首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
阳宗海硅藻群落对水体污染和水文调控的长期响应模式   总被引:2,自引:2,他引:0  
在人类活动持续干扰的背景下,云南部分湖泊面临着污染物输入增加的环境压力,特别是营养盐富集和重金属污染。以云南地区遭受过严重工业污染的阳宗海为研究对象,通过沉积物硅藻群落、砷浓度、营养元素与稳定同位素、粒度等多指标分析,结合文献记录和湖泊调查结果,揭示了阳宗海硅藻群落对湖泊富营养化和砷污染的长期响应特征,并识别了不同时期的主要环境压力与其驱动强度。结果表明:长期的营养盐累积使得浮游硅藻逐渐占据优势地位,且耐污染的底栖硅藻种的快速增加与砷污染出现的时段一致。在阳宗海长期富营养化的背景下,当水体砷污染物浓度达到一定阈值水平后,硅藻群落结构的改变和多样性的降低都指示了湖泊生态系统发生了灾难性的转变。同时1965年开始的湖泊引水工程导致了贫营养种的突然增加。因此,水体富营养化、重金属污染与湖泊水文调控是导致阳宗海硅藻群落长期变化的主控因子,对阳宗海的生态修复与综合治理需要综合考虑不同胁迫因子的长期影响与驱动作用。  相似文献   

2.
We studied the eutrophication history of a tropical shallow reservoir in the S?o Paulo metropolitan region, southeast Brazil. We analyzed grain size, geochemistry, diatom assemblages, and land-use records in a sediment core from the reservoir to infer its trophic state history during the last ~110?years (1894?C2005). Eighty diatom species were observed in the core and shifts in the relative abundances of planktonic and benthic taxa indicate major limnological changes associated with complex interactions between hydrologic factors and eutrophication. Discostella stelligera was associated with deforestation and water physical changes whereas Aulacoseira granulata, a species abundant throughout the core, was mostly associated with high flux conditions and erosion events, regardless of trophic state. Eutrophication was triggered by construction of the city zoo (1958) and installation of the S?o Paulo State Department of Agriculture (1975) within the Gar?as watershed, and increasing loads of untreated sewage from these institutions. The data suggest that deterioration in water quality began after ~1975 and markedly accelerated after ~1990. The reservoir has been hypereutrophic since 1999. Steady increases in geochemical proxies for trophic state, along with a decrease in C/N ratios, indicated higher nutrient concentrations and the prevalence of autochthonous production towards the core top. Appearance of Achnanthidium catenatum ~1993 highlighted the onset of a marked eutrophication phase. The subsequent dominance of Planothidium rostratum and Cyclotella meneghiniana suggested a sharp shift to a hypereutrophic state since 1999. Land-use history proved valuable for validating the chronology and interpreting anthropogenic impacts. Multi-proxy analysis of the sediment record provided an effective tool for tracking ecological shifts in the reservoir ecosystem. This study provides the first reconstruction of lake eutrophication history in Brazil and highlights the importance of hydrological/physical changes as drivers of diatom assemblage shifts in reservoirs, which may confound trophic state inferences based on shifts in the planktonic/benthic diatom ratio.  相似文献   

3.
Diatoms, pollen, physical and magnetic analyses of the sediments have been used to reconstruct the development over the last 6000 years of Lake Bussjösjön, a small lake in southern Sweden. Stratigraphic variations in a core of more than 15 m reveal changes in diatom assemblages, which correspond closely to changes in pollen, loss-on-ignition, and magnetic measurements that are related to land use and vegetation changes in the catchment. From ca 6000 BP to 2700 BP, a forest surrounded what was then a slightly eutrophic lake. The sudden appearance of Cyclostephanos dubius (Fricke) Round and several epiphytic/epipsammic diatoms at 2700 BP coincides with deforestation of the catchment (2700 BP to 2500 BP). A change in land use from predominantly pasture to arable land from 1300 BP to 1100 BP caused a high level of soil erosion with a decrease of C. dubius and the increase of Stephanodiscus species. An increase of epiphytic/epipsammic species coincides with increased arable farming and the change from a field-rotation to a crop-rotation system, and shows not only an increase in eutrophication but also changes in water depth. The influence of the catchment through time resulted in a smaller, shallower and eutrophic to hypertrophic lake.  相似文献   

4.
Musky Bay in Lac Courte Oreilles, Wisconsin, USA, is currently eutrophic. This large, shallow bay of an oligotrophic lake possesses the densest aquatic plant growth and a floating algal mat. Paleoecological reconstructions encompassing the last 130 years, were based on multiproxy analyses of sediment cores from three coring sites, two within the bay and one in the lake itself. These data were compared to historical records of the construction and expansion of two commercial cranberry bogs and shoreline residential homes to identify temporal and causal relations of eutrophication. The proxies investigated included: minor and trace elements; biogenic silica; and the diatom community. Post-depositional diagenesis of organic carbon, nitrogen, and phosphorus in the upper 30 cm of the core obscured records of historical ambient nutrient concentrations in the bay obviating their usefulness for this purpose. In contrast, calcium, magnesium, and potassium concentration profiles appeared to reflect runoff of soil amendments applied to the cranberry bogs and aerial fertilizer spraying over the eastern bog adjacent to Musky Bay. The increase in aluminum content since about 1930 coincided with the historical trend in shoreland development and construction of the original commercial cranberry farm. The biogenic silica profile recorded a steady increase of nutrients to Musky Bay over the last several decades. Stratigraphic changes in the diatom community indicated that nutrient input began to increase in the 1940s and accelerated in the mid-1990s with the onset of a noxious floating algal mat. The diatom community indicates the bay has possessed a significant macrophyte community for at least the last 200 years, but increased nutrient input was manifested by a change in the composition, and an increase in the density of the epiphytic diatom community. Cranberry farming appeared to be the major source of nutrients because the diatom community changes occurred prior to the significant increase in residential housing.  相似文献   

5.
We examined changes at the community and population level of sedimentary diatoms over a wide temporal and spatial gradient of metal pollution encountered in cores from three lakes in the Abitibi mining region (Québec, Canada). Diatom communities on the whole appeared to be very tolerant of metal contamination, as shown by diatom cell accumulation rates decreasing only under the most severe conditions of contamination, which were found from the 1930s to the 1980s in Lac Dufault (cadmium, up to 94 μg/g dry sediment; Cu, up to 8600 μg/g; Zn, up to 9000 μg/g). Under the moderate conditions of contamination observed in the other two lakes and in the most recent sediment of Lac Dufault, diatom cell accumulation rates tended to increase over values typical of the pre-mining period. However, there were increasing rearrangements of the community composition along the contamination gradient. Under moderate metal enrichment, the diatom community of Lac Vaudray experienced only subtle changes, with Cyclotella stelligera, albeit decreasing, remaining the dominant taxon. In the intermediately contaminated Lac Caron, several benthic taxa, noticeably Cymbella silesiaca and several Fragilaria species, rose in taxonomic importance. The most extreme contamination observed in Lac Dufault led to a severely impoverished community almost entirely represented by Achnanthes minutissima and Brachysira vitrea. With increasing levels of contamination, there was a shift from planktonic to benthic taxa and morphotypes and a consistent decrease in the siliceous stomatocysts/diatom frustules ratio. These trends suggest that littoral zones may represent an important refugium under conditions of high contamination. Responses to metal stress were in general more evident at the population than at the community level. Cyclotella stelligera and B. vitrea had a consistent negative and positive response, respectively, along the gradient and are the most promising indicators of metal pollution for this region.  相似文献   

6.
对山仔水库、东张水库、东圳水库、山美水库4个典型的大型饮用水源地水库富营养状况和污染成因进行综合分析与评价.结果表明,4个典型的大型饮用水源地水库均已出现不同程度的富营养化.农田径流和畜禽养殖等面源污染是各水库流域的主要污染源,富营养化已经造成明显的经济损失.在此基础上提出了控制水库富营养化的对策与措施,以期为福建省饮用水源地水库可持续利用提供参考.  相似文献   

7.
There has been much debate over the relative importance of environmental selection and spatial variation on community organization in microorganisms. To assess the importance of environmental or spatial variables in diatom species assemblages in Gall Lake, northwest Ontario, 41 surface-sediment samples were collected in a two-dimensional gridded pattern along and across depth contours. A depth-constrained cluster analysis separated the diatom flora into three communities: a shallow-water benthic zone (B1); a deeper-water benthic zone (B2); and a planktonic zone (P). Redundancy analysis (RDA) confirmed that water depth was a major predictor of variation in the flora. Further RDAs and variation partitioning using orthogonal polynomials and Moran’s eigenvector maps showed that spatial location had minimal effect on the diatom assemblages. Principal components analysis grouped the diatom flora not only by assemblage, but also by water depth, regardless of two-dimensional spatial separation, suggesting the importance of the environmental gradients associated with lake depth. These findings indicate that environment is a more important explanatory variable than spatial variables for diatoms within lakes, suggesting dispersal plays a limited role in intra-lake diatom distributions.  相似文献   

8.
Until recently, major anthropogenic impacts on freshwater ecosystems were believed to be rare in North America prior to the period of European colonization. However, recent paleolimnological and archaeological data collected from the Canadian Arctic suggest that the whaling activities of Thule Inuit, who lived in small, nomadic communities, altered freshwater ecosystems centuries earlier. Using a comparative paleolimnological approach from two ponds situated adjacent to a former Thule winter settlement on south-eastern Bathurst Island (Nunavut, Arctic Canada), we record marked ecological changes in pond ecology due to eutrophication from the Thule’s activities. The geography of our study site provided an interesting and rare opportunity for a comparative paleolimnological study of long-term Thule impacts on polar limnology, because our two study ponds (only ~50 m apart) were nearly identical in size and in geological and climatic settings, but differed markedly in the magnitude of Thule influence. Here, we recorded striking changes in diatom species assemblages, spectrally-inferred primary production, and nutrient geochemistry, indicating eutrophication in a small pond draining 18 Thule whale houses. Input of marine-derived nutrients from sea mammal carcasses used by the Thule for both sustenance and the construction of winter settlements, as well as other anthropogenic activities, coincided with a notable increase in the eutrophic diatom taxon Stephanodiscus minutulus, whereas no comparable changes were recorded in the nearby control pond for the duration of the sedimentary record. Although the diatom changes recorded in the affected site persisted after the period of Thule occupation, the most recent sediments and water chemistry suggest that the pond has largely recovered to near pre-impact conditions.  相似文献   

9.
Lake Naivasha, Kenya, is one of a number of freshwater lakes in the East African Rift System. Since the beginning of the twentieth century, it has experienced greater anthropogenic influence as a result of increasingly intensive farming of coffee, tea, flowers, and other horticultural crops within its catchment. The water-level history of Lake Naivasha over the past 200 years was derived from a combination of instrumental records and sediment data. In this study, we analysed diatoms in a lake sediment core to infer past lacustrine conductivity and total phosphorus concentrations. We also measured total nitrogen and carbon concentrations in the sediments. Core chronology was established by 210Pb dating and covered a ~186-year history of natural (climatic) and human-induced environmental changes. Three stratigraphic zones in the core were identified using diatom assemblages. There was a change from littoral/epiphytic diatoms such as Gomphonema gracile and Cymbella muelleri, which occurred during a prolonged dry period from ca. 1820 to 1896 AD, through a transition period, to the present planktonic Aulacoseira sp. that favors nutrient-rich waters. This marked change in the diatom assemblage was caused by climate change, and later a strong anthropogenic overprint on the lake system. Increases in sediment accumulation rates since 1928, from 0.01 to 0.08 g cm−2 year−1 correlate with an increase in diatom-inferred total phosphorus concentrations since the beginning of the twentieth century. The increase in phosphorus accumulation suggests increasing eutrophication of freshwater Lake Naivasha. This study identified two major periods in the lake’s history: (1) the period from 1820 to 1950 AD, during which the lake was affected mainly by natural climate variations, and (2) the period since 1950, during which the effects of anthropogenic activity overprinted those of natural climate variation.  相似文献   

10.
The primary producer community of Lake Apopka, a large (125 km2), shallow (mean depth, 1.7 m), polymictic Florida lake, shifted from macrophyte dominance to phytoplankton dominance in the 1940s. Today, frequent wind resuspension of highly organic, unconsolidated sediments supports a meroplanktonic community that is predominantly diatoms, but during calm periods the algal community is dominated by planktonic cyanobacteria. Sedimentary algal pigments (chlorophyll derivatives and carotenoids) and chemical proxies for nutrient enrichment (polyphosphate, total phosphorus and biogenic silica) in three sediment cores were used to investigate historic changes in primary producers. Sediments were separated into three stratigraphic zones using multivariate statistical techniques. Stratigraphic zonation was established in each core although sediment deposition at one site was insufficient to adequately resolve temporal changes. These results show the importance of selecting suitable sites for paleolimnological studies. The oldest zone represents macrophyte-derived sediments, and the two overlying zones represent phytoplankton-derived sediments deposited since the 1940s. Algal pigments in the most recent sediment zone show little degradation, which might be due to the presence of viable meroplankton in the sediment. After the initial primary producer shift from macrophytes to phytoplankton, the lake experienced a short period of cyanobacterial dominance followed by a period of benthic diatom abundance before being replaced by the present algal community consisting of cyanobacteria and meroplanktonic diatoms. Chlorophyll derivatives and carotenoids were highly correlated with total phosphorus. Historic trends inferred from the data include algal and cyanobacterial productivity that increased with increased phosphorus loading. The study demonstrates that valid paleolimnological proxies for historic eutrophication are available in loosely consolidated sediments of shallow, subtropical lakes.  相似文献   

11.
Fossil diatoms from lake sediments have been used to infer both past trophic state and climate conditions. In Europe, climate reconstructions focused on northern and alpine regions because these areas are climatically sensitive and anthropogenic impact was low. In contrast, anthropogenic impact was often high in the central European lowlands, such as northern Germany, beginning in the Neolithic Age, ~3700 BC. Since that time, trophic state change was the main factor that affected diatom assemblages in central European lowland lakes. Therefore, it was considered difficult or impossible to identify climate changes in the region using sedimented diatoms. We used diatom assemblage changes, diatom-inferred total phosphorus concentrations and the relative abundance of planktonic diatoms from sediments of three lakes that differ in their location, size, morphology, catchment area and current trophic state to test whether we could distinguish between trophic state and climate signals over the past 5,000 years in northern Germany. In this study, changes in trophic state and climate were well differentiated. In the study lakes, relative abundance of planktonic diatoms seems to be linked to the length of lake mixing phases. Planktonic diatom abundance decreased during years with shorter mixing duration, and these shorter mixing times probably reflect colder winters. The diatom-inferred periods of short mixing phases from 1000 BC to AD 500 and from AD 1300 to 1800 coincide well with two known cooling phases in Europe and the North Atlantic region.  相似文献   

12.
Diatom preservation can be a major taphonomic issue in many lakes but is often unrecognised and its impacts on qualitative and quantitative inferences (such as productivity and biodiversity estimates) from sedimentary archives are seldom explored. Here two palaeolimnological case studies of 20th-century anthropogenic eutrophication of freshwater lakes in Northern Ireland (Lough Neagh and Lough Augher) are re-visited and new data presented on diatom preservation. Assessing problems of taphonomy challenges previous interpretations of silica dynamics and diatom productivity at these sites. Diatom preservation was assessed in both sediment trap material and sediment cores from Lough Neagh, and in sediment cores from Lough Augher. Preservation data, combined with geochemical analysis (Si, Fe), provide an insight into silica cycling and diatom accumulation over a range of temporal scales from these lakes. Diatom preservation was generally good for the Lough Neagh material, although differential (better) preservation of the smaller Aulacoseira subarctica compared to the larger Stephanodiscus neoastraea sensu lato valves was clear, especially in sediments. Porewater silica showed a complex seasonal pattern in the upper sediment, against expectations of steady-state. The Lough Augher material was generally poorly preserved, although preservation (dissolution) was significantly (and positively) correlated to bulk sedimentation rate, and was found to be a major control on (net) diatom accumulation rate across the basin. Past seasonal and severe anoxia at Lough Augher did not improve diatom preservation, contrary to some previous studies, which may be due to extreme changes in sedimentary redox conditions. Finally, using published experimental relationships between dissolution and diatom valve loss, correction factors were applied to previously published profiles of diatom accumulation over the last ~150 years (biovolume from Lough Neagh and frustule accumulation rate from Lough Augher), which suggest that diatom productivity estimates from sedimentary records are underestimated by a factor of 2–4 due to dissolution effects alone. The results clearly have implications for the reliability and accuracy of diatom-based inferences made from sediment records, both qualitative and quantitative, especially for those that employ diatoms as direct measures of productivity or biodiversity.  相似文献   

13.
A 43 cm by 5 cm diameter sediment core sample was obtained from Ford Lake reservoir in Washtenaw County, Michigan, and sectioned at 1 cm intervals. The purpose of this study was to determine whether diatom communities in this reservoir have undergone quantifiable changes in abundance and composition since its creation. Thirty-one cm of this core appeared to represent material deposited since the creation of the reservoir based on changes in diatom abundance, the physical composition of the sediment and the change in biogenic SiO2 concentration. Fortyseven species of diatoms were identified total concentrations of diatom remains varied from 1×104 g-1 to 1×107 g-1. Prior to the establishment of the reservoir, the diatom flora was dominated by benthic taxa. Benthic diatoms were numerous throughout the entire core, but eutrophic taxa (e.g., Aulacoseira italica, Aulacoseira granulata, Stephanodiscus niagarae, Fragilaria crotonensis) dominated much of the core after the reservoir's creation. Total diatom density increased about tenfold in the about the first 10–15 years after the reservoir's creation before declining markedly.  相似文献   

14.
Diatom species counts were conducted on 171 sediment samples from the 13-m-long core PG1351 from Lake El’gygytgyn, northeast Siberia. The planktonic Cyclotella ocellata-complex dominates the diatom assemblage through most of the core record, persisting through a variety of climate conditions. Periphytic diatoms, although less abundant, have greater diversity and greater down-core assemblage variation. During warm climate modes, longer summer ice-free conditions may have allowed more complex diatom communities to develop in shallow-water habitats, and enhanced circulation may have increased transport of these diatoms to deeper parts of the lake. Zones of low overall diatom abundance further support inferred intervals of low lake productivity during times of extended lake ice and snow cover. More data on the modern spatial and temporal distribution of diatom species in the Lake El’gygytgyn system will improve inferences from core records. This is the last in a series of eleven papers published in this␣special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

15.
In order to assess the recent anthropogenic environmental changes in Lake Kitaura, central Japan, changes during the past few centuries were reconstructed from results of radiometric and tephrochlonological age determination, magnetic susceptibility measurements, total organic carbon analyses, total nitrogen analyses and fossil diatom analyses on a sediment core from the lake. A total of six major and sub-zones are recognized according to the diatom fossil assemblages, and we discuss aquatic environmental change in Lake Kitaura mainly based on these diatom assemblage change. Zone Ia and Zone Ib (older than AD 1707) are marine to brackish. In Zone IIa (AD␣1707–AD 1836), most of the brackish diatoms disappeared, and were replaced by freshwater species indicating a decrease in salinity. We interpret the salinity decrease in Zone I–IIa as a sea-level fall during the Little Ice Age. The salinity of the lake decreased to near freshwater conditions in Zone IIb (AD 1836–AD 1970), which could arise from alteration in River Tone or development of a sandspit in the mouth of River Tone in addition to sea-level change. In Zone IIIa (AD 1970–AD 1987), the diatom assemblage indicates a freshwater environment, and sedimentation rates increase rapidly. These changes reflect sedimentary environment change and an ecosystem transition due to the construction of the tide gate. In Zone IIIb (AD 1987–AD 2002), the diatom flux (valves cm−2 y−1) increased and species composition changed. The changes in Zone IIIb show a good agreement with limnological monitoring data gathered from the lake. These paleolimnological data suggest that the recent human-induced changes of the aquatic environment of the lake after the 1970s exceed rates during the period concerned in this study.  相似文献   

16.
During monthly investigations from 1996 to 2000, a hypolimnetic layer of phototrophic sulphur bacteria (Chromatium spp.) were observed in Lake Dudinghausen, a small dimictic lake in northern Germany. This paleolimnological study was initiated to detect if the occurrence of sulphur bacteria was related to cultural eutrophication or reflected natural conditions. Therefore, diatoms, algal pigments, okenone, geochemical proxies, and 210Pb and 137Cs were used in four sediment cores to investigate historical changes in trophic development, hypolimnetic redox conditions, anoxia and phototrophic sulphur bacteria abundances. Fossil diatoms, pigments, the ratio of chlorophyll derivatives to total carotenoids and the ratio of chlorophyll a to its derivatives suggest two phases of eutrophication coupled with hypolimnetic anoxia over the last ~80 years: a first phase from about 1923–1932 and a second from 1952 to 1982. In the first phase the ratios of Fe–Mn as well as Fe–Ca increased, suggesting seasonal anoxia. However, hypolimnetic anoxia was only weak because low levels of okenone suggest no mass development of sulphur bacteria. In contrast, sulphur bacteria increased during the early stages of the second eutrophication phase, suggesting increased temporal and spatial hypolimnetic anoxia. Surprisingly, the ratios of Fe–Mn as well as Fe–Ca decreased during this time. Possibly Fe, Mn and Ca were equally reduced through the intense anoxia. In the final stage, sulphur bacteria decreased again. As these bacteria need both anoxic conditions and a certain amount of light, the increased nutrient load probably led to low Secchi depth and therefore insufficient light conditions. In more recent years, diatoms and pigments suggest a decrease in nutrient levels. A second mass development of sulphur bacteria occurred, probably due to improved light conditions and continued anoxia in the upper hypolimnion. We conclude that the recent development of phototrophic sulphur bacteria do not represent natural conditions in Lake Dudinghausen. Furthermore, the upper sediments contain a completely new diatom flora that never occurred in older sediments of Lake Dudinghausen. Therefore, nutrient levels may eventually reach natural conditions, however they may not represent biological background reference conditions.  相似文献   

17.
Shallow lakes are among the most threatened ecosystems in the world and many contemporary studies have demonstrated declines in biodiversity due to anthropogenic forcing. Mostly, however, these studies have not covered the full period of human-induced diversity change in lakes which is typically over decades-centuries. Here we provide two examples of palaeoecological studies focussed on reconstructing biodiversity changes in contrasting shallow lake environments that demonstrate the efficacy of the approach—a shallow UK lake and a suite of floodplain lakes (called billabongs) in the Murray-Darling basin, Australia. In the Murray-Darling billabongs, complex sedimentary processes operate, sediment chronologies are less certain and replication of sites is needed to confirm patterns. The combination of sediment records from 10 billabongs showed that diatom diversity changes pre- and post-European (>1850) disturbance were inconsistent; however, reductions in diversity were more common and appear to reflect reductions in macrophyte abundance. At Felbrigg Lake, a multi-proxy study with strong chronological control demonstrated divergent responses of macrophyte, diatom, cladoceran and chironomid richness and diversity to a century of eutrophication. Eutrophication of the site was qualitatively inferred from changes in the macrophyte community in turn reconstructed from plant macrofossils. Benthic cladocerans showed a consistent decline in richness through the record, reflecting the gradual reduction in their macrophyte associated habitat over the past century. Diatom richness and diversity responses were complex, with increases in diversity and richness linked to both increases and decreases in macrophyte species richness and abundance. Chironomid richness and diversity patterns were less consistently linked to eutrophication. The loss of the dominant zooplanktivore (perch) in the 1970s was reflected in the richness and diversity profiles for all groups. Our study reveals clear potential for using sediment cores to infer biodiversity change in shallow lakes and shallow lake regions. However, given the contrasting patterns of diversity change for the different biological groups both in Felbrigg Lake and between Felbrigg and the billabongs, caution is required when interpreting whole-ecosystem biodiversity changes (or the absence of change) based on single as opposed to multi-proxy studies.  相似文献   

18.
Taihu Lake is the third largest freshwater lake in China and has been experiencing eutrophication problems for several decades. Diatoms in short sediment cores from three bays in northern Taihu Lake were studied in addition to 1-year of seasonal phytoplankton samples in order to evaluate the rate and magnitude of nutrient enrichment. The dominant species found in the phytoplankton samples appeared in high percentages in the surface sediment samples, suggesting that the latter faithfully record the modern diatom flora. The diatom preservation status varied among the three cores, while in all cores the preservation deteriorated with sediment depth. Due to the superior diatom preservation in the core from Mashan Bay, the fossil diatom record of this core and an established diatom total phosphorus (TP) transfer function were used to reconstruct the nutrient history of Taihu Lake. Diatom assemblages changed from Aulacoseira-dominated to other eutrophic planktonic species, such as Stephanodiscus minutulus, Cyclostephanos tholiformis, Cyclotella atomus, C. meneghiniana and S. hantzschii in ca. 1980. Diatom-inferred TP concentrations exhibited little change prior to 1980, with values around 50 μg/l. However, after 1980 TP concentrations increased significantly and remained in excess of 100 μg/l, reflecting eutrophication of Taihu Lake. Comparison with TP measurements in the water column from 1988 to 2004, as well as the analogue analysis among fossil and modern samples, demonstrates that the diatom-TP inference model can reliably hindcast past TP concentrations. Therefore, the baseline TP value of about 50 μg/l, can be used as a restoration target for Taihu Lake. However, due to the complexity of this very large, shallow aquatic ecosystem, caution should be exercised when employing the diatom record to track eutrophication. Further studies on the mechanism of diatom distribution, evolution and preservation are recommended for Taihu Lake.  相似文献   

19.
Eighteen lakes were added to a published training set of 46 British Columbia (BC) lakes in order to expand the original range of total phosphorus (TP) concentrations. Canonical correspondence analysis (CCA) was used to analyze the relationship between diatom assemblages and environmental variables. Specific conductivity and [TP] each explained significant (P0.05) directions of variance in the distribution of the diatoms. The relationship between diatom assemblages and [TP] was sufficiently strong to warrant the development of a weighted-averaging (WA) regression and calibration model that can be used to infer past trophic status from fossil diatom assemblages.The relationship between observed and inferred [TP] was not improved by the addition of more eutrophic lakes, however the [TP] range and the number of taxa used in the transfer function are now superior to the original model. Diatom species assemblages changed very little in lakes with TP concentrations greater than 85 µg 1–1, so we document the development of a model containing lakes with TP85 µg 1–1. The updated model uses 59 training lakes and covers a range of species optima from 6 to 41.9 µg 1–1 TP, and a total of 150 diatom taxa.The updated inference model provided a more realistic reconstruction of the anthropogenic history of a highly eutrophic BC lake. The model can now be used to infer past nutrient conditions in other BC lakes in order to assess changes in trophic status.  相似文献   

20.
The eutrophication history of a tropical water supply reservoir in Brazil   总被引:1,自引:0,他引:1  
Guarapiranga Reservoir is the second most important public water supply in São Paulo, Brazil and has been eutrophic for several decades. We inferred the major ecological shifts for the period 1919–2010 related to multiple stressors (forest flooding, hydrological change, use of algicide and eutrophication), using geochemistry (TOC, TN, TP, C/N, δ15N, δ13C) and diatom assemblages in a short (75-cm) sediment core. Thirty-two diatom species were abundant in the core and stratigraphically constrained incremental sum of squares analysis enabled identification of three diatom zones and four subzones, i.e. depths at which marked changes in species composition occurred. Early diatom assemblages were dominated by benthic, oligotrophic taxa, mainly Eunotia, influenced by flooded vegetation after dam construction. A shift to dominance by a planktonic species (Eunotia tukanorum) occurred ca. 1932, during the period of initial physical disturbance and early use of the water body as a public water supply. Diatoms and geochemical variables show that the reservoir was oligotrophic from ~1919 to 1947. Eutrophication began ~1975 and by the early 1980s the reservoir had become eutrophic, in response to an explosive increase in human population in the watershed. Severe cultural eutrophication has persisted since ~1990. Higher concentrations of copper in the sediments, beginning in 1991, reflect the increased use of copper sulfate to control cyanobacteria blooms and provide a chronological marker. Higher δ15N values in recent sediments indicate greater sewage inputs and low C/N values reflect the predominant contribution of algae to sediment organic matter. Eutrophic taxa Cyclotella meneghiniana and Nitzschia sp. dominate recent diatom assemblages, along with Aulacoseira granulata, a species that is tolerant of copper sulfate. Diatom assemblages reflect multiple stressors, however, geochemical information provides a better understanding of the early phase of the reservoir. Paleolimnologically documented trophic state changes in this important drinking water supply are largely attributable to increased urbanization of the drainage basin and inputs of sewage. Management efforts should focus on mitigating this nutrient source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号