首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasonal dynamics of nitrogen (N) and phosphorus (P) transportation in the ditch system and the role of different ditch size is thus crucial for water pollution control of the rivers in the Sanjiang Plain.In this study,an investigation was conducted in the Nongjiang watershed of the Sanjiang Plain to ...  相似文献   

2.
Sediments have a significant influence on the cycling of nutrient elements in lake environments. In order to assess the distribution characteristics and estimate the bioavailability of phosphorus and nitrogen in Dianchi Lake, organic and inorganic phosphorus and nitrogen forms were analysed. The 210 Pb radiometric dating method was employed to study temporal changes in the phosphorus and nitrogen pools in Dianchi Lake. The result show that the total phosphorus(TP) and total nitrogen(TN) were both at high concentrations, ranging from 697.5–3210.0 mg/kg and 1263.7–7155.2 mg/kg, respectively. Inorganic phosphorus(IP) and total organic nitrogen(TON) were the main constituents, at percentages of 59%–78% and 74%–95%, respectively, in the sediments. Spatially, there was a decreasing trend in phosphorus and nitrogen contents from the south and north to the lake centre, which is related to the distribution pattern of local economic production. The burial rates of the various phosphorus and nitrogen forms increased in same spatially and over time. Particularly in the past two decades, the burial rates doubled, with that TN reached to 1.287 mg/(cm~2·yr) in 2014. As the most reactive forms, nitrate nitrogen(NO_3-N) and ammonia nitrogen(NH_4-N) were buried more rapidly in the south region, implying that the potential for releasing sedimentary nitrogen increased from north to south. Based on their concentrations and burial rates, the internal loads of phosphorus and nitrogen were analysed for the last century. A TP pool of 71597.6 t and a TN pool of 81191.7 t were estimated for Dianchi Lake. Bioavailable phosphorus and nitrogen pools were also estimated at 44468.0 t and 5429.7 t, respectively, for the last century.  相似文献   

3.
To investigate the spatio-temporal and compositional variation of selected water quality parameters and understand the purifying effects of wetland in Fujin National Wetland Park(FNWP), China, the trophic level index(TLI), paired samples t-test and correlation analysis were used for the statistical analysis of a set of 10 water quality parameters. The analyses were based on water samples collected from 22 stations in FNWP between 2014 and 2016. Results initially reveal that total nitrogen(TN) concentrations are above class V levels(2 mg/L), total phosphorus(TP) concentrations are below class Ⅲ levels(0.2 mg/L), and that all other parameters fall within standard ranges. Highest values for TN, pH, and Chlorophyll-a were recorded in 2016, while the levels of chemical oxygen demand(COD_(Mn)) and biochemical oxygen demand(BOD5) were lowest during this year. Similarly, TN values were highest between 2014 and 2016 while dissolved oxygen(DO) concentrations were lowest in the summer and TP concentrations were highest in the autumn. Significant variations were also found in Secchi depth(SD), TN, CODMn(P 0.01), TP, and DO levels(P 0.05) between the inlet and outlet of the park. High-to-low levels of TN, TP, and TDS were found in cattails, reeds, and open water(the opposite trend was seen in SD levels). Tested wetland water had a light eutrophication status in most cases and TN and TP removal rates were between 7.54%–84.36% and 37.50%–70.83%, respectively. Data also show no significant annual changes in water quality within this wetland, although obvious affects from surrounding agricultural drainage were nevertheless recorded. Results reveal a high major nutrient removal efficiency(N and P). The upper limits of these phenomena should be addressed in future research alongside a more efficient and scientific agricultural layout for the regions in and around the FNWP.  相似文献   

4.
To understand the responses of a freshwater ecosystem to the impoundment of the Three Gorges Reservoir (TGR), phytoplankton was monitored in the tributaries of the TGR area. From August 2010 to July 2011, algal species composition, abundance, chlorophyll a and other environmental parameters were investigated in the Gaolan River, which is a tributary of Xiangxi River. Thirty-one algal genera from seven phyla were identified. Results show that the lowest concentrations of total phosphorus (TP) and total nitrogen (TN) were 0.06 mg/L and 1.08 mg/L, respectively. The values of TP and TN exceeded the threshold concentration of the eutrophic state suggested for freshwater bodies. In the Gaolan River, the succession of phytoplankton showed clear seasonal characteristics. Different dominant species were observed among seasons under the control of environment factors. In spring and summer, the dominant species were Nitzschia sp. and Aphanizomenon flos-aquae (L.) Ralfs, the limiting nutrient was NO 3 ? -N, and the key environmental factor for phytoplankton population succession was water temperature (WT). In autumn and winter, the dominant species were A. flos-aquae and Chlorella sp., the limiting nutrient was PO 4 3? -P, and the key environmental factors were transparency and WT. This study illustrates the influence of physical and chemical factors on phytoplankton seasonal succession in a tributary of TGR since the downstream regions of Xiangxi River and Gaolan River became reservoirs after impoundment of the Three Gorges Dam. We suggest that this activity has significantly affected water quality in the dam area.  相似文献   

5.
Ten clonal units of Carex pseudocuraica growing in four different microhabitats (perennial flooded ditch water, perennial flooded ditch sediment, seasonal flooded ditch sediment and perennial flooded soil) of the Sanjiang Plain, Northeast China, were collected randomly for phenotypic plasticity analysis. Iron content, chemical and physical properties of substrates and the total Fe of nine plant modules were measured as well. The results show that the performance of the C. pseudocuraica is affected by the microhabitat, with the greatest performance score in perennial flooded ditch water, and the lowest in perennial flooded soil. The biomass allocation indexes indicate that much more mass is allocated to stems and roots to expand colonization area. The distribution of the total Fe in plant modules appears as pyramids from the tip to the root, while marked differences are observed in the distribution proportion of stems, tillering nodes and roots that are allometrically growing. Iron transfer from substrates to the plant is mainly controlled by the substrate type. The differences of iron distribution and transfer in the plant in different microhabitats are attributed to the iron contents of the substrates as well as the phenotypic plasticity of the plant.  相似文献   

6.
In order to investigate the transformation among the precipitation,groundwater,and surface water in the Sanjiang Plain,Northeast China,precipitation and groundwater samples which were collected at the meteorological station of the Sanjiang Mire Wetland Experimental Station,Chinese Academy of Sciences and the surface water which collected from the Wolulan River were used to identify the transformation of three types of water.The isotope composition of different kinds of water sources were analyzed via stable isotope(deuterium and oxygen-18) investigation of natural water.The results show a clear seasonal difference in the stable isotopes in precipitation.During the cold half-year,the mean stable isotope in precipitation in the Sanjiang Plain reaches its minimum with the minimum temperature.The δ18O and δD values are high in the rainy season.In the Wolulan River,the evaporation is the highest in August and September.The volume of evaporation and the replenishment to the river is mostly same.The groundwater is recharged more by the direct infiltration of precipitation than by the river flow.The results of this study indicate that the water bodies in the Sanjiang Plain have close hydrologic relationships,and that the transformation among each water system frequently occurs.  相似文献   

7.
Litter decomposition is the key process in nutrient recycling and energy flow. The present study examined the impacts of soil fauna on decomposition rates and nutrient fluxes at three succession stages of wetland in the Sanjiang Plain, China using different mesh litterbags. The results show that in each succession stage of wetland, soil fauna can obviously increase litter decomposition rates. The average contribution of whole soil fauna to litter mass loss was 35.35%. The more complex the soil fauna group, the more significant the role of soil fauna. The average loss of three types of litter in the 4mm mesh litterbags was 0.3–4.1 times that in 0.058mm ones. The decomposition function of soil fauna to litter mass changed with the wetland succession. The average contribution of soil fauna to litter loss firstly decreased from 34.96% (Carex lasiocapa) to 32.94% (Carex meyeriana), then increased to 38.16% (Calamagrostics angustifolia). The contributions of soil fauna to litter decomposition rates vary according to the litter substrata, soil fauna communities and seasons. Significant effects were respectively found in August and July on C. angustifolia and C. lasiocapa, while in June and August on C. meyeriana. Total carbon (TC), total nitrogen (TN) and total phosphorus (TP) contents and the C/N and C/P ratios of decaying litter can be influenced by soil fauna. At different wetland succession stages, the effects of soil fauna on nutrient elements also differ greatly, which shows the significant difference of influencing element types and degrees. Soil fauna communities strongly influenced the TC and TP concentrations of C. meyeriana litter, and TP content of C. lasiocapa. Our results indicate that soil fauna have important effects on litter decomposition and this influence will vary with the wetland succession and seasonal variation. Foundation item: Under the auspices of State Key Development Program for Basic Research of China (No. 2009CB421103), Key Program of National Natural Science Foundation of China (No. 40830535/D0101), Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-BR-16, KSCX2-YW-N-46-06)  相似文献   

8.
A total of 348 species belonging to 8 phyla and 125 genera were observed in seasonally sampled phytoplankton of tidal rivers from 13 sampling sites around Luoyuan Bay, and all field samplings were carried out in productive period(March/June/August/December) at ebb tide. Bacillariophyta species were the most abundant species, followed by Chlorophyta, Cyanophytes, Euglenophyta, Cryptophyta, Dinophyta, Xanthophyta and Chrysophytas. Seasonal distribution index(SDI) value ranged from 0.63 to 0.86, which meant that species found at those sites in 4 seasons tended to be largely different. Phytoplankton individuals ranged from 5.939×10~4 ind L~(-1) in winter to 75.31×10~4 ind L~(-1) in autumn. Phytoplankton biomass ranged from 0.620 mg L~(-1) in summer to 2.373 mg L~(-1) in autumn. The grey correlation analysis(GCA) showed that the nutrient variables played an important role in the influence on phytoplankton community in every season. The canonical correspondence analysis(CCA) revealed impact of environmental variables on the different species, most of Bacillariophyta species were negative correlation with nutrients(TP and NH_3-N) in the four seasons, Chlorophyta species and Cyanophyta species did not show obvious correlation with environment variables in every season. The combination of GRA analysis and CCA analysis provided a method to quantitatively reveal the correlation between phytoplankton community and environmental variables in water body of tidal rivers at this region.  相似文献   

9.
1 Introduction It has been reported that habitat nutrient availability frequently limited plant growth and determined species dominance and abundance in natural communities (Miao et al., 2000). Nutrient availability is also a main regulator of aquatic primary production. Human-induced nutrient enrichment results in die-back of native vegetation and alteration of species dominance in various aquatic eco- systems (Miao et al., 2000; Green and Galatowitsch, 2002). Particularly, nutrient enrichm…  相似文献   

10.
CARBON CYCLE OF MARSH IN THE SANJIANG PLAIN   总被引:1,自引:0,他引:1  
Peat~hisaprocessofbeinghelpfulfordecreasingtheincrementofopcontentintheair,whichiscausedbycombustionofdineralfuelsandhumanactivitiesinterrestrialecosystem.But,exploitingrnaxsh,eSPeCiallyPeatedtObefuels,impliesthatorgbocsubstanceaccUInulatedfroma~hereduringthepastthousandsofyearsisrapidlyOxidized.aamthemarShplaysanimPOrtantroleinthecycleofbiogaxhdristry.TheSanjiangPlainisalowplainformedbythecommonreactionoftheHeilongRiver,SonghuaherandWUSuliabover.Thetotalareais10.89X104klnZandmarsharea…  相似文献   

11.
Total mercury in soil,water,plant,insects,fishes and bird feathers were determined to study mercury distribution and accumulation in typical wetland ecosystems in the Sanjiang Plain,Northeast China.Results show that total mercury concentrations in soils of Deyeuxia angustifolia wetland and Carex lascarpa wetland are 0.046 mg/kg and 0.063 mg/kg,respectively.Total mercury concentration in water bodies is 0.053 μg/L on average.Of four plants studied,total mercury in moss is the highest with the mean of 0.132 mg/kg.Of 10 terrestrial insect species studied,total mercury in centipede(Scolopendra spp.) is the highest with the mean of 0.515 mg/kg while total mercury in grasshopper(Oxya spp.) bodies is the lowest.Total mercury concentrations in the herbivorous,omnivorous and predatory insects are 10.18 ng/g,16.47 ng/g and 213.35 ng/g on average,respectively.Total mercury concentrations of the adult feather(549.88 ± 63.04 ng/g),nestling feather(55.15 ± 23.53 ng/g),and eggshell(22.05 ± 5.96 ng/g) of the Grey heron(Ardea cinerea) are higher than those of the Great egret(Egretta alba)(adult feather:446.57 ± 90.89 ng/g;nestling feather:32.99 ± 17.15 ng/g;eggshell:21.02 ± 3.17 ng/g) in the wetlands of the Sanjiang Plain.The bioconcentration factors decrease in the order of piscivorous fish muscle > omnivorous fish muscle > herbivorous fish > insect.  相似文献   

12.
The regularity of CH4 emission from marshland in the Sanjiang Plain was studied by sampling in the open field and analyzing under laboratory condition, the annual emission amount is also estimated. By Grey Relatively Analysis we know that the soil temperature in the 10-cm depth of grass-root layer is close related with CH4 emission. CH4 emission has different kinds of diurnal emission modes:before-dawn maximum mode, night maximum mode and irregular fluctuation mode. The seasonal variation trend of CH4 emission rates is going up steadily from May to August and dropping down from September, the maximum lies behind the maximum of temperature. CH4 emission rates of different marshland types are different, the CH4 emission rate of Glyceriaspiculosa — Carex marshland is always higher than that of Carex lasiocarpa marshland. The paper also studies the difference of CH4 emission rates in different managing modes and analyzes the emission rates between China and U. S. A. The result shows: the average value of CH4 emission rate is 17.26mg/(m2·h), the annual amount of CH4 emission is about 0.75Tg. Supported by National Natural Sciences Foundation of China, and thank the Ecological Test Station of Mires and Wetlands in the Sanjiang Plain, the Chinese Academy of Sciences.  相似文献   

13.
Ruxi River is a tributary of the Three Gorges Reservoir. This study examined the temporal and spatial dynamics in particle size characteristics and the associated nutrients and contaminants of the fluvial suspended and deposited sediments along the Ruxi River. Temporal variations in the particle size distribution of the suspended sediment are controlled mainly by differences in sediment source during different seasons. Total organic carbon(TOC), total nitrogen(TN) and total phosphorous(TP) in the 62μm fraction of the suspended sediment exhibit considerably higher concentrations in spring,indicating high probability of algal blooms in the backwater areas. Downstream trends in the nutrient contents of 62 μm deposited sediments imply the greatest potential for eutrophication in the backwater ends, where highest nutrient concentrations were detected. Assessment of metal contamination shows that the sediments deposited in the water-level fluctuation zone were moderately to strongly contaminated by Cadmium(Cd), with a considerably high potential ecological risk. The findings reported have emphasized the impacts of reservoir impoundment on aquatic and/or terrestrial environment in this region. More information on physical, chemical and biological processes of sediment and sediment-associated materials are needed for developing environmentally and ecologically sound policies of water and sediment management.  相似文献   

14.
Ten clonal units of Carex pseudocuraica growing in four different microhabitats (perennial flooded ditch water,perennial flooded ditch sediment,seasonal flooded ditch sediment and perennial flooded soil) of the Sanjiang Plain,Northeast China,were collected randomly for phenotypic plasticity analysis.Iron content,chemical and physical properties of substrates and the total Fe of nine plant modules were measured as well.The results show that the performance of the C.pseudocuraica is affected by the microhabitat,with the greatest performance score in perennial flooded ditch water,and the lowest in perennial flooded soil.The biomass allocation indexes indicate that much more mass is allocated to stems and roots to expand colonization area.The distribution of the total Fe in plant modules appears as pyramids from the tip to the root,while marked differences are observed in the distribution proportion of stems,tillering nodes and roots that are allometrically growing.Iron transfer from substrates to the plant is mainly controlled by the substrate type.The differences of iron distribution and transfer in the plant in different microhabitats are attributed to the iron contents of the substrates as well as the phenotypic plasticity of the plant.  相似文献   

15.
CARBON DYNAMICS OF WETLAND IN THE SANJIANG PLAIN   总被引:2,自引:0,他引:2  
1INTRODUCTIONWetlandsplayanimportant roleintheprocessofcar-bonstorage.Thetotalcarbonstoredindifferentkindsofwetlandsisabout15%-35%ofthetotalcarboninthegloballandsoils(POSTetal.,1982;GORHAM,1991).Inaddition,wetlandsaresignificantnaturalsources fortheatmospheric CH4 (MOORE,1994).It isestimatedthatabout110×1012gCH4 originates fromanaerobicdecompositioninthenaturalwetlands,CH4 emission fromthenaturalwetlandsis15%-30%oftheglobalCH4 emission andtheCH4 emission from thepeat land at hi…  相似文献   

16.
Monthly changes in sedimentation and sediment properties were studied for three different culture treatments: sea cucumber monoculture (Mc), sea cucumber and scallop polyculture (Ps-c) and scallop monoculture (Ms). Results indicated that the survival rate of sea cucumber was significantly higher in Ps-c cultures than in Mc cultures. Sea cucumber yield was 69.6% higher in Ps-c culture than in Mc culture. No significant differences in body weight and scallop shell length were found between Ps-c and Ms cultures. The mean sedimentation rate of total particulate matter (TPM) was 72.2 g/(m2 d) in Ps-c cultures, with a maximum of 119.7 g/(m2 d), which was markedly higher than that of Mc (mean value). Sedimentation rates of organic matter (OM), total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in Ps-c cultures were also significantly higher than those in Mc cultures. TOC and TN contents of sediment increased rapidly in the first 5 months in Ms cultures and remained at a high level. TOC and TN contents in Mc and Ps-c cultures decreased during sea cucumber feeding seasons and increased during sea cucumber dormancy periods (summer and winter). The study demonstrates that co-culture of sea cucumber and scallop in earthen ponds is an alternative way to alleviate nutrient loads and improve water quality in coastal aquaculture systems. Moreover, it provides the additional benefit of an increased sea cucumber yield.  相似文献   

17.
A 6.2 m thick core of Gucheng Lake sediment provided a 3600 years record of climate change. The contents of the TOC in the core changed from 2.63% to 8.48%, and the δ13C values of organic matter were from −21.54% to −27.3%. The TOC/TN ratios indicated that the organic materials in sediments were from lake plankton and land-derived plants. The 2.9–22 m core interval with high TOC/TN ratios, low δ13C values and low contents of TOC indicated a cold climate stage. The 6.2–5.5 m and 0.4–0.1 m intervals were characterized by low TOC/TN ratios, high δ13C values and high contents of TOC, and reflected temperate climate stages. Project 49372129 supported by NSFC.  相似文献   

18.
Estimating carbon sequestration and nutrient accumulation rates in Northeast China are important to assess wetlands function as carbon sink buffering greenhouse gas increasing in North Asia. The objectives of this study were to estimate accreting rates of carbon and nutrients in typical temperate wetlands. Results indicated that average soil organic carbon(SOC), total nitrogen(TN) and total phosphorus(TP) contents were 37.81%, 1.59% and 0.08% in peatlands, 5.33%, 0.25% and 0.05% in marshes, 2.92%, 0.27% and 0.10% in marshy meadows, respectively. Chronologies reconstructed by 210 Pb in the present work were acceptable and reliable, and the average time to yield 0–40 cm depth sediment cores was 150 years. Average carbon sequestration rate(Carbonsq), nitrogen and phosphorus accumulation rates were 219.4 g C/(m~2·yr), 9.16 g N/(m~2·yr) and 0.46 g P/(m~2·yr) for peatland; 57.13 g C/(m~2·yr), 5.42 g N/(m~2·yr) and 2.16 g P/(m~2·yr) for marshy meadow; 78.35 g C/(m~2·yr), 8.70 g N/(m~2·yr) and 0.71 g P/(m2·yr) for marshy; respectively. Positive relations existed between Carbonsq with nitrogen and precipitations, indicating that Carbonsq might be strengthened in future climate scenarios.  相似文献   

19.
A wave flume simulator was used to study internal nitrogen release from the surface sediment collected from Taihu Lake,China.Particulate nitrogen concentrations were positively correlated with the concentrations of suspended solids,primarily from surface erosion related to the shear stress and duration of wave action.In response to 4 cm-and 10 cm-high wave production representing waves generated in Taihu Lake by gentle and gusty winds,respectively,the mean dynamic release rate of ammonium(NH+4) from the sediment to the overlying water was 1×10-3 mg/(m2.s) and the NH4+ concentration in the overlying water increased by 0.016 mg/L,indicating that waves resulting from strong wind can induce the rapid release of dissolved nitrogen from Taihu Lake sediments.The decrease in interstitial NH+4 concentrations at all sediment depths was associated with an increase in NH4+ concentrations in the overlying water by 0.01 mg/L,showing that sediment below the eroded layer was the main source of internal nitrogen release.Changes in the interstitial dissolved oxygen and NH+4 concentrations showed that wave-induced pore water movement can greatly increase the diffusion rate,and that these effects can influence the sediment to a depth of at least 15 cm.Diffusion induced by pore water movement may be very important for the formation of an active sediment layer in Taihu Lake.  相似文献   

20.
Phosphorus fractions and adsorption-release characteristics of sediments in the Zhujiang(Pearl) River estuary wetland were investigated.Results showed that the total phosphorus(TP) content in surface sediments ranged from 648.9 mg/kg to 1064.0 mg/kg;inorganic phosphorus(IP) was the major fraction of TP and ranged from 422.5 mg/kg to 643.9 mg/kg.Among the inorganic phosphorus,the main fractions were phosphorus bound to Al and Fe(Fe/Al-P),and calcium-bound phosphorus(Ca-P),accounting for 23%–42% and 21%–67% of IP,respectively.The vertical distribution of TP contents were significantly positive correlated with organic phosphorus(Org-P) and Fe/Al-P contents.The bio-available phosphorus contents in vertical sediments varied from 128.6 mg/kg to 442.9 mg/kg,mainly existed in Fe-Al/P fraction,and increased from the bottom to top sediments.The transport of phosphorus in sediment-water interface was controlled by the soil characteristics.The active Fe and Al content was considered as the main factor that determines adsorption capacity in vegetated marsh wetland.The P buffering capacity of the sediments in vegetated marsh wetland was greater than that in mudflat wetland.The potential risk of eutrophication in the study area is high.Reducing terrestrial phosphorus discharge and preventing the sediment Fe/Al-P release to the interstitial water are the possible solutions to reduce the risk of eutrophication in estuary wetlands,and planting vegetation in estuary wetland can also reduce the release of phosphorus in surface sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号