首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Studies of supercontinental cycle are mainly concentrated on the assembly, breakup and dispersal of supercontinents, and studies of continental crustal growth largely on the growth and loss (recycling) of the crust. These two problems have long been studied separately from each other. The Paleozoic–Mesozoic granites in the Central Asian Orogenic Belt have commonly positive Nd values, implying large-scale continental crustal growth in the Phanerozoic. They coincided temporally and spatially with the Phanerozoic Pangea supercontinental cycle, and overlapped in space with the P-wave high-V anomalies and calculated positions of subducted slabs for the last 180 Ma, all this suggests that the Phanerozoic Laurasia supercontinental assembly was accompanied by large-scale continental crustal growth in central Asia. Based on these observations, this paper proposes that there may be close and original correlations between a supercontinental cycle, continental crustal growth and catastrophic slab avalanches in the mantle. In this model we suggest that rapid continental crustal growth occurred during supercontinent assembly, whereas during supercontinental breakup and dispersal new additions of the crust were balanced by losses, resulting in a steady state system. Supercontinental cycle and continental crustal growth are both governed by changing patterns of mantle convection.  相似文献   

2.
The Earth’s evolution is determined by supercontinental cyclicity with a period of 400 Ma. A supercycle consists of a supercontinental proper and an inter-supercontinental stage, each of which includes two phases, respectively: integration-destruction and fragmentation-convergence. The worldwide analysis of geologic-historic and isotope-geochronologic data supports the existence of such cyclicity. In all, ten supercontinental cycles of supercontinents have been identified; in this case, the most ancient proto-supercontinent was recognized tentatively, Supercontinents identified previously by other researchers fit into this cyclicity. An association between magmatism from mantle plumes and certain phases of supercontinental cyclicity was revealed. Amalgamation and breakup of supercontinents occurred against the background of disymmetry of the Northern and Southern hemispheres of the Earth, which changed its polarity between the cycles.  相似文献   

3.
克拉通演化的超大陆背景与克拉通盆地的成因机制   总被引:1,自引:0,他引:1       下载免费PDF全文
席怡  何登发  孙衍鹏  苏艳 《地质科学》2014,49(4):1093-1112
研究表明克拉通的形成与超大陆的汇聚和裂解有着重要关系。本文对近年来超大陆重建的研究进行了分析对比,对克拉通发展与超大陆事件的关系做出了总结。前人对超大陆的研究表明,其形成与地幔动力有直接联系,地幔柱重组的旋回导致了超大陆的旋回。Phillips and Bunge(2007)在前人三维球体地幔对流模型的基础上加入大陆进行了模拟实验,结果显示周期性的超大陆旋回只发生在理想模型中,而Senshu et al.(2009)对代表陆壳的英云闪长岩-奥长花岗岩-花岗岩(TTG)地壳进行了研究,提出随着俯冲的TTG地壳产热速率的下降,超大陆旋回的周期随之变长;更有许多学者指出,历史上哥伦比亚超大陆存在时间明显较长,因此超大陆的旋回并不具有周期性。对近年来不同学者提出的哥伦比亚、 罗迪尼亚、 冈瓦纳、 潘基亚4个超大陆新的重建证据进行分析,大致确定出上述4个超大陆的形成时间、 格局及演化过程。此外,对华北、 东欧、 西伯利亚、 亚马孙、 刚果、 西非6个克拉通各自的演化进行分析,也显示出克拉通演化与超大陆汇聚及裂解在时间与空间上有对应关系。通过分析得出克拉通演化与超大陆旋回有关,且确定出克拉通演化的4个超大陆旋回。本文最后讨论了克拉通盆地的成因机制以及3种端元类型,并将盆地的发育与超大陆演化的巨旋回相联系。  相似文献   

4.
There is a correlation of global large igneous province (LIP) events with zircon age peaks at 2700, 2500, 2100, 1900, 1750, 1100, and 600 and also probably at 3450, 3000, 2000, and 300 Ma. Power spectral analyses of LIP event distributions suggest important periodicities at 250, 150, 100, 50, and 25 million years with weaker periodicities at 70–80, 45, and 18–20 Ma. The 25 million year periodicity is important only in the last 300 million years. Some LIP events are associated with granite-forming (zircon-producing) events and others are not, and LIP events at 1900 and 600 Ma correlate with peaks in craton collision frequency. LIP age peaks are associated with supercontinent rifting or breakup, but not dispersal, at 2450–2400, 2200, 1380, 1280, 800–750, and ≤200 Ma, and with supercontinent assembly at 1750 and 600 Ma. LIP peaks at 2700 and 2500 Ma and the valley between these peaks span the time of Neoarchaean supercraton assemblies. These observations are consistent with plume generation in the deep mantle operating independently of the supercontinent cycle and being controlled by lower-mantle and core-mantle boundary thermochemical dynamics. Two processes whereby plumes can impact continental assembly and breakup are (1) plumes may rise beneath supercontinents and initiate supercontinent breakup, and (2) plume ascent may increase the frequency of craton collisions and the rate of crustal growth by accelerating subduction.  相似文献   

5.
http://www.sciencedirect.com/science/article/pii/S1674987112001570   总被引:2,自引:2,他引:0  
The supercontinent cycle,by which Earth history is seen as having been punctuated by the episodic assembly and breakup of supercontinents,has influenced the rock record more than any other geologic phenomena,and its recognition is arguably the most important advance in Earth Science since plate tectonics.It documents fundamental aspects of the planet’s interior dynamics and has charted the course of Earth’s tectonic,climatic and biogeochemical evolution for billions of years.But while the widespread realization of the importance of supercontinents in Earth history is a relatively recent development,the supercontinent cycle was first proposed thirty years ago and episodicity in tectonic processes was recognized long before plate tectonics provided a potential explanation for its occurrence.With interest in the supercontinent cycle gaining momentum and the literature expanding rapidly,it is instructive to recall the historical context from which the concept developed.Here we examine the supercontinent cycle from this perspective by tracing its development from the early recognition of long-term episodicity in tectonic processes,through the identification of tectonic cycles following the advent of plate tectonics,to the first realization that these phenomena were the manifestation of episodic supercontinent assembly and breakup.  相似文献   

6.
《地学前缘(英文版)》2020,11(5):1635-1649
A compilation of 178 more precise ages on 10 potential Large Igneous Provinces(LIPs) across southern Africa,is compared to Earth's supercontinental cycles,where 5 more prominent LIP-events all formed during the assembly of supercontinents,rather than during breakup.This temporal bias is confirmed by a focused review of field relationships,where these syn-assembly LIPs formed behind active continental arcs;whereas,the remaining postassembly-and likely breakup-related-LIPs never share such associations.Exploring the possibility of two radically different LIP-types,only the two younger breakup events(the Karoo LIP and Gannakouriep Suite) produced basalts with more enriched asthenospheric OIB-signatures;whereas,all assembly LIPs produced basalts with stronger lithospheric,as well as more or less primitive asthenospheric,signatures.A counterintuitive observation of Precambrian breakup LIPs outcropping as smaller fragments that are more peripherally located along craton margins,compared to assembly LIPs as well as the Phanerozoic Karoo breakup LIP,is explained by different preservation potentials during subsequent supercontinental cycles.Thus,further accentuating radical differences between(1) breakup LIPs,preferentially intruding along what evolves to become volcanic rifted margins that are more susceptible to deformation within subsequent orogens,and(2) assembly LIPs,typically emplaced along backarc rifts within more protected cratonic interiors.A conditioned duality is proposed,where assembly LIPs are primarily sustained by thermal blanketing(as well as local arc hydration and rifting) below assembling supercontinents and breakup LIPs more typically form above impinging mantle plumes.Such a duality is further related to an overall dynamic Earth model whereby predominantly supercontinent-orientated ocean lithospheric subduction establishes/revitalizes large low shear velocity provinces(LLSVPs) during assembly LIP-activity,and heating of such LLSVPs by the Earth's core subsequently leads to a derivation of mantle plumes during supercontinental breakup.  相似文献   

7.
The mechanisms of formation and disruption of supercontinents have been topics of debate. Based on the Y-shaped topology, we identify two major types of subduction zones on the globe: the Circum-Pacific subduction zone and the Tethyan subduction zone. We propose that the process of formation of supercontinents is controlled by super downwelling that develops through double-sided subduction zones as seen in the present day western Pacific, and also as endorsed by both geologic history and P-wave whole mantle tomography. The super-downwelling swallows all material like a black hole in the outer space, pulling together continents into a tight assembly. The fate of supercontinents is dictated by superplumes (super-upwelling) which break apart the continental assemblies. We evaluate the configuration of major supercontinents through Earth history and propose the tectonic framework leading to the future supercontinent Amasia 250 million years from present, with the present day Western Pacific region as its frontier. We propose that the tectosphere which functions as the buoyant keel of continental crust plays a crucial role in the supercontinental cycle, including continental fragmentation, dispersion and amalgamation. The continental crust is generally very thin, only about one tenth of the thickness of the tectosphere. If the rigidity and buoyancy is derived from the tectosphere, with the granitic upper crust playing only a negligible role, then supercontinent cycle may reflect the dispersion and amalgamation of the tectosphere. Therefore, supercontinent cycle may correspond to super-tectosphere cycle.  相似文献   

8.
The features of the structure and tectonic evolution of granulite gneiss belts (GGBs) are analyzed and summarized from the present-day data. Their continent–continent collision tectonic origin is supported, as well as multicycle and an inherited style of evolution expressed in multiple manifestations of granulite facies metamorphism of the belt separated by few 100 Ma. GGBs are permanently mobile structures that exhibit endogenic activity during all stages of their evolution, including intraplate conditions. Their relationship with supercontinental cyclicity is evident from (i) the spatial location of most GGBs in the margins of young oceans that originated during the breakup of Pangea, (ii) the amalgamation and breakup of ancient supercontinents along the GGBs, and (iii) the correlation between various types of granulite metamorphism of these belts and stages of supercontinental cycle. The evolution of these belts leads to complex interaction of plate and mantle plume tectonics, which is expressed in combination of continent–continent collision and underplating. The possible use of GGBs in paleotectonic analysis along with other indicators of geodynamic settings is shown.  相似文献   

9.
Rodinia超大陆构造演化研究的新进展和主要目标   总被引:13,自引:1,他引:13  
概略评述了1997年以来国际上有关Rodinia超大陆构造演化问题的研究成果,并提出今后工作的主要目标。Rodinia超大陆的聚合造山发生在1300-1000Ma,基本形式表现为早期弧一陆碰撞和晚期陆-陆碰撞,并在1000-900Ma继以伸展作用。Rodinia超大陆的裂解发生于830Ma之后,但其过程具有明显的时,空分布不均一性,地幔柱可能是导致超大陆裂解的主要机制,大火成岩省”是地幔柱发育的关键性标志,已经初步证实裂解过程影响地球大气圈和水圈中二氧化碳的循环,进而改变晚前寒武纪的全球气候,控制生物圈的兴衰和岩石圈表层的碳酸盐,铁,锰和磷等沉积,这些现象可用“雪球化地球”(Snowball Earth)模式概括。  相似文献   

10.
The distribution of large and superlarge mineral deposits (LSMD) of the most important raw materials is correlated with supercontinent cycles in the geological history of the Earth. The latter displays the distinct correlation between metallogenic activity and cyclic global endogenous processes reflected in quasi-regular cycles, which result eventually in the assembly and breakup of supercontinents. In the framework of these cycles, the maximums in the LSMD assembly coincide with periods of intense growth of the subcontinent crust owing to growth of the matter originated from juvenile sources (Kenoran, Columbian cycles) or with epochs of intense recycling of the mature crust (Pangean, Amasian cycles). The Rodinian cycle with minimum activity of these both endogenous processes demonstrates simultaneously minimum metallogenic activity. The distribution of most LSMD types generally follows these main tendencies.  相似文献   

11.
前寒武纪的超大陆旋回及其板块构造演化意义   总被引:13,自引:1,他引:12  
太古代末早古生代存在4次超大陆或大陆聚合时期,超大陆的聚合与裂解造成全球性的重大构造热事件,成为全球板块构造演化的主线,威尔逊旋回在早前寒武纪已明显起作用。超大陆的聚合表现为克拉通的增生与陆块的碰撞造山作用;超大型的裂解表现为非造山岩浆活动、大规模基性岩墙群侵位及大陆裂谷的爆发等。超大陆的裂解可能与地幔柱上涌或超大陆下放射性物质积聚造成的热能积累有关,或地外物质冲击的触发有关。华北克拉通与世界古陆块的前寒武纪构造演化对比,及其在超大陆中的拼合模式成为我国大陆地质学研究面临的挑战性重大科学问题。  相似文献   

12.
<正>The formation and disruption of supercontinents have significantly impacted mantle dynamics,solid earth processes,surface environments and the biogeochemical cycle.In the early history of the Earth,the collision of parallel intra-oceanic arcs was an important process in building embryonic continents.Superdownwelling along Y-shaped triple junctions might have been one of the important processes that aided in the rapid assembly of continental fragments into closely packed supercontinents. Various models have been proposed for the fragmentation of supercontinents including thermal blanket and superplume hypotheses.The reassembly of supercontinents after breakup and the ocean closure occurs through "introversion","extroversion" or a combination of both,and is characterized by either Pacific-type or Atlantic-type ocean closure.The breakup of supercontinents and development of hydrothermal system in rifts with granitic basement create anomalous chemical environments enriched in nutrients, which serve as the primary building blocks of the skeleton and bone of early modern life forms. A typical example is the rifting of the Rodinia supercontinent,which opened up an N—S oriented sea way along which nutrient enriched upwelling brought about a habitable geochemical environment.The assembly of supercontinents also had significant impact on life evolution.The role played by the Cambrian Gondwana assembly has been emphasized in many models,including the formation of 'Trans-gondwana Mountains' that might have provided an effective source of rich nutrients to the equatorial waters,thus aiding the rapid increase in biodiversity.The planet has witnessed several mass extinction events during its history,mostly connected with major climatic fluctuations including global cooling and warming events,major glaciations,fluctuations in sea level,global anoxia,volcanic eruptions, asteroid impacts and gamma radiation.Some recent models speculate a relationship between superplumes,supercontinent breakup and mass extinction.Upwelling plumes cause continental rifting and formation of large igneous provinces.Subsequent volcanic emissions and resultant plume-induced "winter" have catastrophic effect on the atmosphere that lead to mass extinctions and long term oceanic anoxia.The assembly and dispersal of continents appear to have influenced the biogeochemical cycle,but whether the individual stages of organic evolution and extinction on the planet are closely linked to Solid Earth processes remains to be investigated.  相似文献   

13.
Mantle-derived carbonatites provide a unique window in the understanding of mantle characteristics and dynamics, as well as insight into the assembly and breakup of supercontinents. As a petrological indicator of extensional tectonic regimes, Archean/Proterozoic carbonatites provide important constraints on the timing of the breakup of ancient supercontinents. The majority of the carbonatites reported worldwide are Phanerozoic, in part because of the difficulty in recognizing Archean/Proterozoic carbonatites, which are characterized by strong foliation and recrystallization, and share broad petrologic similarities with metamorphosed sedimentary lithologies. Here, we report the recognition of a ~1.85 Ga carbonatite in Chaihulanzi area of Chifeng in north China based on systematic geological, petrological, geochemical, and baddeleyite U-Pb geochronological results. The carbonatite occurs as dikes or sills emplaced in Archean metasedimentary rocks and underwent intense deformation. Petrological and SEM/EDS results show that calcite and dolomite are the dominant carbonate minerals along with minor and varied amounts of Mg-rich mafic minerals, including forsterite (with Fo > 98), phlogopite, diopside, and an accessory amount of apatite, baddeleyite, spinel, monazite, and ilmenite. The relatively high silica content together with the non-arc and OIB-like trace element signatures of the carbonatite indicates a hot mantle plume as the likely magma source. The depleted Nd isotopic signatures suggest that plume upwelling might be triggered by the accumulation of recycled crust in the deep mantle. As a part of the global-scale Columbia supercontinent, the Proterozoic tectonic evolution of the North China Craton (NCC) provides important insights into the geodynamics governing amalgamation and fragmentation of the supercontinent. The Paleo-Mesoproterozoic boundary is the key point of tectonic transition from compressional to extensional settings in the NCC. The newly identified ~1.85 Ga carbonatite provides a direct link between the long-lasting supercontinental breakup and plume activity, which might be sourced from the “slab graveyard,” continental crustal slabs subducted into asthenosphere, beneath the supercontinent. The carbonatite provides a precise constraint of the initiation of the continental breakup at ~1.85 Ga.  相似文献   

14.
《Gondwana Research》2014,25(1):4-29
The recognition that Earth history has been punctuated by supercontinents, the assembly and breakup of which have profoundly influenced the evolution of the geosphere, hydrosphere, atmosphere and biosphere, is arguably the most important development in Earth Science since the advent of plate tectonics. But whereas the widespread recognition of the importance of supercontinents is quite recent, the concept of a supercontinent cycle is not new and advocacy of episodicity in tectonic processes predates plate tectonics. In order to give current deliberations on the supercontinent cycle some historical perspective, we trace the development of ideas concerning long-term episodicity in tectonic processes from early views on episodic orogeny and continental crust formation, such as those embodied in the chelogenic cycle, through the first realization that such episodicity was the manifestation of the cyclic assembly and breakup of supercontinents, to the surge in interest in supercontinent reconstructions. We then chronicle some of the key contributions that led to the cycle's widespread recognition and the rapidly expanding developments of the past ten years.  相似文献   

15.
In this work the available worldwide data on intraplate basic-ultrabasic magmatism are reviewed. It was established that over the past 3500 Ma in the Earth’s geological history the process of intraplate magmatism occurred episodically with relatively short breaks with no evident periodicity in its development. Due to the similar discrete character of intraplate magmatism there is no direct correlation between this magmatism and a definite stage of the supercontinental cycle. The evolution of supercontinents at all stages of their development was accompanied by basic-ultrabasic magmatism.  相似文献   

16.
The worldwide distribution of large and superlarge mineral deposits (LSLDs) on a geological time scale is analyzed. It has been established that their formation from Eoarchean to Cenozoic was nonuniform in time. The maxima and minima of ore generation intensity correlate well with global cyclical processes, eventually resulting in the assembly and breakup of supercontinents. The periods of supercontinent amalgamation are characterized by the highest rate of continental crust growth due to the contribution of juvenile sources, a maximum of orogenic activity, and the most intense deposit formation. Periods close to betweencycle boundaries are distinguished by a low intensity of both endogenic and ore-forming processes. As follows from the available data, the number of known LSLDs slightly decreases from the Kenoran to Columbian cycle, significantly decreases in the next Rodinian cycle, which, in turn, is followed by abrupt growth in the Pangaean and Amasian cycles, especially as concerns LSLDs of the granitoid-related class. The intensification of metallogenic activity correlates with a commensurable increase in orogenic activity of the Earth’s crust probably caused by continental crust expansion, an increase in the number of sialic blocks participating in the formation of accretionary and collisional orogens, and acceleration of lithospheric plate motion. Some trends are also described for other LSLD classes (basic–alkaline, volcanic-hosted massive sulfide, sedimentary, epigenetic sediment-hosted), caused to a certain extent by supercontinent cycles and their evolutionary variations.  相似文献   

17.
Giant sedimentary rock-hosted stratiform copper (SSC) deposits commonly occur in rift environments, temporally coincident with the breakup of the Rodinia and Pangea supercontinents. However, whether or not such deposits have also formed during the breakup of the Paleoproterozoic Columbia supercontinent is not well known. A group of dolostone-hosted Cu deposits in late Paleoproterozoic rift-related sedimentary sequences of the Dongchuan Group, South China, form one of the largest SSC districts in the world. Being one of the largest SSC deposits in the region, the Yinmin deposit has stratiform Cu orebodies intruded by dolerite dykes. One dyke has a SIMS zircon U–Pb age of 1,701?±?28 Ma, slightly younger than the ore-hosting strata with a zircon U–Pb age of 1,742?±?13 Ma for a tuff unit. Six chalcopyrite and bornite separates from stratiform orebodies contain highly radiogenic Os and extremely low common Os and yield a weighted mean Re–Os model age of 1,666?±?82 Ma and a 187Os–187Re errorchron age of 1,585?±?100 Ma. The present zircon U–Pb and sulfide Re–Os ages thus constrain the timing of the mineralization at ~1,700 Ma. The Yinmin deposit and, by inference, other SSC deposits in the region, arguably represent a large-scale SSC mineralization event during the late Paleoproterozoic. The formation of these deposits was coeval with the initial breakup/fragmentation of the Columbia supercontinent. This study highlights the temporal and likely genetic links between large-sized SSC deposits and the supercontinent cycle.  相似文献   

18.
Influence of supercontinents on deep mantle flow   总被引:1,自引:1,他引:0  
The assembly of supercontinents should impact mantle flow fields significantly, affecting the distribution of subduction, upwelling plumes, lower mantle chemical heterogeneities, and thus plausibly contributing to voluminous volcanism that is often associated with their breakup. Alternative explanations for this volcanism include insulation by the continent and thus elevated subcontinental mantle temperatures. Here we model the thermal and dynamic impact of supercontinents on Earth-like mobile-lid convecting systems. We confirm that insulating supercontinents (over 3000 km extent) can impact mantle temperatures, but show the scale of temperature anomaly is significantly less for systems with strongly temperature-dependent viscosities and mobile continents. Additionally, for continents over 8000 km, mantle temperatures are modulated by the development of small-scale convecting systems under the continent, which arise due to inefficient lateral convection of heat at these scales. We demonstrate a statistically robust association between rising plumes supercontinental interiors for a variety of continental configurations, driven largely by the tendency of subducting slabs to lock onto continental margins. The distribution of slabs also affects the spatial positioning of deep mantle thermochemical anomalies, which demonstrate stable configurations in either the sub-supercontinent or intraoceanic domains. We find externally forced rifting scenarios unable to generate significant melt rates, and thus the ultimate cause of supercontinent breakup related volcanism is probably related to dynamic continental rifting in response to mantle reconfiguration events.  相似文献   

19.
The paper reports results of the analysis of the spatial distribution of modern (younger than 2 Ma) volcanism in the Earth’s northern hemisphere and relations between this volcanism and the evolution of the North Pangaea modern supercontinent and with the spatial distribution of hotspots of the Earth’s mantle. Products of modern volcanism occur in the Earth’s northern hemisphere in Eurasia, North America, Greenland, in the Atlantic Ocean, Arctic, Africa, and the Pacific Ocean. As anywhere worldwide, volcanism in the northern hemisphere of the Earth occurs as (a) volcanism of mid-oceanic ridges (MOR), (b) subduction-related volcanism in island arcs and active continental margins (IA and ACM), (c) volcanism in continental collision (CC) zones, and (d) within-plate (WP) volcanism, which is related to mantle hotspots, continental rifts, and intercontinental belts. These types of volcanic areas are fairly often neighboring, and then mixed volcanic areas occur with the persistent participation of WP volcanism. Correspondingly, modern volcanism in the Earth’s northern hemisphere is of both oceanic and continental nature. The latter is obviously related to the evolution of the North Pangaea modern supercontinent, because it results from the Meso-Cenozoic evolution of Wegener’s Late Paleozoic Pangaea. North Pangaea in the Cenozoic comprises Eurasia, North and South America, India, and Africa and has, similar to other supercontinents, large sizes and a predominantly continental crust. The geodynamic setting and modern volcanism of North Pangaea are controlled by two differently acting processes: the subduction of lithospheric slabs from the Pacific Ocean, India, and the Arabia, a process leading to the consolidation of North Pangaea, and the spreading of oceanic plates on the side of the Atlantic Ocean, a process that “wedges” the supercontinent, modifies its morphology (compared to that of Wegener’s Pangaea), and results in the intervention of the Atlantic geodynamic regime into the Arctic. The long-lasting (for >200 Ma) preservation of tectonic stability and the supercontinental status of North Pangaea are controlled by subduction processes along its boundaries according to the predominant global compression environment. The long-lasting and stable subduction of lithospheric slabs beneath Eurasia and North America not only facilitated active IA + ACM volcanism but also resulted in the accumulation of cold lithospheric material in the deep mantle of the region. The latter replaced the hot mantle and forced this material toward the margins of the supercontinent; this material then ascended in the form of mantle plumes (which served as sources of WP basite magmas), which are diverging branches of global mantle convection, and ascending flows of subordinate convective systems at the convergent boundaries of plates. Subduction processes (compressional environments) likely suppressed the activity of mantle plumes, which acted in the northern polar region of the Earth (including the Siberian trap magmatism) starting at the latest Triassic until nowadays and periodically ascended to the Earth’s surface and gave rise to WP volcanism. Starting at the breakup time of Wegener’s Pangaea, which began with the opening of the central Atlantic and systematically propagated toward the Arctic, marine basins were formed in the place of the Arctic Ocean. However, the development of the oceanic crust (Eurasian basin) took place in the latter as late as the Cenozoic. Before the appearance of the Gakkel Ridge and, perhaps, also the oceanic portion of the Amerasian basin, this young ocean is thought to have been a typical basin developing in the central part of supercontinents. Wegener’s Pangaea broke up under the effect of mantle plumes that developed during their systematic propagation to the north and south of the Central Atlantic toward the North Pole. These mantle plumes were formed in relation with the development of global and local mantle convection systems, when hot deep mantle material was forced upward by cold subducted slabs, which descended down to the core-mantle boundary. The plume (WP) magmatism of Eurasia and North America was associated with surface collision- or subduction-related magmatism and, in the Atlantic and Arctic, also with surface spreading-related magmatism (tholeiite basalts).  相似文献   

20.
Breakup of Rodinia and early stages of evolution of the Paleoasian ocean   总被引:2,自引:0,他引:2  
The main stages of the evolution of newly formed structural elements are considered against the background of breakup of the epi-Grenville Rodinia supercontinent, which started about 950 Ma ago. The paleomagnetic data on pathways of the traveling of Rodinia’s fragments are analyzed and evidence for their geology, magmatism, and sedimentation are integrated with special emphasis on the evolution of the continental margins. A series of paleotectonic maps with elements of paleogeography for time intervals of 950–900, 850–800, 750–700, 650–630, and 570–550 Ma ago has been compiled on the basis of palinspastic reconstructions with allowance for new paleomagnetic data primarily concerning the position of Siberia in the Late Precambrian. Objects all over the world, not only in Russia, are involved in the analysis, though with less thoroughly described paleogeography. The structural elements of the Paleoasian ocean are included into the system of global paleooceans and framing paleocontinents. The history of the Paleoasian ocean is traced through 400 Ma from the breakup of the Rodinia supercontinent to the origin of the new Paleogondwana supercontinent about 550 Ma ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号