦斯含量的控制作用随着煤层层位的加深而逐渐较弱;4、7、9号煤层瓦斯含量受埋深影响作用明显,13、15号煤层瓦斯赋存规律一定程度上受地下水活动作用控制。  相似文献   

3.
梁家栋  曾勇  吕倩  赵莉 《山东地质》2010,(12):11-14
该文在分析江苏徐州王庄煤矿山西组7煤层瓦斯赋存的控制条件的基础上,通过对煤层瓦斯含量与上覆基岩厚度、顶板20 m含泥率及煤厚的相关性进行多元线性回归,研究了煤层瓦斯含量分布规律。又根据瓦斯地质数学模型法计算公式,得到了该煤矿回采工作面的瓦斯涌出量预测结果;并对矿井煤与瓦斯突出危险性区域进行预测。  相似文献   

4.
通过建立煤层裂隙、含气性等与其弹性参数关系,进一步理清了瓦斯富集与储层弹性参数变化量之间的内在联系——煤层瓦斯含量与煤层速度、密度呈现负相关特征。以典型的煤矿采区实测数据为基础,计算了5个煤层弹性参数随煤层中瓦斯的吸附量变化关系,结果表明:煤层中瓦斯含量与密度呈现出负相关性;与密度变化量、剪切模量变化量、拉梅常数变化量及AVO检测因子4个参数呈现正相关关系。在三维地震研究区采用与瓦斯含量呈正相关的4个弹性参数对瓦斯富集区分别进行了预测。引入综合评价因子,建立其与4种岩性反演结果相关的一次线性函数,并绘制4弹性参数综合预测瓦斯富集区成果图,达到预测煤层瓦斯富集区的目的。  相似文献   

5.
云南威信县新庄煤矿区多为高瓦斯及煤与瓦斯突出矿井,该矿区总体上为一向斜,发育一系列轴向NEE的次级褶曲,瓦斯含量为0.25~40.55m3/t,平均为9.10m3/t。通过对矿区地质构造、煤层厚度、煤的变质程度、顶板岩性、煤层埋深、水文地质条件等瓦斯地质因素分析,其瓦斯分布规律总体上受向斜控制,瓦斯含量在次级构造(如向斜轴部)较高,瓦斯含量等值线总体上呈NEE向展布,瓦斯含量与煤层厚度呈正相关,瓦斯含量在浅部煤层中变化大,随埋深增大趋于增高,在600m以深,瓦斯含量增加的速度减慢;从泥岩顶板-泥质灰岩顶板-粉砂岩顶板,煤层瓦斯含量依次显著降低;矿区浅部地下水活动较活跃,随深度增加,下水头压力增大,有利于瓦斯的保存和富集,区内岩溶发育但大部分位于地表,对C5煤层影响甚微。  相似文献   

6.
为掌握煤层瓦斯分布规律,揭示煤层瓦斯含量与视电阻率的关系,结合实验室关于煤样电阻率的研究,使用瞬变电磁法研究煤层视电阻率与瓦斯含量的相关性,在豫西新安煤矿进行18次探测试验,获取有效数据21组。研究表明:煤层视电阻率与瓦斯含量呈较好的负相关,瓦斯含量每升高1 m3/t,视电阻率对数值降低6.6%~20%,判定系数为0.621 9~0.753 1,说明煤层视电阻率对瓦斯含量具有明显的响应特征,利用瞬变电磁可以在相似地质条件下探测煤层瓦斯含量高低及其分布规律。   相似文献   

7.
地质构造控制着煤层瓦斯的赋存,造成了矿井瓦斯分布的不均一性。在分析潘集矿区13-1煤层瓦斯地质资料的基础上,利用煤层底板等高线图反映的地质构造信息,在煤层瓦斯含量测试点以1 km2的方形为瓦斯地质单元计算地质构造复杂程度综合系数。研究区根据运储条件共划分6个地质单元,建立地质构造复杂程度综合系数与煤层瓦斯的函数关系。结果表明:矿区各瓦斯地质单元煤层瓦斯含量与地质构造复杂程度综合系数具有明显的负相关关系,两者之间线性关系显著,可见利用地质构造复杂程度综合系数进行未采区煤层瓦斯含量预测是可行的。  相似文献   

8.
多煤层开采,在增加矿区煤层资源量提高经济效益的同时,一定程度上也为研究区基础地质工作,特别是瓦斯赋存规律研究增加了难度。受多期地质构造影响,各煤层在空间展布规律、储层物性发育等存在明显差异,造成了瓦斯赋存规律的复杂性。为充分明确垂向煤层瓦斯赋存规律,以黑塘煤矿主采煤层为研究对象,以各主采煤储层物性特征为主要研究内容,基于等温吸附曲线、煤层瓦斯参数及地温测试资料分析,重点研究深度控制下各煤层瓦斯赋存规律并进行差异性分析,结果表明:在取样深度范围内,各煤层瓦斯含量随埋深变化趋势不同,浅部煤层与煤层埋深呈现递减趋势。相较于浅部煤层,深部煤层一定深度范围内,煤层瓦斯含量与埋深关系逐渐趋于正相关。当埋深达到800 m后,瓦斯含量和埋深关系进一步趋于复杂,表明该区域煤层大致以800 m为界存在"应力转折点"。同时,地质构造、水文地质条件及煤变质程度对煤层瓦斯垂向规律差异性的影响作用有限,地温局部异常引起垂向层段地温梯度差异性是研究区瓦斯含量存在"临界深度"的主控因素。  相似文献   

9.
根据徐州地区的含煤区地质背景、煤系分布、煤层特征及含气量等煤层气勘探地质条件的综合研究,分析了煤层气的控气地质因素,在此基础上建立了适合本区地质实际的评价标准,并采用模糊综合分析方法,对12个煤层气勘探开发预选区块进行评价。研究表明:徐州地区煤层总厚10~15 m,结构简单至复杂,含煤特征在空间展布上有着很大的差异;从煤层钻孔瓦斯含量来看,本区属于低沼气区,煤层气的赋存与煤阶、埋深、煤层厚度、构造类型、岩浆岩侵入、水文地质条件等因素有关;根据本次煤层气选区评价结果,建议将九里山区的QK7、QK9区块作为下一步煤层气勘探开发的首选区块。  相似文献   

10.
为调查淮南矿区矿井关闭前后瓦斯地质特征变化,以谢一矿B11b煤层为研究对象,基于矿井瓦斯历史工作和收集的矿井关闭后煤层气参数井资料,分析了该煤层的含气性特征。研究表明:B11b煤层关闭前甲烷含量(CH4,daf)2.01~15.29m3/t;关闭后甲烷含量(CH4,daf) 0.92~11.65m3/t。关闭前甲烷浓度6.72%~90.51%;关闭后甲烷浓度43.31%~80.58%。关闭前预测的瓦斯赋存规律在垂向上和平面上主要受埋深和地质构造影响。关闭后新谢-3井B11b煤层甲烷含量在垂向上较关闭前的预测结果有所下降,原因可能与采动应力场和储层流体场的变化、矿井关闭后瓦斯的重新运移与聚集、煤层采动后瓦斯含量临界深度的变化及其导致的瓦斯赋存状态的改变有关。  相似文献   

11.
运用沉积学、构造地质学、煤地质学、数学分析等相关学科和方法,综合分析瓦斯涌出量的地质构造、顶底板岩性、上覆基岩厚度等地质因素,对阳城地区瓦斯含量、涌出量进行量化预测,并作出其全井田瓦斯含量、涌出量的等值线图。研究表明,阳城井田属低瓦斯矿井,瓦斯含量的变化主要与煤层埋深有关,随着煤层上覆基岩厚度以及煤层埋深的增高,瓦斯含量与涌出量在区内由北向南有增高趋势。  相似文献   

12.
豫西地区煤层含气性分析   总被引:1,自引:0,他引:1  
龙胜祥  樊生利 《地质论评》1998,44(2):213-218
煤层含气性是煤层气资源评价的的重要参数。豫西地区石炭系二叠系煤层发育,本文依据大量的煤田地质资料和含气量测试、瓦斯涌出量等数据,分析了含气量测试数据的可信度,深入解剖了煤变质程度、埋深、构造、上覆连续沉积地层厚度、煤层厚度及煤层顶底板岩性等主要控制因素对煤层含气性的影响,进而建立了煤层含气量与煤级、埋深的拟合曲线及其函数关系,并对全区二_1煤层含气量空间分布规律进行了总结,得出了本区煤层含气量高、煤层气勘探开发前景十分广阔的结论。  相似文献   

13.
煤地质学是以煤的形成、组成、煤系伴生矿产、煤层瓦斯和煤层气为主要研究内容的地质学分支。近年来随着我国和世界对煤炭资源安全开采、洁净利用的要求逐渐提高,煤及煤层气资源的勘探与开发,煤地质学的研究重点也在逐渐发生变化。通过分析2011-2015年《国际煤地质学》杂志发表的717篇学术论文,总结了近期煤地质学最新的研究热点与前沿。研究发现:煤层气资源评价以及与煤层气开发关系最为紧密的煤储层物性研究是各国煤地质科技工作者最为关注的热点;煤中的矿物质和元素地球化学一直为人们所重视;与煤的形成、开采和利用相关的煤岩学及有机地球化学,煤的自燃、燃烧与环境,沉积环境与煤炭演化,地理信息系统与矿区环境监测,矿井瓦斯,矿井构造,矿井水和煤的热解等方面的研究一直在持续开展;页岩气资源评价与开发越来越受到人们重视。   相似文献   

14.
前人研究认为构造煤是煤与瓦斯突出的必要条件,构造煤的分类对煤与瓦斯突出的预测和防治有重要意义。(1)根据构造煤参与煤与瓦斯突出过程的突出属性对构造煤重新进行了定义,认为构造煤是构造作用下强度降低、瓦斯异常的煤气双重介质,据此将构造煤划分为01类瓦斯构造煤和01类强度构造煤以及强度和瓦斯都变异的02类构造煤。(2)参考地质构造成因环境下岩石破坏的脆韧性划分方式,将突出属性分类与脆韧性的构造成因特性结合起来,划分出3类脆性构造煤和3类韧性构造煤,分别命名为01类脆性瓦斯构造煤、02类脆性构造煤等。(3)分析了构造煤在煤与瓦斯突出中的作用,低强度构造煤在其周围形成应力集中,瓦斯通过孔隙压力和吸附作用降低煤体强度,而高压瓦斯则是突出发展过程中煤体破坏和抛掷的重要动力源之一。(4)结合成因属性构造煤分类对各种地质因素对构造煤空间分布、构造煤瓦斯的生成和保存条件进行了分析。  相似文献   

15.
六枝煤矿区化处矿井煤层气资源特征初步分析   总被引:1,自引:1,他引:0  
张羽光 《贵州地质》2004,21(2):109-111,105
化处矿井是六枝煤矿区瓦斯突出严重的矿井之一。主要开采7煤层。煤体自上而下形成条带状、粒状“二层”结构,由于褶曲影响,在背斜轴部煤层较厚,轴部煤层瓦斯含量高迭25.3m^3/t。本文论述了本区煤层气赋存的地质因素和控制因素,以及资源量和开发前景。  相似文献   

16.
为研究沁水盆地东北部煤层气成藏特征与产出控制因素,基于寺家庄区块煤层气勘探和生产资料,从地质构造、煤厚与煤层结构、埋深和水文地质特征等方面研究了煤层含气性影响因素,并结合压裂排采工艺和煤体结构等因素探讨了煤层气井产能控制因素。结果表明:(1) 研究区煤储层含气性受构造影响较大,在褶皱的轴部及旁侧构造挤压带,多呈现出高含气量,尤其是向斜轴部。在陷落柱和水文地质条件叠加作用下,15号煤层含气量整体较8、9号煤层低,且8、9号煤层含气饱和度也整体高于15号煤层。(2) 8、9和15号煤层含气性均表现出随煤层埋深增加而增大的趋势,但随埋深增加,构造应力和地温场的作用逐渐增强,存在含气量随埋深变化的“临界深度”(700 m左右)。煤层含气性也表现出随煤层厚度增加而增大的趋势,煤层结构越简单,煤层含气性越好。(3) 研究区中部的NNE?NE向褶皱与EW向构造叠加地区,因较大的构造曲率和相对松弛的区域地应力,具备较好渗透率条件和含气性,故成为煤层气高产区。(4) 发育多煤层地区采用分压合采技术可以有效增加产气量,多煤层可以提供煤层气井高产能的充足气源,且多个层位的同时排水降压可使不同煤储层气体产出达到产能叠加,实现长期稳产,含气性较好及游离气可能存在的区域可出现长期持续高产井。   相似文献   

17.
基于Langmuir 等温吸附方程式,开展不同煤阶不同温压条件下等温吸附模拟实验,实验结果表明:在煤岩镜质组反 射率Ro<3.0%时,Langmuir 等温吸附曲线随煤阶、温度、压力升高表现出明显的分带性。随着煤阶的升高,煤吸附能力逐 渐增强。温度小于55℃时不同煤阶Langmuir 体积受温度影响较小,之后影响逐渐增大。低煤阶在12 MPa、中高煤阶在 15 MPa以前随压力增加Langmuir 体积增大明显。根据实测含气量外推法结合高温高压等温吸附实验建立了深煤层含气量数 学模型,显示煤层含气量随埋深呈现快速增加—缓慢增加—不增加—缓慢减小的变化规律,其中低煤阶临界深度介 于1400~1700 m,中高煤阶临界深度介于1500~1800 m。该含气量数学模型对预测深部煤层含气量变化规律及煤层气资源评 价提供基础依据。  相似文献   

18.
地表油气化探异常的解释与评价   总被引:6,自引:0,他引:6  
油气化探中地表地球化学异常大量呈环形分布。在二连盆地桑根达来工区进行地表化探中,发现不同地球化学指标形成的地球化学异常的空间分布上表现为正环形组合和反环形组合。文中结合石油地质条件,通过数字模拟和异常形成的时间序列分析得出:正环形异常组合表示油气向地表微渗漏持续进行,下部可能存在工业聚集的油气藏;反环形异常组合表示油气向地表微渗漏正在减弱,历史上普经存在的油气藏已经消失。  相似文献   

19.
为优选煤层气构造要素富集区,精细划分开发尺度下构造控气有利区块,以沁水盆地西南部永乐南区块为例,细分构造表征要素,量化构造要素指标,提出趋势面迭代法表征不同程度构造变形、模糊聚类分级、以及要素二分进行煤层气构造有利区优选的方法。基于地震地质综合解释成果,从构造变形、断裂系统和埋深3个方面,对研究区2号和9+10号煤层进行构造要素定量表征,采用Q型聚类法对构造要素的表征指标进行定量分级,在此基础上,以影响煤层气富集、保存的构造地质规律为指导,采用要素二分法划分得到单要素控气有利和不利区,最终综合单要素控气有利区,得到构造影响下煤层气富集的最有利、较有利、较不利和不利四类区域,并通过煤田钻孔瓦斯含量数据得以验证。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号