首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
1.5和2℃升温阈值下中国温度和降水变化的预估   总被引:1,自引:0,他引:1  
基于CMIP5耦合气候模式模拟结果对1.5和2℃升温阈值时中国温度和降水变化的分析表明,1.5℃升温阈值时,中国年平均升温由南向北加强且在青藏高原地区有所放大,季节尺度上升温的空间分布与其类似,就区域平均而言,RCP2.6、RCP4.5和RCP8.5情景下中国年平均气温分别升高1.83、1.75和1.88℃,气温的季节变幅以冬季升高最为显著;除华南和西南地区外中国大部分地区年平均降水量增多,降水的季节差异明显,以夏季降水的分布模态与年平均降水量的分布最为相似,区域平均的年降水量分别增加5.03%、2.82%和3.27%,季节尺度上以冬季降水增幅最大。2℃升温阈值时,RCP4.5和RCP8.5情景下中国年平均温度的空间分布与1.5℃升温阈值基本一致,中国年平均气温分别升高2.49和2.54℃,季节尺度上气温的变化以秋、冬季增幅最大;中国范围内年平均降水量基本表现为增多趋势,其中,西北和长江中下游部分地区表现为明显的季节差异,区域平均的年降水量分别增加6.26%和5.86%。与1.5℃升温阈值相比较,2℃升温阈值时中国年平均温度在RCP4.5和RCP8.5情景下分别升高0.74和0.76℃,降水则分别增加3.44%和2.59%,空间上温度升高以东北、西北和青藏高原最为显著,降水则在东北、华北、青藏高原和华南地区增加最为明显。   相似文献   

2.
利用CMIP5耦合气候模式的模拟结果,分析了不同排放情景下1.5℃和2℃升温阈值出现的时间。多模式集合平均结果表明:RCP2.6、RCP4.5和RCP8.5排放情景下,全球地表温度将分别在2029年、2028年和2025年达到1.5℃升温阈值;RCP2.6情景下直至21世纪末期都未达到2℃升温阈值,RCP4.5和RCP8.5排放情景下达到2℃升温阈值的时间分别为2048年和2040年。伴随着排放情景的升高,完成从1.5℃升温阈值到2℃升温阈值所需要的时间缩短。区域尺度上,达到同一升温阈值的时间主要表现为陆地比海洋早,且陆地对排放情景差异的敏感性相对较差,而海洋达到升温阈值的时间则随着排放情景的升高而明显提前。中国达到相应升温阈值的时间要早于全球,且以东北和西北地区出现的时间最早。  相似文献   

3.
利用CMIP5耦合模式RCP2.6、RCP4.5和RCP8.5情景预估结果,以1890一1900年为基准气候,确定了2℃全球变暖时间、对应时期青藏高原平均气候和极端气候事件变化幅度,多模式集合平均结果表明:RCP2.6、RCP4.5和RCP8.5情景下2℃全球变暖分别发生在2063年、2040年和2036年;对应着2℃全球变暖,三种情景下青藏高原平均气温分别升高2.99℃、3.22℃和3.28℃,均超过全球2℃的升温水平;年降水量亦增加,分别增加8.35%、7.16%和7.63%。受气温升高和降水量增多影响,RCP4.5情景下霜冻日数、冰封日数减少,暖夜日数、暖昼日数增多;RCP4.5情景下中雨日数、强降水量、降水强度均增加,持续干期天数减少。从各地平均气候和极端气候事件变化结果来看,柴达木盆地是青藏高原气候变化的敏感区。  相似文献   

4.
本文基于耦合模式比较计划第5阶段(CMIP5)的17个全球气候模式,确定了1.5℃温升(相对于1861-1880年)的发生时间,预估了全球升温1.5℃时,北半球冻土和积雪的变化,并对预估结果的不确定性进行了讨论。结果表明,全球平均地表温度在3种排放情景下(RCP2.6,RCP4.5,RCP8.5)分别于2027、2026、2023年达到1.5℃阈值。当全球升温1.5℃,北半球多年冻土南界北移1°~3.5°,冻土退化主要发生在中西伯利亚南部。多年冻土面积在全球升温1.5℃时,在RCP2.6、RCP4.5和RCP8.5排放情景下较1986-2005年分别减少约3.43×106 km2(21.12%)、3.91×106 km2(24.10%)和4.15×106 km2(25.55%);北半球超过一半以上的区域雪水当量减少,只在中西伯利亚地区略微增加;北美洲中部、欧洲西部以及俄罗斯西北部减少较显著,减少约40%以上。青藏高原多年冻土面积在RCP2.6、RCP4.5以及RCP8.5排放情景下分别减少0.15×106 km2(7.28%)、0.18×106 km2(8.74%)和0.17×106 km2(8.25%)。青藏高原冬、春季雪水当量分别减少约14.9%和13.8%。  相似文献   

5.
王晓欣  姜大膀  郎咸梅 《大气科学》2019,43(5):1158-1170
本文使用国际耦合模式比较计划第五阶段(CMIP5)中39个全球气候模式的试验数据,预估了相对于工业革命前期全球1.5℃升温背景下中国气温和降水变化。根据多模式中位数预估结果,在不同典型浓度路径(RCPs)情景下,相对于工业革命前期全球1.5℃升温分别发生在2034年(RCP2.6)、2033年(RCP4.5)和2029年(RCP8.5)。全球升温1.5℃时,中国年和季节气温平均上升1.8℃和1.6~2.1℃,其中冬季最强。增温总体上由南向北加强,青藏高原为高值中心。年和各季节增温均超过其自然内部变率,区域平均的信噪比分别为3.4和1.6~2.7。年和季节降水整体上在中国北方增加、华南减少;区域平均的年降水增加1.4%,季节降水增加0.1%~5.1%,冬季增幅最大。年和季节降水变化要远小于其自然内部变率,区域平均的信噪比仅为0.1和0.01~0.2。总体上,模式对气温预估的不确定性较小,对降水的偏大,其中对季节尺度预估的不确定性要高于年平均结果。  相似文献   

6.
基于参加国际耦合模式比较计划第5阶段(CMIP5)的29个全球气候模式开展的历史气候模拟和3种典型浓度路径(RCP2.6、RCP4.5、 RCP8.5)下21世纪气候预估的结果,分析了单个模式和多模式集合平均(MME)的21世纪全球与中国年平均地表气温(ASAT)变化特征及2℃升温阈值的出现时间。多模式集合平均的结果显示:全球和中国年平均地表气温均将继续升高,21世纪末的升温幅度随着辐射强迫的增大而增大。RCP2.6情景下,年平均地表气温增幅先升高后降低,全球(中国)年平均地表气温在2056年(2049年)达到升温峰值,21世纪末升温1.74℃(2.12℃);RCP4.5情景下,年平均地表气温在21世纪前半叶逐渐升高,之后升温趋势减缓,21世纪后期趋于平稳,21世纪末全球(中国)年平均地表气温增幅为2.60℃(3.39℃);RCP8.5情景下,21世纪年平均地表气温快速升高,21世纪末全球(中国)年平均地表气温增幅为4.75℃(6.55℃)。全球平均的年平均地表气温增幅,在RCP2.6情景下没有超过2℃,RCP4.5和RCP8.5情景下分别在2047和2038年达到2℃。RCP2.6、RCP4.5和RCP8.5情景下中国年平均地表气温增幅连续5 a不低于2℃的时间分别在2032、2033和2027年,明显早于全球平均。任一典型浓度路径情景下,达到2℃升温的时间,北半球同纬度地区早于南半球,同半球高纬度地区早于低纬度地区,同纬度地区陆地早于海洋。3种不同典型浓度路径情景下21世纪全球和中国年平均地表气温将继续升高这一结果是可信的,RCP4.5和RCP8.5情景下全球和中国年平均地表气温增幅超过2℃的结果模式之间有较高的一致性。多模式预估的全球和中国年平均地表气温升幅和不同幅度升温的出现时间均存在一定的不确定性,预估结果的不确定性随预估时间的延长而增大;相同情景下,中国年平均地表气温预估的不确定性大于全球。  相似文献   

7.
利用RCP4.5和RCP8.5情景下区域气候模式RegCM4.0单向嵌套BCC_CSM1.1全球气候系统模式输出结果中海南岛区域的格点进行站点插值后的预估数据,分析了海南本岛21世纪气候变化情景,结果表明:21世纪海南岛总体呈变暖、变湿趋势.在RCP4.5情景下,年增暖倾向率为1.4℃/100a,在RCP8.5情景下,年增暖倾向率为3.4℃/100a.RCP4.5情景下,增温幅度最大的是冬季;RCP8.5情景下,前期增温幅度最大的是冬季,中期增温幅度最大的是夏季,后期增温幅度最大的在秋季.21世纪年降水距平百分率的变化有明显的阶段性变化.RCP4.5情景下前、后期降水增多不明显,中期增多明显;RCP8.5情景下前、后期的降水增加幅度比中期更明显.21世纪冷季降水可能减少,秋季可能更明显,冬季次之;暖季降水可能增加,夏季可能更明显.  相似文献   

8.
基于8 km气温栅格数据、全球模式(BCC_ CSM1.1)驱动区域模式RegCM4得到的RCP8.5和RCP4.5情景数据,采用时段对比分析、线性趋势分析等方法,研究了内蒙古地区气温变化特征及未来演变趋势。结果表明:从1981年到2010年,内蒙古地区气温显著上升,平均升速为0.49 ℃·10a-1,且最高气温升速略高于最低气温升速;升温幅度阶段性明显,全区1980s至1990s平均气温上升0.65 ℃,而1990s至21世纪初仅增温0.30 ℃;三大草原间年均气温年代际变化规律一致,但总体上草甸草原升温速率最小,而荒漠草原升温速率最大。与基准时段(1981—2010年)相比,全区年平均气温RCP4.5情景下在2020s、2030s和2040s分别增加0.92 ℃、1.27 ℃和1.78 ℃,而RCP8.5情景下分别增加1.39 ℃、1.56 ℃和2.07 ℃,RCP4.5与 RCP8.5情景下典型草原增温幅度均最为突出。  相似文献   

9.
文章利用CMIP5全球气候模式和RegCM4区域气候模式模拟的内蒙古降水量和平均气温的逐月数据,分别将2个气候模式1961—2005年的模拟结果与实际观测值进行对比,综合评估2个气候模式对内蒙古降水量和平均气温的模拟能力,并预估分析3种RCPs情景下2021—2100年内蒙古未来降水量和平均气温的可能变化特征。结果显示:CMIP5模式对年降水量模拟效果优于RegCM4模式,而RegCM4模式对年平均气温的细节模拟更具有优势,总体上CMIP5模式对内蒙古降水量和平均气温均具有良好的模拟能力。未来80年内蒙古气候呈暖湿变化趋势,其中RCP8.5情景增幅最大,年降水量和年平均气温分别增加了21.6%和5.3℃,RCP4.5情景次之,RCP2.6情景增加趋势不明显。四季和各年代的降水量和平均气温也一致呈增加趋势,其中冬季降水量增幅最大,最大可达22.15%,秋季平均气温在RCP2.6和RCP4.5情景下增幅最大,分别为1.50℃和2.22℃,冬季平均气温在RCP8.5情景下增幅最大,为3.67℃;RCP2.6情景下,年降水量和年平均气温分别在21世纪60年代和40年代增幅最大,分别为8.12%和1.57℃,而RCP4.5和RCP8.5情景下则均在21世纪90年代增加幅度最大,最大分别可达18.52%和5.80℃。  相似文献   

10.
采用第五次耦合模式比较计划(Coupled Model Intercomparison Project Phase 5,CMIP5)高分辨率全球统计降尺度预估数据集,针对近期(2020—2039年)、中期(2040—2059年)和长期(2080—2099年),以及全球1.5℃和2℃温升阈值,预估了青藏高原地区平均气温和降水、极端气温和极端降水的变化,定量估算了预估结果的不确定性来源。结果表明:(1)在RCP4.5和RCP8.5情景下,21世纪青藏高原地区平均气温和降水、极端气温和极端降水强度均显著增加,最长连续干旱天气减少。高原气候变化幅度超全球平均,至21世纪末,模式集合预估的气候变化幅度介于全球平均的1.5~3倍。(2)青藏高原地区受0.5℃额外增温的显著影响,年均气温、极端高温和极端低温均显著升高,平均及极端强降水均显著增加。(3)排放情景的选择对近期气候预估影响小,但对长期影响大。在相同排放情景下,内部变率主导了近期高原平均气温预估的不确定性,但至长期其贡献降至10%以下。模式和内部变率的不确定性对降水预估均有贡献,且都随时间减小,最大不确定性中心位于西部和北部边缘,噪声与信号比大于6。  相似文献   

11.
利用玉树地区5个气象台站1961—2015年逐月气温资料,采用气候趋势系数等统计方法分析了近55年来气温年代际变化及其异常特征,并结合CMIP5计划21个全球气候耦合模式模拟结果对未来气温变化趋势进行了预估。结果表明:(1)近55年来玉树地区年平均气温、最高和最低气温均显著升高,21世纪上升趋势更为突出;全区增温总体上呈现出"西北高、东南低"的空间分布特征。(2)各季平均气温也在显著上升,其中冬季升温最明显,达0.48℃/10 a,对年气温升高的贡献率最大。(3)气温偏冷年基本出现在20世纪60年代—80年代;偏暖年集中出现在21世纪,进入本世纪气温偏暖频次明显增多。(4)在RCP2.6、RCP4.5、RCP8.5情景下,玉树地区未来的气温变化都以增温为主,其中在中(RCP4.5)、高排放(RCP8.5)情景下增温效应更加显著。  相似文献   

12.
2℃全球变暖背景下中国未来气候变化预估   总被引:14,自引:4,他引:10  
姜大膀  富元海 《大气科学》2012,36(2):234-246
相对于工业化革命前期, 全球年平均地表气温上升2℃的时间和相应的气候变化受到了广泛关注, 特别是包括欧盟成员国在内的许多国家和国际组织已经将避免2℃全球变暖作为温室气体减排的首要目标。为此, 本文作者基于16个气候模式在20世纪气候模拟试验和SRES B1、A1B和A2温室气体和气溶胶排放情景下的数值模拟试验结果, 采用多模式集合方法预估研究了2℃全球变暖发生的时间、对应的大气中主要温室气体浓度以及中国气候变化情况。根据模式集合平均结果, 三种排放情景下2℃全球变暖分别发生在2064年、2046年和2049年, 大气二氧化碳当量浓度分别为625 ppm、645 ppm和669 ppm (1 ppm=10-6)。对应着2℃全球变暖, 中国气候变暖幅度明显更大。从空间分布形势上看, 变暖从南向北加强, 在青藏高原地区存在一个升温大值区; 就整体而言, 中国区域平均的年平均地表气温上升2.7~2.9℃, 冬季升温幅度 (3.1~3.2℃) 要较其他季节更大。年平均降水量在华南大部分地区减少0~5%, 而在其余地区增加0~20%, 中国区域年平均降水增加3.4%~4.4%, 各季节增加量在0.5%~6.6%之间。  相似文献   

13.
基于RegCM4区域气候模式、CMIP5全球气候模式数据集和中国东北地区162个气象站气温观测资料,采用偏差分析和相关分析评估了RegCM4和CMIP5对东北地区气温的模拟能力,预估了RCP2.6、RCP4.5和RCP8.5排放情景下东北地区未来气温的变化。结果表明:区域模式和全球模式均能较好地再现气温时空变化特征,模式对冬季和夏季的模拟效果优于秋季和春季;在区域尺度信息上,区域模式和全球模式的模拟值均较观测值偏小,RegCM4模式的模拟结果明显优于CMIP5模式,且对模拟的冷偏差有改善。未来东北地区年及四季气温均呈升高趋势,RCP2.6情景下增温相对较小,RCP4.5次之,RCP8.5情景下增温最显著;冬季和秋季气温增幅较大,夏季气温增幅最小;与CMIP5模式相比,RegCM4模式的增温幅度更大,且年际振荡特征更加明显。空间上,区域模式和全球模式预估的近期、中期、末期增温分布格局比较一致,均呈自北向南逐渐减小的纬向分布特征,辽宁地区增温幅度最小,增幅高值区位于黑龙江省大兴安岭地区,虽然北部升温幅度较南部明显,但是升温后未来东北地区的气温分布特征仍是南部气温高于北部。  相似文献   

14.
模式内部变率是模拟结果不确定性的重要来源,然而它对于1.5℃和2℃升温阈值出现时间不确定性的影响尚不清楚。因此,基于耦合模式比较计划第五阶段(CMIP5)的多模式数据研究了模式内部变率对1.5℃和2℃升温阈值出现时间不确定性的影响以及对未来排放情景的敏感性。结果表明,模式内部变率对升温阈值出现时间模拟的影响与外强迫的影响相当,单个模式内部不同成员达到全球平均1.5℃或2℃增温的年份相差2~12年;其影响具有明显的空间差异,影响极大值出现在欧亚大陆以北洋面、白令海峡周围区域、北美东北部及其与格陵兰岛之间的海域、南半球高纬地区等;低排放情景下模式内部变率的影响大于高排放情景。  相似文献   

15.
“一带一路”区域未来气候变化预估   总被引:1,自引:0,他引:1       下载免费PDF全文
利用耦合模式比较计划第5阶段(CMIP5)提供的18个全球气候模式的模拟结果,预估了3种典型浓度路径(RCP2.6、RCP4.5、RCP8.5)下“一带一路”地区平均气候和极端气候的未来变化趋势。结果表明:在温室气体持续排放情景下,“一带一路”地区年平均气温在未来将会持续上升,升温幅度随温室气体浓度的增加而加大。在高温室气体排放情景(RCP8.5)下,到21世纪末期,平均气温将普遍升高5℃以上,其中北亚地区升幅最大,南亚和东南亚地区升幅最小。对于降水的变化,预估该区域大部分地区的年降水量将增加,其中西亚和北亚增加最为明显,而且在21世纪中期,RCP2.6情景下的增幅要比RCP4.5和RCP8.5情景下的偏大,而在21世纪后期,RCP8.5情景下降水的增幅比RCP2.6和RCP4.5情景下的偏大。未来极端温度也将呈升高的趋势,增温幅度高纬度地区大于低纬度地区、高排放情景大于低排放情景。而且在高纬度区域,极端低温的增暖幅度要大于极端高温的增幅。连续干旱日数在北亚和东亚总体呈现减少趋势,而在其他地区则呈增加趋势。极端强降水在“一带一路”区域总体上将增强,增强最明显的地区位于南亚、东南亚和东亚。  相似文献   

16.
研究目的:本文采用CMIP5多模式的集合平均,针对多种排放情景,估算了丝绸之路核心区达到1.5度和2度温升的时间,比较了全球平均温度达到1.5度和2度温升阈值时丝绸之路核心区的平均气候和极端气候指标的变化。创新要点:中国西部和中亚位于古丝绸之路核心区,是连接东西方的桥梁。1.5度和2度温控目标的设定,是国际社会应对全球变暖的重要举措。理解在上述增暖阈值下丝绸之路核心区平均气候和极端气候的可能变化,将为一带一路战略的实施提供重要科学参考。研究方法:CMIP5多模式集合平均重要结论:相较于当前气候态(1986–2005年),在四种排放情景下,即RCP2.6、RCP4.5、RCP6.0和RCP8.5,CMIP5多模式集合预估的丝绸之路核心区到21世纪末将分别增温1.5、2.9、2.6和6.0°C。在四种排放情景下,年平均降水较之当前气候态均显著增加,其中在RCP8.5情景下增加约14%。四种排放情景下的预估结果,均显示丝绸之路核心区将在2020年前温升达到1.5°C。在RCP8.5情景下,该地区将在2020年代温升达到2.0°C,而在RCP4.5情景下,温升达到2.0°C的时间则推迟到2030年代。比较全球温升1.5和2.0°C的气候变化,发现全球额外升温0.5°C(较之1.5°C温升阈值)将导致丝绸之路核心区升温0.73°C(0.49–0.94°C),高于全球平均温度的变化,极端热浪的天数将增加4.2天,年平均降水增加2.72%(0.47%–3.82%),而连续干旱日数的变化则具有区域依赖性。  相似文献   

17.
东北地区气候变化CMIP5模式预估   总被引:3,自引:0,他引:3  
利用CMIP5的多模式集合资料,从时间变化和空间分布两方面分析了不同情景下(RCP2.6、RCP4.5、RCP8.5)中国东北地区未来100年的气候变化。结果显示:3种排放情景下,21世纪东北地区气温和降水呈显著增长趋势,中期和末期增幅较明显,冬季增幅高于其他季节,RCP8.5情景下气温增暖最为显著,RCP4.5次之,RCP2.6最小,随着年代的推移,气温和降水年较差逐渐减小;空间分布显示:3种排放情景下各个时期的增温分布形式基本一致,由南向北逐渐增大,辽宁南部增温幅度最小,最显著地区位于黑龙江大兴安岭;不同情景下气温变化率的分布形势略有不同,但均呈显著增温趋势;3种排放情景下降水距平百分率均为增加趋势,呈由东向西逐渐增大的经向分布特征;不同情景下的降水变化率分布形势相似,呈南大北小特征,辽宁地区增长最为明显,黑龙江西部地区增长相对较小。  相似文献   

18.
利用CMIP5全球模式数据集和RegCM4.0区域气候模式进行连续积分获得的模拟数据,对西南区域未来在RCP2.6,RCP4.5和RCP8.5几种温室气体排放情景下年平均降雨、四季降水,极端降雨事件的特征及其相对历史基准期的变化进行预估。结果表明,不同RCP情景下西南区域降水都将呈持续上升趋势,3种情景下西南区域降水在2020—2050年变化特征差别较小,2050年后差别较大,RCP2.6情景下降水变化幅度最小,CMIP5和RegCM4.0模式模拟的西南区域降水变化的地理分布特征基本一致,降水的高值区都位于青藏高原东南部,横断山脉和四川中部,差异在于RegCM4.0模拟的西藏西部的降雨量级更小,而青藏高原东南部、四川中部和贵州的降雨高值区量级更大。未来近期2020—2060年和远期2061—2099年RCP4.5情景下暴雨天数显著减少的区域主要在西藏东南部(0.5~1 d),未来远期2061—2099年RCP4.5情景云南南部和贵州东部区域暴雨天数显著性增加,而RCP8.5情景下上述区域暴雨天数显著性减少。  相似文献   

19.
利用国家气候中心完成的RegCM4区域气候模式在RCP4.5和RCP8.5两种排放路径下的气候变化动力降尺度试验结果,在检验模式对基准期(1986—2005年)气温和降水模拟能力基础上,进行华北区域21世纪气候变化预估分析。结果表明:RegCM4对华北区域基准期气温和降水的模拟能力较好。未来21世纪,两种情景下华北区域气温、降水、持续干期(consecutive dry days, CDD)和强降水量(R95p)变化逐渐增大,但变化幅度在高排放的RCP8.5情景下更为显著,其中近期(2021—2035年)、中期(2046—2065年)、远期(2080—2098年)RCP8.5情景下年平均气温分别升高1.77、3.44、5.82℃,年平均降水分别增加8.1%、14%、19.3%,CDD分别减少3、3、12 d, R95p分别增加30.8%、41.9%、69.8%。空间上,未来21世纪华北区域内年、冬季、夏季平均气温将一致升高,夏季升温幅度最大;年、冬季、夏季平均降水整体以增加为主,冬季降水增加幅度最大;CDD以减少为主,但近期和中期在山西和京津冀有所增加,而R95p以增加为主,表明21世纪华北区域干旱事件逐渐减少、极端降水事件不断增加。  相似文献   

20.
本文利用8个CMIP5模式的日资料,预估了RCP4.5和RCP8.5情景下全球增温达1.5℃和2.0℃时西北太平洋夏季30~60天和10~20天季节内振荡(ISO)强度的变化情况.大多数模式都认为,无论增温水平或情景如何,预估结果均显示从中南半岛南部到菲律宾以东的带状区域内ISO强度增加,并且关键气象要素背景的变化会对ISO强度异常的空间分布造成影响.具体表现为,ISO强度增大的区域往往伴随着低层湿度和湿静力能的增加.其中菲律宾东部的湿度变化最为明显,ICP南部的湿静力能变化最为明显,上述区域的ISO强度均增强.相反,印度尼西亚西部和菲律宾东北部有局地下沉运动增强,当地的ISO强度减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号