首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We produced regional geologic maps of the Hi’iaka and Shamshu regions of Io’s antijovian hemisphere using Galileo mission data to assess the geologic processes that are involved in the formation of Io’s mountains and volcanic centers. Observations reveal that these regions are characterized by several types of volcanic activity and features whose orientation and texture indicate tectonic activity. Among the volcanic features are multiple hotspots and volcanic vents detected by Galileo, one at each of the major paterae: Hi’iaka, Shamshu, and Tawhaki. We mapped four primary types of geologic units: flows, paterae floors, plains, and mountains. The flows and patera floors are similar, but are subdivided based upon emplacement environments and mechanisms. The floors of Hi’iaka and Shamshu Paterae have been partially resurfaced by dark lava flows, although portions of the paterae floors appear bright and unchanged during the Galileo mission; this suggests that the floors did not undergo complete resurfacing as flooding lava lakes. However, the paterae do contain compound lava flow fields and show the greatest activity near the paterae walls, a characteristic of Pele type lava lakes. Mountain materials are tilted crustal blocks that exhibit varied degrees of degradation. Lineated mountains have characteristic en echelon grooves that likely formed as a result of gravitational sliding. Undivided mountains are partially grooved but exhibit evidence of slumping and are generally lower elevation than the lineated units. Debris lobes and aprons are representative of mottled mountain materials. We have explored the possibility that north and south Hi’iaka Mons were originally one structure. We propose that strike-slip faulting and subsequent rifting separated the mountain units and created a depression which, by further extension during the rifting event, became Hi’iaka Patera. This type of rifting and depression formation is similar to the mechanism of formation of terrestrial pull-apart basins. With comparison to other regional maps of Io and global studies of paterae and mountains, this work provides insight into the general geologic evolution of Io.  相似文献   

2.
We produced the first geologic map of the Amirani-Gish Bar region of Io, the last of four regional maps generated from Galileo mission data. The Amirani-Gish Bar region has five primary types of geologic materials: plains, mountains, patera floors, flows, and diffuse deposits. The flows and patera floors are thought to be compositionally similar, but are subdivided based on interpretations regarding their emplacement environments and mechanisms. Our mapping shows that volcanic activity in the Amirani-Gish Bar region is dominated by the Amirani Eruptive Center (AEC), now recognized to be part of an extensive, combined Amirani-Maui flow field. A mappable flow connects Amirani and Maui, suggesting that Maui is fed from Amirani, such that the post-Voyager designation “Maui Eruptive Center” should be revised. Amirani contains at least four hot spots detected by Galileo, and is the source of widespread bright (sulfur?) flows and active dark (silicate?) flows being emplaced in the Promethean style (slowly emplaced, compound flow fields). The floor of Gish Bar Patera has been partially resurfaced by dark lava flows, although other parts of its floor are bright and appeared unchanged during the Galileo mission. This suggests that the floor did not undergo complete resurfacing as a lava lake as proposed for other ionian paterae. There are several other hot spots in the region that are the sources of both active dark flows (confined within paterae), and SO2- and S2-rich diffuse deposits. Mapped diffuse deposits around fractures on mountains and in the plains appear to serve as the source for gas venting without the release of magma, an association previously unrecognized in this region. The six mountains mapped in this region exhibit various states of degradation. In addition to gaining insight into this region of Io, all four maps are studied to assess the best methodology to use to produce a new global geologic map of Io based on the newly released, combined Galileo-Voyager global mosaics. To convey the complexity of ionian surface geology, we find that a new global geologic map of Io should include a map sheet displaying the global abundances and types of surface features as well as a complementary GIS database as a means to catalog the record of surface changes observed since the Voyager flybys and during the Galileo mission.  相似文献   

3.
We have studied data from the Galileo spacecraft's three remote sensing instruments (Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR)) covering the Zamama-Thor region of Io's antijovian hemisphere, and produced a geomorphological map of this region. This is the third of three regional maps we are producing from the Galileo spacecraft data. Our goal is to assess the variety of volcanic and tectonic materials and their interrelationships on Io using planetary mapping techniques, supplemented with all available Galileo remote sensing data. Based on the Galileo data analysis and our mapping, we have determined that the most recent geologic activity in the Zamama-Thor region has been dominated by two sites of large-scale volcanic surface changes. The Zamama Eruptive Center is a site of both explosive and effusive eruptions, which emanate from two relatively steep edifices (Zamama Tholi A and B) that appear to be built by both silicate and sulfur volcanism. A ∼100-km long flow field formed sometime after the 1979 Voyager flybys, which appears to be a site of promethean-style compound flows, flow-front SO2 plumes, and adjacent sulfur flows. Larger, possibly stealthy, plumes have on at least one occasion during the Galileo mission tapped a source that probably includes S and/or Cl to produce a red pyroclastic deposit from the same vent from which silicate lavas were erupted. The Thor Eruptive Center, which may have been active prior to Voyager, became active again during the Galileo mission between May and August 2001. A pillanian-style eruption at Thor included the tallest plume observed to date on Io (at least 500 km high) and new dark lava flows. The plume produced a central dark pyroclastic deposit (probably silicate-rich) and an outlying white diffuse ring that is SO2-rich. Mapping shows that several of the new dark lava flows around the plume vent have reoccupied sites of earlier flows. Unlike most of the other pillanian eruptions observed during the Galileo mission, the 2001 Thor eruption did not produce a large red ring deposit, indicating a relative lack of S and/or Cl gases interacting with the magma during that eruption. Between these two eruptive centers are two paterae, Thomagata and Reshef. Thomagata Patera is located on a large shield-like mesa and shows no signs of activity. In contrast, Reshef Patera is located on a large, irregular mesa that is apparently undergoing degradation through erosion (perhaps from SO2-sapping or chemical decomposition of sulfur-rich material) from multiple secondary volcanic centers.  相似文献   

4.
We have used Galileo spacecraft data to produce a geomorphologic map of the Culann-Tohil region of Io's antijovian hemisphere. This region includes a newly discovered shield volcano, Ts?i Goab Tholus and a neighboring bright flow field, Ts?i Goab Fluctus, the active Culann Patera and the enigmatic Tohil Mons-Radegast Patera-Tohil Patera complex. Analysis of Voyager global color and Galileo Solid-State Imaging (SSI) high-resolution, regional (50-330 m/pixel), and global color (1.4 km/pixel) images, along with available Galileo Near-Infrared Mapping Spectrometer (NIMS) data, suggests that 16 distinct geologic units can be defined and characterized in this region, including 5 types of diffuse deposits. Ts?i Goab Fluctus is the center of a low-temperature hotspot detected by NIMS late during the Galileo mission, and could represent the best case for active effusive sulfur volcanism detected by Galileo. The Culann volcanic center has produced a range of explosive and effusive deposits, including an outer yellowish ring of enhanced sulfur dioxide (SO2), an inner red ring of SO2 with short-chain sulfur (S3-S4) contaminants, and two irregular green diffuse deposits (one in Tohil Patera) apparently produced by the interaction of dark, silicate lava flows with sulfurous contaminants ballistically-emplaced from Culann's eruption plume(s). Fresh and red-mantled dark lava flows west of the Culann vent can be contrasted with unusual red-brown flows east of the vent. These red-brown flows have a distinct color that is suggestive of a compositional difference, although whether this is due to surface alteration or distinct lava compositions cannot be determined. The main massif of Tohil Mons is covered with ridges and grooves, defining a unit of tectonically disrupted crustal materials. Tohil Mons also contains a younger unit of mottled crustal materials that were displaced by mass wasting processes. Neighboring Radegast Patera contains a NIMS hotspot and a young lava lake of dark silicate flows, whereas the southwest portion of Tohil Patera contains white flow-like units, perhaps consisting of ‘ponds’ of effusively emplaced SO2. From 0°-15° S the hummocky bright plains unit away from volcanic centers contains scarps, grooves, pits, graben, and channel-like features, some of which have been modified by erosion. Although the most active volcanic centers appear to be found in structural lows (as indicated by mapping of scarps), DEMs derived from stereo images show that, with the exception of Tohil Mons, there is less than 1 km of relief in the Culann-Tohil region. There is no discernable correlation between centers of active volcanism and topography.  相似文献   

5.
The modeling of thermal emission from active lava flows must account for the cooling of the lava after solidification. Models of lava cooling applied to data collected by the Galileo spacecraft have, until now, not taken this into consideration. This is a flaw as lava flows on Io are thought to be relatively thin with a range in thickness from ∼1 to 13 m. Once a flow is completely solidified (a rapid process on a geological time scale), the surface cools faster than the surface of a partially molten flow. Cooling via the base of the lava flow is also important and accelerates the solidification of the flow compared to the rate for the ‘semi-infinite’ approximation (which is only valid for very deep lava bodies). We introduce a new model which incorporates the solidification and basal cooling features. This model gives a superior reproduction of the cooling of the 1997 Pillan lava flows on Io observed by the Galileo spacecraft. We also use the new model to determine what observations are necessary to constrain lava emplacement style at Loki Patera. Flows exhibit different cooling profiles from that expected from a lava lake. We model cooling with a finite-element code and make quantitative predictions for the behavior of lava flows and other lava bodies that can be tested against observations both on Io and Earth. For example, a 10-m-thick ultramafic flow, like those emplaced at Pillan Patera in 1997, solidifies in ∼450 days (at which point the surface temperature has cooled to ∼280 K) and takes another 390 days to cool to 249 K. Observations over a sufficient period of time reveal divergent cooling trends for different lava bodies [examples: lava flows and lava lakes have different cooling trends after the flow has solidified (flows cool faster)]. Thin flows solidify and cool faster than flows of greater thickness. The model can therefore be used as a diagnostic tool for constraining possible emplacement mechanisms and compositions of bodies of lava in remote-sensing data.  相似文献   

6.
New topographic maps of six large central volcanoes on Mars are presented and discussed. These features are Olympus Mons, Elysium Mons, Albor Tholus, Ceraunius Tholus, Uranius Tholus, and Uranius Patera. Olympus Mons has the general form of a terrestrial basaltic shield constructed almost entirely from lava flows; but with 20 to 23 km of relief it is far larger. Flank slopes average about 4°. A nominal density calculated from the shield volume and the local free-air gravity anomaly is so high that anomalously dense lithosphere probably underlies the shield. Uranius Patera is a similar feature of much lower present relief, about 2 km, but its lower flanks have been buried by later lava flood deposits. Elysium Mons has about 13 km of local relief and average slopes of 4.4°, not significantly steeper than those of Olympus Mons. Its upper flank slopes are significantly steeper than those of Olympus Mons. We suggest Elysium Mons is a shield volcano modified and steepened by a terminal phase of mixed volcanic activity. Alternatively, the volcano may be a composite cone. Albor Tholus is a partially buried 3-km-tall shield-like construct. Ceranius and Uranius Tholus are steeper cone-like features with relief of about 6 and 2 km, respectively. Slopes are within the normal range for terrestrial basaltic shields, however, and topographic and morphologic data indicate burial of lower flanks by plains forming lavas. These cones may be lava shield constructs modified by a terminal stage of explosive activity which created striking radial patterns of flank channels. Differences among these six volcanoes in flank slopes and surface morphology may be primarily consequences of different terminal phases of volcanic activity, which added little to the volume of any construct, and burial of shallow lower flanks by later geologic events. Additional topographic data for Olympus Mons, Arsia Mons, and Hadriaca Patera are described. The digital techniques used to extract topographiv data from Viking Orbiter stereo images are also described.  相似文献   

7.
Loki Patera (310° W, 12° N) is Io's largest patera at ∼180 km in diameter. Its morphology and distinct thermal behavior have led researchers to hypothesize that Loki Patera may either be an active lava lake that experiences periodic overturn, or a shallow depression whose floor is episodically resurfaced with thin flows. Using results from mathematical models, we suggest that a better model for Loki's behavior is the terrestrial superfast spreading East Pacific Rise (EPR), near 17°30 south. We propose that, like at the southern EPR, Loki Patera is underlain by a thin, persistent magma “lens” that feeds thin, temporary lava lakes within the patera. Also like the southern EPR, overspilling of the volcanic depression is rare, with most of the lava volume being emplaced via a subsurface network of lava tubes.  相似文献   

8.
Galileo's Solid State Imager (SSI) observed Tvashtar Catena four times between November 1999 and October 2001, providing a unique look at a distinctive high latitude volcanic complex on Io. The first observation (orbit I25, November 1999) resolved, for the first time, an active extraterrestrial fissure eruption; the brightness temperature was at least 1300 K. The second observation (orbit I27, February 2000) showed a large (∼500 km2) region with many, small, hot, regions of active lava. The third observation was taken in conjunction with Cassini imaging in December 2000 and showed a Pele-like, annular plume deposit. The Cassini images revealed an ∼400 km high Pele-type plume above Tvashtar Catena. The final Galileo SSI observation of Tvashtar (orbit I32, October 2001), revealed that obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. In this paper, we primarily analyze the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of simple advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping eruptions. The highest reliable color temperature is ∼1300 K. Although higher temperatures cannot be ruled out, they do not need to be invoked to fit the observed data. The total power output from the active lavas in February 2000 was at least 1011 W.  相似文献   

9.
Zamama, Culann, and Tupan Patera are three large, persistent volcanic centers on the jovian moon Io. As part of an ongoing project to quantify contributions from individual volcanic centers to Io’s thermal budget, we have quantified the radiant flux from all suitable observations made by the Galileo Near Infrared Mapping Spectrometer (NIMS) of these volcanoes, in some cases filling omissions in previous analyses. At Zamama, after a long period of cooling, we see a peak in thermal emission that corresponds with new plume activity. Subsequently, toward the end of the Galileo epoch, thermal emission from Zamama drops off in a manner consistent with a greatly reduced eruption rate and the cooling of emplaced flows. Culann exhibits possible episodic activity. We present the full Tupan Patera NIMS dataset and derive new estimates of thermal output and temporal behavior. Eruption rates at these three volcanoes are on the order of 30 m3 s−1, consistent with a previous analysis of NIMS observations of Prometheus, and nearly an order of magnitude greater than Kilauea volcano, Hawai’i, Earth’s most active volcano. We propose that future missions to the jovian system could better constrain activity at these volcanoes and others where similar styles of activity are taking place by obtaining data on a time scale of, ideally, at least one observation per day. Observations at similar or even shorter timescales are desirable during initial waxing phases of eruption episodes. These eruptions are identifiable from their characteristic spectral signatures and temporal behavior.  相似文献   

10.
Volcanism on Io: New insights from global geologic mapping   总被引:2,自引:0,他引:2  
We produced the first complete, 1:15 M-scale global geologic map of Jupiter’s moon Io, based on a set of monochrome and color Galileo-Voyager image mosaics produced at a spatial resolution of 1 km/pixel. The surface of Io was mapped into 19 units based on albedo, color and surface morphology, and is subdivided as follows: plains (65.8% of surface), lava flow fields (28.5%), mountains (3.2%), and patera floors (2.5%). Diffuse deposits (DD) that mantle the other units cover ∼18% of Io’s surface, and are distributed as follows: red (8.6% of surface), white (6.9%), yellow (2.1%), black (0.6%), and green (∼0.01%). Analyses of the geographical and areal distribution of these units yield a number of results, summarized below. (1) The distribution of plains units of different colors is generally geographically constrained: Red-brown plains occur >±30° latitude, and are thought to result from enhanced alteration of other units induced by radiation coming in from the poles. White plains (possibly dominated by SO2 + contaminants) occur mostly in the equatorial antijovian region (±30°, 90-230°W), possibly indicative of a regional cold trap. Outliers of white, yellow, and red-brown plains in other regions may result from long-term accumulation of white, yellow, and red diffuse deposits, respectively. (2) Bright (possibly sulfur-rich) flow fields make up 30% more lava flow fields than dark (presumably silicate) flows (56.5% vs. 43.5%), and only 18% of bright flow fields occur within 10 km of dark flow fields. These results suggest that secondary sulfurous volcanism (where a bright-dark association is expected) could be responsible for only a fraction of Io’s recent bright flows, and that primary sulfur-rich effusions could be an important component of Io’s recent volcanism. An unusual concentration of bright flows at ∼45-75°N, ∼60-120°W could be indicative of more extensive primary sulfurous volcanism in the recent past. However, it remains unclear whether most bright flows are bright because they are sulfur flows, or because they are cold silicate flows covered in sulfur-rich particles from plume fallout. (3) We mapped 425 paterae (volcano-tectonic depressions), up from 417 previously identified by Radebaugh et al. (Radebaugh, J., Keszthelyi, L.P., McEwen, A.S., Turtle, E.P., Jaeger, W., Milazzo, M. [2001]. J. Geophys. Res. 106, 33005-33020). Although these features cover only 2.5% of Io’s surface, they correspond to 64% of all detected hot spots; 45% of all hot spots are associated with the freshest dark patera floors, reflecting the importance of active silicate volcanism to Io’s heat flow. (4) Mountains cover only ∼3% of the surface, although the transition from mountains to plains is gradational with the available imagery. 49% of all mountains are lineated and presumably layered, showing evidence of linear structures supportive of a tectonic origin. In contrast, only 6% of visible mountains are mottled (showing hummocks indicative of mass wasting) and 4% are tholi (domes or shields), consistent with a volcanic origin. (5) Initial analyses of the geographic distributions of map units show no significant longitudinal variation in the quantity of Io’s mountains or paterae, in contrast to earlier studies. This is because we use the area of mountain and patera materials as opposed to the number of structures, and our result suggests that the previously proposed anti-correlation of mountains and paterae (Schenk, P., Hargitai, H., Wilson, R., McEwen, A., Thomas, P. [2001]. J. Geophys. Res. 106, 33201-33222; Kirchoff, M.R., McKinnon, W.B., Schenk, P.M. [2011]. Earth Planet. Sci. Lett. 301, 22-30) is more complex than previously thought. There is also a slight decrease in surface area of lava flows toward the poles of Io, perhaps indicative of variations in volcanic activity. (6) The freshest bright and dark flows make up about 29% of all of Io’s flow fields, suggesting active emplacement is occurring in less than a third of Io’s visible lava fields. (7) About 47% of Io’s diffuse deposits (by area) are red, presumably deriving their color from condensed sulfur gas, and ∼38% are white, presumably dominated by condensed SO2. The much greater areal extent of gas-derived diffuse deposits (red + white, 85%) compared to presumably pyroclast-bearing diffuse deposits (dark (silicate tephra) + yellow (sulfur-rich tephra), 15%) indicates that there is effective separation between the transport of tephra and gas in many Ionian explosive eruptions. Future improvements in the geologic mapping of Io can be obtained via (a) investigating the relationships between different color/material units that are geographically and temporally associated, (b) better analysis of the temporal variations in the map units, and (c) additional high-resolution images (spatial resolutions ∼200 m/pixel or better). These improvements would be greatly facilitated by new data, which could be obtained by future missions.  相似文献   

11.
Geological mapping of Elysium Planitia has led to the recognition of five major surface units, in addition to the three volcanic constructs Elysium Mons, Hecates Tholus, and Albor Tholus. These units are interpreted to be both volcanic and sedimentary or erosional in origin. The volcano Elysium Mons is seen to have dominated constructional activity within the whole region, erupting lava flows which extend up to 600km from the summit. A major vent system, covering an area in excess of 75 000 km2, is identified within the Elysium Fossae area. Forty-one sinuous channels are visible within Elysium Planitia; these channels are thought to be analogous to lunar sinuous rilles and their formation in this region of Mars is attributed to unusually high regional topographic slopes (up to ~ 1.7). Numerous circumferential graben are centered upon Elysium Mons. These graben, located at radial distances of 175, 205–225, and 330km from the summit, evidently post-dated the emplacement of the Elysium Mons lava flows but pre-dated the eruption of extensive flood lavas to the west of the volcano. A great diversity of channel types is observed within Elysium Fossae. The occurrences of streamlined islands and multiple floor-levels within some channels suggests a fluvial origin. Conversely, the sinuosity and enlarged source craters of other channels suggests a volcanic origin. Impact crater morphology, the occurrence of chaotic terrain, probable pyroclastic deposits upon Hecates Tholus and fluvial channels all suggest extensive volcano-ground ice interactions within this area.NASA Summer Intern.  相似文献   

12.
Wudalianchi volcanic field, located in northeast China, consists of 14 Quaternary volcanoes with each volcano as a steep-sided scoria cone surrounded by gently sloping lava flows. Each cone is topped with a bowl-shaped or funnel-shaped crater. The volcanic cones are constructed by the accumulation of tephra and other ejecta. In this paper, their geologic features have been investigated and compared with some Martian volcanic features at Ascraeus Mons volcanoes observed on images obtained from High-Resolution Imaging Science Experiments (HiRISE), Mars Orbiter Camera (MOC), Context Imager (CTX) and Thermal Emission Imaging System (THEMIS). The results show that both Wudalianchi and Ascraeus Mons volcanoes are basaltic, share similar eruptive and geomorphologic features and eruptive styles, and have experienced multiple eruptive phases, in spite of the significant differences in their dimension and size. Both also show a variety of eruptive styles, such as fissure and central venting, tube-fed and channel-fed lava flows, and probably pyroclastic deposits. Three volcanic events are recognized at Ascraeus Mons, including an early phase of shield construction, a middle eruptive phase forming a low lava shield, and the last stage with aprons mantling both NE and SW flanks. We suggest that magma generation at both Wudalianchi and Ascraeus Mons might have been facilitated by an upwelling mantle plume or upwelling of asthenospheric mantle, and a deep-seated fault zone might have controlled magma emplacement and subsequent eruptions in Ascraeus Mons as observed in the Wudalianchi field, where the volcanoes are constructed along the northeast-striking faults. Fumarolic cones produced by water/magma interaction at the Wudalianchi volcanic field may also serve as an analogue for the pseudocraters identified at Isidis and Cerberus Planitia on Mars, suggesting existence of frozen water in the ground on Mars during Martian volcanic eruptions.  相似文献   

13.
HiRISE has imaged a graben wall on the western flank of Arsia Mons volcano, Mars. This graben is ∼3×16 km in plan-view size and is oriented almost perpendicular to the general volcano slope. We have identified 1318 individual sub-horizontal layers, which we interpret to be lava flows, in the 885 m high, nearly vertical, eastern wall of this graben. The average and median outcrop widths of each layer are 149 and 85 m, respectively. No layers extend >1.72 km across the width of the section, arguing against these being either areally-extensive ash or paleo-glacial deposits, which has implications for the reoccurrence interval of glacial events and/or the long-term magma production rate of the volcano. Measurements (N=118) made at a 100-m spacing across the width of the section reveal that there are, on average, 17.3 layers at each location. This implies an average layer thickness of ∼51 m. Locally, however, as many as 7 layers can be counted within a 70 m-high part of the section, implying, if these layers are indeed lava flows, that Arsia Mons occasionally erupted flows that were only ∼10 m thick.  相似文献   

14.
Kenneth L. Tanaka 《Icarus》1985,62(2):191-206
Gravity sliding and spreading at low strain rates can account for the general morphology and structure of the aureoles and basal scarp of Olympus Mons. Detachment sliding could have occurred around the volcano if either pore-fluid pressures were exceptionally high (greater than 90%) or the rocks had very low resistance to shear (about 1 × 105 Pa or 1 bar). Because of the vast areal extent and probable shallow depth of the detachment zone, development of ubiquitous, high pore-fluid pressures beneath aureole-forming material was unlikely. However, a zone of sufficiently weak material consisting of about 10% interstitial or interbedded ice could have been present. If so, a simple rheologic model for the aureole deposits can be applied that consists of a thin ductile layer overlain by a thicker brittle layer. According to this model, extensional deformation would have occurred near the shield and compressional deformation in its distal parts. Proximal grabens and distal corrugations on aureole surfaces support this model. A submarine slide at Kitimat Arm, British Columbia, is a valid qualitative analogy for the observed features and inferred emplacement style of the aureole deposits. Ground-ice processes have been considered the cause of many geologic features on Mars; a 3% average concentration of ground ice in the regolith is predicted by theoretical models for the ice budget and cryosphere. Ice may have been deposited in higher concentrations below the aureole-forming material; the source of the ice could have been juvenile water circulated hydrothermally by Olympus Mons volcanism. The basal scarp of Olympus Mons apparently demarcates the transition between the upper, stable part of the shield and its lower part that decoupled and formed the aureole deposits. This transition may reflect a change in the bulk shear strength of the shield, caused either by a radial dependence in the abundance of ice or fluid in the shield materials or by the concentration of intrusive dikes within the volcano. Other Martian volcanoes exhibit virtually no evidence of similar large-scale gravity spreading and basal scarps. Perhaps such evidence, if it existed, has been buried by lava flows, or perhaps the smaller size of other volcanoes did not permit the development of these features.  相似文献   

15.
Olympus Mons (Nix Olympica) is delimited by a step nearly circular scarp that is unique to this largest of Martian volcanic constructs. The origin of the scarp is most probably by erosion; such an origin is difficult to explain if the volcanic pile is assumed to be made up exclusively of basalt flows. Although interpretive evidence is accepted for basalt flows underlying the central slope areas, additional criteria are presented here to support the hypothesis that the outer reaches of the slopes comprise dominantly ash-flow tuffs which presumambly were deposited by nuées ardentes. Because of cooling during emplacement, the average degree of compaction of each ash sheet would normally decrease with radial distance from its source vent. It is suggested that the tuffs originally extended greater distances from the central caldera complex and merged the slopes with the surrounding substrate. At the distal edges eolian erosion worked on the relatively noncompacted tuffs and was a major factor in the development of the scarp. The height of the scarp increased as it retreated toward the central caldera complex and eolian undercutting caused slump which in turn furthered the migration of the scarp. The rate of scarp migration would have decreased as the scarp increased in height and as more densely compacted ash nearer to the center of the construct was encountered. By this model, then, the circularity of the scarp in plan reflects an approximately concentric distribution of the zones of average degree of compaction about the center of Olympus Mons.  相似文献   

16.
Voyager 1 imaging data have been used to investigate the color and morphology of several radial flow-like features at Ra Patera, a broad volcanic structure at approximately 8° latitude and 325° longitude on the Galilean satellite Io (J1). It was found that downstream progressions of flow color and morphology are consistent with lava of a predominately sulfur composition cooling radiatively and erupting in the range of 470 to 520°K at effusion rates at 1010 to 1011 cm3/sec. This implies global resurfacing rates by volcanic flows on Io of the order of 1 cm/year. Calculated energy content and effusion rates for flows at Ra Patera, using the physical parameters of sulfur, are of the order of the largest known terrestial basaltic eruptions and are consistent with calculations of globally available energy.  相似文献   

17.
Surface changes on Io during the Galileo mission   总被引:1,自引:0,他引:1  
A careful survey of Galileo SSI global monitoring images revealed more than 80 apparent surface changes that took place on Io during the 5 year period of observation, ranging from giant plume deposits to subtle changes in the color or albedo of patera surfaces. Explosive volcanic activity was discovered at four previously unrecognized centers: an unnamed patera to the south of Karei that produced a Pele-sized red ring, a patera to the west of Zal that produced a small circular bright deposit, a large orange ring detected near the north pole of Io, and a small bright ring near Io's south pole. Only a handful of Io's many active volcanoes produced large scale explosive eruptions, and several of these erupted repeatedly, leaving at least 83% of Io's surface unaltered throughout the Galileo mission. Most of the hot spots detected from SSI, NIMS and ground-based thermal observations caused no noticeable surface changes greater than 10 km in extent over the five year period. Surface changes were found at every location where active plumes were identified, including Acala which was never seen in sunlight and was only detected through auroral emissions during eclipse. Two types of plumes are distinguished on the basis of the size and color of their deposits, confirming post-Voyager suggestions by McEwen and Soderblom [Icarus 55 (1983) 191]. Smaller plumes produce near-circular rings typically 150-200 km in radius that are white or yellow in color unless contaminated with silicates, and frequently coat their surroundings with frosts of fine-grained SO2. The larger plumes are much less numerous, limited to a half dozen examples, and produce oval, orange or red, sulfur-rich rings with maximum radii in the north-south direction that are typically in the range from 500 to 550 km. Both types of plumes can be either episodic or quasi-continuous over a five year period. Repeated eruptions of the smaller SO2-rich plumes likely contribute significantly to Io's resurfacing rate, whereas dust ejection is likely dominated by the tenuous giant plumes. Both types of plume deposits fade on time-scales of months to years through burial and alteration. Episodic seepages of SO2 at Haemus Montes, Zal Montes, Dorian Montes, and the plateau to the north of Pillan Patera may have been triggered by activity at nearby volcanic centers.  相似文献   

18.
Gerald G. Schaber 《Icarus》1980,42(2):159-184
High-resolution Viking Orbiter images (10 to 15 m/pixel) contain significant information on Martian surface roughness at 25- to 100-m lateral scales, whereas Earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m, or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns (low peak radar cross section) are qualitatively confirmed by the Viking image data. Large-scale, curvilinear (but parallel) ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows south and west of Arsia Mons, and within the large region of low thermal inertia centered on Tharsis Montes (H. H. Kieffer et al., 1977, J. Geophys. Res.82, 4249–4291), were found to possess such a recent mantle. At predawn residual temperatures ≥ ?10K (south boundary of this low-temperature region), lava flows are shown to have relatively old eolian mantles. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin.  相似文献   

19.
The temporal signature of thermal emission from a volcano is a valuable clue to the processes taking place both at and beneath the surface. The Galileo Near Infrared Mapping Spectrometer (NIMS) observed the volcano Prometheus, on the jovian moon Io, on multiple occasions between 1996 and 2002. The 5 micron (μm) brightness of this volcano shows considerable variation from orbit to orbit. Prometheus exhibits increases in thermal emission that indicate episodic (though non-periodic) effusive activity in a manner akin to the current Pu'u 'O'o-Kupaianaha (afterwards referred to as the Pu'u 'O'o) eruption of Kilauea, Hawai'i. The volume of material erupted during one Prometheus eruption episode (defined as the interval from minimum thermal emission to peak and back to minimum) from 6 November 1996 to 7 May 1997 is estimated to be ∼0.8 km3, with a peak instantaneous volumetric flux (effusion rate) of ∼140 m3 s−1, and an averaged volumetric flux (eruption rate) of ∼49 m3 s−1. These quantities are used to model subsurface structure, magma storage and magma supply mechanisms, and likely magma chamber depth. Prometheus appears to be supplied by magma from a relatively shallow magma chamber, with a roof at a minimum depth of ∼2-3 km and a maximum depth of ∼14 km. This is a much shallower depth range than sources of supply proposed for explosive, possibly ultramafic, eruptions at Pillan and Tvashtar. As Prometheus-type effusive activity is widespread on Io, shallow magma chambers containing magma of basaltic or near-basaltic composition and density may be common. This analysis strengthens the analogy between Prometheus and Pu'u 'O'o, at least in terms of eruption style. Even though the style of eruption appears to be similar (effusive emplacement of thin, insulated, compound pahoehoe flows) the scale of activity at Prometheus greatly exceeds current activity at Pu'u 'O'o in terms of volume erupted, area covered, and magma flux. Whereas the estimated magma chamber at Prometheus dwarfs the Pu'u 'O'o magma chamber, it fits within expectations if the Pu'u 'O'o chamber were scaled for the greater volumetric flux and lower gravity of Io. Recent volumetric eruption rates derived from Galileo data for Prometheus were considerably smaller than the rate that produced the extensive flows formed in the ∼17 years between the Voyager and Galileo missions. These smaller eruption rates, coupled with the fact that flows are not expanding laterally, may mean that the immediate heat source that generates the Prometheus plume is simultaneously running out of available volatiles and the thermal energy that drives mobilization of volatiles. This raises the question of whether the current Prometheus eruption is in its last throes.  相似文献   

20.
We present results of our study of the rheologies and ages of lava flows in the Elysium Mons region of Mars. Previous studies have shown that the geometric dimensions of lava flows reflect rheological properties such as yield strength, effusion rate and viscosity. In this study the rheological properties of lava flows in the Elysium Mons region were determined and compared to the rheologies of the Ascraeus Mons lava flows. We also derived new crater size-frequency distribution measurements (CSFDs) for the Elysium lava flows to identify possible changes in the rheological properties with time. In addition, possible changes in the rheological properties with the distance from the caldera of Elysium Mons were analyzed.In total, 35 lava flows on and around Elysium Mons were mapped, and divided into three groups, lava flows on the flanks of Elysium Mons, in the plains between the three volcanoes Elysium Mons, Hecates and Albor Tholus and lava flows south of Albor Tholus. The rheological properties of 32 of these flows could be determined. Based on our morphometric measurements of each individual lava flow, estimates for the yield strengths, effusion rates, viscosities, and eruption duration of the studied lava flows were made. The yield strengths of the investigated lava flows range from ~3.8 × 102 Pa to ~1.5 × 104 Pa, with an average of ~3.0 × 103 Pa. These yield strengths are in good agreement with estimates for terrestrial basaltic lava flows. The effusion rates are on average ~747 m3 s?1, ranging from ~99 to 4450 m3 s?1. The viscosities are on average ~4.1 × 106 Pa s, with a range of 1.2 × 105 Pa s to 3.1 × 107 Pa s. The eruption durations of the flows were calculated to be between 6 and 183 days, with an average of ~51 days. The determined rheological properties are generally very similar to those of other volcanic regions on Mars, such as on Ascraeus Mons in the Tharsis region. Calculated yield strengths and viscosities point to a basaltic/andesitic composition of the lava flows, similar to basaltic or andesitic a’a lava flows on Earth.Absolute model ages of all 35 lava flows on Elysium Mons were derived from crater size-frequency distribution measurements (CSFD). The derived model ages show a wide variation from about 632 Ma to 3460 Ma. Crater size-frequency distribution measurements of the Elysium Mons caldera show an age of ~1640 Ma, which is consistent with the resurfacing age of Werner (2009). Significant changes of the rheologies with time could not be observed. Similarly, we did not observe systematic changes in ages with increasing distances of lava flows from the Elysium Mons caldera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号