首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 423 毫秒
1.
本文主要介绍了基于GIS的水土流失定量评价模型的组成、各参数因子的算式算法 ,以及该模型在贵州省 (原 )安顺市的应用结果。模型是以修正的通用土壤流失方程 (RUSLE)为核心 ,在GIS中建立模型各因子空间数据 ,并通过PAMAP对它们进行综合分析。定量评价结果表明 ,(原 )安顺市年平均土壤流失总量为 86777吨 ,平均侵蚀模数为 4 0 9.4t/km2 ·a;轻度以上侵蚀面积 72 .7km2 ,强度以上侵蚀面积 53 .2km2 (含剧烈侵蚀面积 3 0 .9km2 )。其平均侵蚀模数与以往实测调查结果相比有 97.5%的一致性 ,表明该方法在贵州省岩溶地区的水土流失监测中具有较高的可靠性。  相似文献   

2.
《水文》2001,(1)
据调查显示:我国水土流失面积目前仍然呈加大发展态势,这成为目前头号水环境问题。根据水利部第二次遥感普查结果:目前全国水土流失面积达367万km2,已占国土总面积的1/3以上,其中以黄河流域水土流失状况最为严重,目前已达45万km2,占流域总面积的60%。有关人士指出:控制水土流失最关键的问题应该是保护好江河源头地区日趋恶化的生态环境,恢复植被,尤其在西部地区要加快退耕还林步伐,以减少泥沙入河总量。我国水土流失面积达三分之一  相似文献   

3.
遥感与GIS支持下的南桐矿区水土流失评价与区划   总被引:2,自引:0,他引:2  
苏迎春  周廷刚 《中国岩溶》2012,31(2):191-197
以重庆市南桐矿区为研究对象,运用遥感和GIS技术获取对水土流失影响较大的植被覆盖度、地形坡度、土地利用类型等信息并进行空间叠加分析,计算了水土流失类型及面积。研究结果表明,南桐矿区水土流失面积262.91km2,侵蚀模数2281t/(km2?a),水土流失强度以轻度和中度为主,其中轻度流失132.37km2,中度流失108.95km2。根据区域地貌类型以及水土流失特征,将研究区水土流失划分为盆边低山丘陵中强度流失区、北部坪状低山中轻度流失区和盆边中山轻度流失区三个类型区,盆边低山丘陵中强度流失区以中度流失为主;北部坪状低山中轻度流失区以轻度流失为主;盆边中山轻度流失区虽然以轻度流失为主,但微度流失也占有相当部分的比重。   相似文献   

4.
喀斯特地区水土流失动态特征及生态效益评价   总被引:37,自引:3,他引:34  
梅再美  熊康宁 《中国岩溶》2003,22(2):136-143
喀斯特地区水土流失是生态环境退化的一个重要因素,严重制约着该地区农业可持续发展,如何利用喀斯特地区的坡地资源(如植物资源)是控制水土流失,改善其生态环境的关键。通过对清镇示范区退耕还林(草)和封山育林区的水土流失监测表明,利用恢复植被来控制水土流失,使示范区的土壤侵蚀模数从2000年以前的2500~5000 t /km2· a减少至2002年的78. 4~185. 7 t /km2· a; 使32. 16 km2 面积的退耕还林(草)和封山育林地段每年减少表土损失量38563. 6t,相当于每年减少886. 96t 化肥的土壤养分流失,其生态、经济、社会效益十分明显。   相似文献   

5.
营口市侵蚀沟水土保持综合治理方法及效益分析   总被引:2,自引:0,他引:2  
《地下水》2020,(2)
根据流域一体化管理的要求,水土保持规划中要将水土保持与农业生产条件的改善、土地生产率的提高、江河污染治理、饮水安全保障以及改善贫困、促进地区经济发展统筹考虑。以营口市侵蚀沟水土保持综合治理工程为例进行水土流失整治规划及效益研究,结果可知:通过实施治理工程,预计到到2030年,可基本建成与经济社会发展相适应的分区水土流失综合防治体系,促进地区生态实现良性循环。最终预计新增水土流失治理面积753 km2,林草植被得到保护与恢复,林草覆盖率达到39. 2%以上,年均减少土壤流失量150万t。  相似文献   

6.
用定量遥感方法监测UNDP试区小流域水土流失研究   总被引:15,自引:1,他引:14       下载免费PDF全文
简要介绍了水土流失定量遥感方法的组成和基本原理,重点叙述了它在小流域治理试区的应用作业和应用结果,并讨论了它的适应性、准确性、实用性和应用前景等。该法的监测模型可与美国近年刊出的RUSLE相媲美,且其因子算式算法系由我国实测资料所建,故更适合我国水土流失实际的应用效果,尤其适用于遥感和GIS数据的微机处理。其应用结果,不仅有比常规调查法和定性遥感法更准确实用的流失总量、各级面积的统计数据和流失现状图,而且还有流失治理规划的防治强度预报图。在UNDP试区应用表明,该法所建立的系统,也可对小流域(大于7km2)每年实施监测,以获水土流失变化动态的准确信息。  相似文献   

7.
以20世纪80年代第二次土壤普查时期黑土有机质分析数据为基准,以目前土地质量地球化学调查土壤有机质分析数据为研究对象,利用MapGIS空间分析功能定量研究绥化市北林区黑土地土壤有机质含量的空间变化特征.研究结果显示,近30 a以来研究区土壤有机质含量由41.16×10-3下降到37.68×10-3,土壤有机质流失率达8.45%;20世纪80年代研究区土壤有机质含量在35×10-3~45×10-3的面积占研究区总面积的73.93%,而目前研究区土壤有机质含量在30×10-3~40×10-3的面积占研究区总面积的70.24%;研究区82.1%的土地面积土壤中有机质呈现出不同程度的减少,仅有17.9%的土地面积土壤中有机质呈现出增加的趋势;研究区黑土地以轻度和轻微土壤有机质流失程度为主,仅在张维镇和四方台镇中南部、秦家镇中西部以及连岗乡中北部等局部地段土壤有机质流失程度达中度和重度,这为精准施策开展黑土地土壤有机质流失治理提供了科学依据.  相似文献   

8.
以2014—2015年的GF 1为主、少量OLI影像为基础,参考第二次中国冰川目录等文献资料,修编完成青海省和西藏自治区两省区的现代冰川编目,查明青藏两省区目前共有冰川24 796条,总面积约2624×104 km2,约占青藏两省区区域面积的137%,冰川储量为2027×103~2121×103 km3。调查区冰川数量以面积<10 km2、冰川面积介于10~100 km2之间的冰川为主,其中面积<10 km2的冰川有19 983条,占总数量的8059%,面积介于10~100 km2之间的冰川面积为11 96240 km2,占总面积的4559%;面积最大的中锋冰川的面积达23737 km2。调查区内的山系(高原)均有冰川分布,念青唐古拉山冰川数量最多,其次是喜马拉雅山和冈底斯山,这3座山系冰川数量占调查区内冰川总数量的6333%;念青唐古拉山、喜马拉雅山和昆仑山的冰川面积和冰储量位列前3位,其冰川面积和冰储量分别占总数的6809%和7344%;然而昆仑山和羌塘高原的单条冰川的平均面积大于念青唐古拉山和喜马拉雅山的平均面积。从冰川海拔分布来看,海拔5 000~6 500 m之间是冰川集中发育区域,约占调查区冰川数量和冰川总面积的85%以上。调查区的冰川在各流域的分布差异显著,恒河流域是冰川分布数量最多、面积最大的一级外流区,其数量占冰川总量的47%以上,面积占总面积的52%以上;青藏高原内陆流域的冰川数量、面积次之,其冰川数量占总数量的21%,面积占总面积的24%以上,并且内流区单条冰川的平均面积略大于外流区的平均面积。总体上,西藏的冰川数量、面积和冰储量分别占西藏和青海两省区的8492%、8492%、8668%,单条冰川的平均面积两省区相近。  相似文献   

9.
1980-2005年藏东南然乌湖流域冰川湖泊变化研究   总被引:7,自引:0,他引:7  
基于1980年地形图和1988年、2001年Landsat数据以及2005年中巴资源卫星数据,对藏东南然乌湖流域1980-2005年25 a来冰川和湖泊的面积变化进行了研究.结果表明:1980-2005年间,冰川面积从496.64 km2减少到466.94 km2,冰川萎缩了29.7 km2,萎缩速率为1.19 km2·a-1 ,萎缩量占冰川总面积的5.98%,冰川面积占流域总面积的比例从22.42%减小到21.08%.区域冰碛湖泊面积则从1980年29.79 km2增大到2005年33.27 km2,湖泊面积扩大了3.48 km2,增加的速率为0.14km2·a-1,扩大面积占湖泊总面积的11.68%,湖泊而积占流域总面积的比例从1.34%增加到11.5%.其中,冰川面积在1980-1988年萎缩速率为1.73 km2·a-1 ,1988-2001年为0.82 km2·a-1和2001-2005年为1.3 km2·a-1.而湖泊面积在1980-1988年扩涨速率为0.11 km2·a-1,1988-2001年为0.12 km2·a-1,2001-2005年为0.27 km2·a-1,湖泊逐年加速扩涨.从流域内的气象数据来看,温度升高,是该区域冰川萎缩的根本原因,湖泊加速扩涨主要受到冰川萎缩,冰川融水量加大的影响.  相似文献   

10.
祁连山石羊河上游山区土壤侵蚀的环境因子特征分析   总被引:3,自引:1,他引:2  
在GIS技术支持下, 运用通用水土流失方程USLE, 对祁连山北坡东段的哈溪林区的土壤侵蚀量及空间分布进行了模拟运算, 并定量分析了各种环境因子与土壤侵蚀之间的关系. 结果显示: 研究区平均土壤侵蚀模数为25.1 t·hm-2·a-1, 微度和轻度侵蚀面积占总面积的80%, 而强度到剧烈侵蚀产生的侵蚀量占78.3%; 各土地类型土壤侵蚀模数由高到低依次是裸地>草地>农田>灌丛>乔木林, 裸地侵蚀量占到总侵蚀量的54.9%; 乔木林和灌木林95%以上侵蚀面积属微度侵蚀区, 农田中度到剧烈侵蚀的面积比例达到35.9%, 高于草地和其他植被类型, 而草地剧烈侵蚀面积比例高于农田. 海拔高度范围与土壤流失量之间的关系与植被的海拔分布范围明显相关; 土壤平均侵蚀模数随坡度的增加而增大, 土壤侵蚀量主要分布在15°~45°的坡度范围, 不同植被覆盖下土壤流失随坡度变化的趋势可在一定程度上反映该类植被对土壤流失的防止作用.  相似文献   

11.
青海省是长江、黄河、澜沧江的发源地,水蚀、风蚀和冻融侵蚀都较严重并呈复合型出现.全省水土流失面积为33.4×104km2,年土壤侵蚀量为115×108t,年土壤侵蚀模数为1000~8000t·km-2.公路建设中对水土保持造成危害虽然面积相对不大,但其破坏强度较大,极难治理和恢复.公路建设中坚持"预防为主,防治结合,因地制宜,因害设防"的工作方针,明确防治重点,科学的进行防治分区、措施布局和措施设计,准确计算工程量和工程投资,合理安排水土保持措施实施进度,制定出切实可行的水土保持实施措施.  相似文献   

12.
The 1999 Chi–Chi earthquake triggered the catastrophic Tsaoling landslide in central Taiwan. We mapped the landslide area and estimated the landslide volume, using a high-resolution digital elevation model from airborne LiDAR (Light Detection And Ranging), aerial photographs and topographic maps. The comparison between scar and deposit volumes, about 0.126 km3 and 0.150 km3 respectively, suggests a coseismic volume increase of 19% due to decompaction during landsliding. In July 2003, the scar and deposit volumes were about 0.125 km3 and 0.110 km3 respectively. These estimates suggest that 4 years after the event, the volume of landslide debris removed by river erosion was nearly 0.040 km3. These determinations are confirmed by direct comparison between the most accurate topographic models of the post-landslide period, indicating a very high erosion rate at the local scale (0.01 km3/year) for the deposit area of the landslide. Such a large value highlights the importance of landslide processes for erosion and long-term denudation in the Taiwan mountain belt.  相似文献   

13.
开展土壤质量评价对科学划定永久基本农田及统筹优化农业生产布局具有重要指导意义。本文采用内梅罗综合污染指数法、分级法、累积频率法和综合判定法,参照《土壤环境质量农用地土壤污染风险管控标准》(试行)(GB 15618—2018)和《绿色食品产地环境质量》(NY/T 391—2013),对长江经济带土壤重金属污染、酸碱度、有益元素丰缺和绿色农产品产地适宜性进行评价。研究区土壤质量总体良好,清洁土壤面积34.84万km2,其重金属含量继承了自然背景特征; 三级及以下土壤面积6.94万km2,呈斑块及星点状分布于赣东北、赣南、湖南长沙—郴州一带、沿江及贵阳、昆明等地,其重金属为自然富集或受矿业开发、煤炭和石油的燃烧及工业“三废”排放的影响。酸性土壤面积33.56万km2,分布于江西、湖南、宁波—台州沿海和金华衢州盆地,碱性土壤面积15.69万km2,分布于苏北平原、环洞庭湖、成都平原以及沿长江一线,其土壤酸碱度与土壤类型有关。土壤有益元素丰缺与第四系沉积物成土母质有关,土壤有益元素适量及以上区域面积34.44万km2,分布于四川阿坝、成都盆地、环洞庭湖、环鄱阳湖、安徽沿江、苏北沿海和杭嘉湖平原; 土壤有益元素缺乏区面积13.89万km2,分布于赣南、江淮、鄂东北以及云南玉溪等地。绿色农产品产地最适宜区、适宜区和不适宜区面积分别为22.49万km2、18.78万km2和18.28万km2。依据区内绿色农产品产地适宜性、土壤环境质量和立地条件划分出7片永久农田保护建议区。  相似文献   

14.
长江经济带土壤质量评价及产地适宜性初步研究   总被引:1,自引:0,他引:1  
开展土壤质量评价对科学划定永久基本农田及统筹优化农业生产布局具有重要指导意义。本文采用内梅罗综合污染指数法、分级法、累积频率法和综合判定法,参照《土壤环境质量农用地土壤污染风险管控标准》(试行)(GB 15618—2018)和《绿色食品产地环境质量》(NY/T 391—2013),对长江经济带土壤重金属污染、酸碱度、有益元素丰缺和绿色农产品产地适宜性进行评价。研究区土壤质量总体良好,清洁土壤面积34.84万km2,其重金属含量继承了自然背景特征; 三级及以下土壤面积6.94万km2,呈斑块及星点状分布于赣东北、赣南、湖南长沙—郴州一带、沿江及贵阳、昆明等地,其重金属为自然富集或受矿业开发、煤炭和石油的燃烧及工业“三废”排放的影响。酸性土壤面积33.56万km2,分布于江西、湖南、宁波—台州沿海和金华衢州盆地,碱性土壤面积15.69万km2,分布于苏北平原、环洞庭湖、成都平原以及沿长江一线,其土壤酸碱度与土壤类型有关。土壤有益元素丰缺与第四系沉积物成土母质有关,土壤有益元素适量及以上区域面积34.44万km2,分布于四川阿坝、成都盆地、环洞庭湖、环鄱阳湖、安徽沿江、苏北沿海和杭嘉湖平原; 土壤有益元素缺乏区面积13.89万km2,分布于赣南、江淮、鄂东北以及云南玉溪等地。绿色农产品产地最适宜区、适宜区和不适宜区面积分别为22.49万km2、18.78万km2和18.28万km2。依据区内绿色农产品产地适宜性、土壤环境质量和立地条件划分出7片永久农田保护建议区。  相似文献   

15.
基于东北黑土地1∶250 000土地质量地球化学调查数据,按照《土地质量地球化学评价规范》和《土壤环境质量农用地土壤污染风险管控标准(试行)》,对讷河市土壤养分、土壤环境质量、土壤综合质量及绿色产地适宜性进行评价. 结果显示讷河市土地肥沃,环境清洁,适合于发展绿色农业:1)土壤养分单指标N、P、K、有机质、CaO、MgO、Fe2O3、S、B、Zn、Mn、Cu、Mo、Co、Ge、V共16项中,除Cu、Zn为较缺乏和Ge、B缺乏外,其他指标均为丰富和较丰富;土壤养分综合等级以较丰富和中等为主,分布面积分别为3 666.74 km2和2 574.11 km2,占全区面积的56.94%和39.97%. 2)土壤环境质量以一等(无风险)为主,一等区面积6 435.78 km2,占全区面积的99.94%;二等(风险可控)区面积仅4 km2,占0.06%. 3)全区土壤质量综合等级以优质为主,优质土壤面积3 806.06 km2,占全区面积的59.11%;良好级土壤面积2 574.11 km2,占39.97%;中等级土壤面积59.61 km2,占0.92%;没有四等(差等)和五等(劣等)土壤. 4)符合一级绿色食品产地的土壤面积为6 461.5 km2,占全区面积的97.5%;符合二级绿色食品产地的土壤面积为38.1 km2,占全区面积的0.58%;不符合绿色食品产地的土壤面积为65.6 km2,占全区面积的0.99%.  相似文献   

16.
基于多源数据的近50 a玛纳斯河流域冰川变化分析   总被引:3,自引:3,他引:0  
我国新疆玛纳斯河流域的冰川变化极大影响流域内及其周边地区的经济社会发展.使用国产高分一号(GF-1)遥感影像和Landsat8数据,分别通过基于多源数据的冰川识别方法和波段比值法获取了2013年玛纳斯河流域冰川信息,结合玛纳斯河流域第一次(1964年)、第二次(2009年)冰川编目数据与1998年、2003年TM影像冰川目视解译结果等四期的冰川边界矢量数据,对玛纳斯河流域1964-2013年50 a来的冰川变化特征进行了综合分析.研究结果显示:玛纳斯河流域冰川自2009年以来有略微增加的趋势,2013年冰川面积比2009年增加了10.25 km2,这在一定程度上抑制了长期以来冰川的快速消融;1964-2013年,玛纳斯河流域的冰川总体呈减少趋势;冰川面积从1964年的673.61 km2减少到2013年的512.07 km2,面积减少161.54 km2,减少23.98%;近50 a来,流域内冰川面积在海拔4500 m及以上呈净增加趋势,而在海拔4500 m以下呈净减少趋势,冰川在海拔(4000±100) m左右退缩的速率最大,高达0.5 km2·a-1;冰川面积的减少主要体现为大量的冰舌后退和小面积冰川的快速消融,超过85%的冰川冰舌后退距离在200 m以上;该流域的冰川变化主要集中在南、北两个坡向,在南坡向上出现明显的先减少和后增加的变化趋势;1964-2013年,玛纳斯河流域的气温和降水量呈较明显的增加趋势,线性增加率分别为0.26℃·(10a)-1和16.07 mm·(10a)-1.研究结果表明气温的持续升高和降水量的增加分别是导致玛纳斯河流域冰川减少期和增加期形成的主要原因.  相似文献   

17.
基于2013~2018年Landsat8-OLI 9个时相的遥感数据,采用湿地三类分级系统,以决策树分类法提取不同时间的湿地类型,结果表明:2013-2018年东洞庭湖湖泊草洲、泥滩地和水域面积呈现动态变化,其中草洲面积平均714km2、泥滩地面积平均81km2、水域面积平均502km2;湖区草洲和水体面积占比大,且此消彼长,草洲面积平均占比55.1%,水域面积平均占比38.7%,泥滩地面积最少平均占比仅6.2%;水位变化是湖区草洲出露面积的主控因素,随水位升高,草洲出露面积逐渐减小,且在典型高低水位下草洲空间分布差异明显,高水位下主要分布在南部柴下洲和北部藕池河一带地形较高区域,而低水位条件下湖区大部分草洲面积分布广泛,其面积占湖区总面积的74%。成果进一步验证了东洞庭湖不同水情下的湿地景观格局。  相似文献   

18.
黑龙江典型黑土区土壤侵蚀遥感监测技术研究   总被引:1,自引:0,他引:1  
杨佳佳  白磊  吴嵩 《地质与资源》2019,28(2):193-199
以遥感和GIS技术为支撑,利用修正后的通用土壤流失方程RUSLE为评价模型,对黑龙江省绥化市2003、2015年的土壤侵蚀量进行了计算,并结合水土流失强度分级标准,生成了黑龙江省绥化市水土流失强度分布图.在此基础上,对黑龙江省绥化市2003、2015年的水土流失现状、空间分布及2003~2015年水土流失的变化及原因进行了分析.结果表明:从2003~2015年间,水土保持措施增加,土壤侵蚀状况有向好的趋势.从统计结果看出,强度、极强度侵蚀面积比例减少,相对的轻度和微度的侵蚀面积增加.2015年,强度侵蚀等级水土流失面积相比2003年减少522.75 km2,轻度侵蚀增长近1000 km2.  相似文献   

19.
段水强  曹广超  刘弢  吴庆  李燕 《冰川冻土》2013,35(5):1237-1247
选取青海羌塘盆地1976-2010年5期遥感影像, 解译了该区域面积大于1 km2以上的67个湖泊面积.结果表明: 1976-1994年, 研究区大部分湖泊呈萎缩状态, 湖泊面积萎缩了446.8 km2, 萎缩幅度为12.5%;1994-2001年, 湖泊面积由3 132.6 km2增加到3 395.2 km2, 至2007年和2010年, 湖泊持续扩张, 面积分别达到3 641.7 km2和3 836.2 km2, 其中2010年的湖泊面积较1994年增加了22.5%, 甚至超过了1976年, 2007-2010年期间湖泊扩张强度最大.同时, 分析了研究区1959-2010年的气候水文变化, 结果显示年平均气温呈显著上升趋势, 年蒸发量在1959-1980年呈下降趋势, 以后趋于稳定, 年降水量、年径流量在1998-1999年间出现了突变上升.湖泊面积对气候、水文的响应关系表明, 近期的湖泊扩张主要由降水、径流偏丰引起, 与气温上升以及蒸发变化的关系并不显著, 气温上升导致冰川退缩所增加的水量对近期湖泊扩张影响较小. 与青海湖、黄河源等地相比, 青海羌塘盆地近期气候、水文、湖泊面积发生转折的时间要提前7 a左右.  相似文献   

20.
基于EVI和MNDWI指数的石羊河流域水体、植被时空变化特征   总被引:3,自引:2,他引:1  
任媛  刘普幸 《冰川冻土》2018,40(4):853-861
水体和植被是生态环境的重要自然要素,水体和植被的动态研究对认识干旱区生态环境的变化过程及保护和恢复具有重要的理论和实践意义。基于2001-2016年96期MODIS遥感数据和1992、1998、2004、2010、2016年5年Landsat遥感数据,提取EVI植被指数和改进的归一化水体指数(MNDWI),结合一元线性回归趋势分析方法对石羊河流域的水体和植被的时空变化特征进行了分析。结果表明,近16年来,流域植被EVI整体呈增加趋势,植被覆盖度上升,但随着季节变化,上、中、下游植被覆盖度变化分异明显;EVI植被指数年际变化倾向率与之一致。植被覆盖小幅增加地区占21.5%(春)、14.9%(夏)、8.8%(秋),保持不变区域占流域总面积的52.5%(春)、40.2%(夏)、35.0%(秋);此外,仍有轻度退化区和严重退化区。近25年来,研究区水域面积总体呈增大-减小-增大的波动变化趋势,1998年水域面积增大至725.92 km2,此后水域面积2010年减小至710.11 km2;但2010年以后水域面积又呈稳定增加趋势,水域面积2016年增加至723.00 km2。自然因素和人为因素是研究区水体和植被时空变化的驱动因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号