首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used a set of 75-day long ADCP data from the northeastern South China Sea (SCS) to investigate nonlinear interactions among freely propagating internal tidal waves. The kinetic energy spectra displayed significant peaks at some higher tidal frequencies, such as O1M2 (O1+M2), and M4 (M2+M2), where O1 is the lunar diurnal internal tide, M2 is the lunar semidiurnal internal tide, and M4 is the first higher harmonic frequency of M2. These higher tidal harmonic frequency peaks, as well as the fundamental tidal harmonic peaks, show a σ −2.3 spectral falloff rate with frequency. In addition, we explored the possible generation mechanism of higher tidal harmonics. Analysis on the rotary and bicoherence spectra suggests that strong forced non-resonant interaction induced by nonlinear advections was the dominant physical mechanism that induced these higher tidal harmonics. Moreover, the energetic, freely propagating semidiurnal (M2) internal tidal wave played the most crucial role in these interactions. These results indicate that strong nonlinear forced non-resonant interactions among internal tides can be one of the processes responsible for the redistribution of energy in the internal wave spectrum.  相似文献   

2.
Global ocean tides from Geosat altimetry by Quasi-Harmonic analysis   总被引:2,自引:0,他引:2  
INTRODUCTIONOceantidesplayaveryimportantroleinthedynamicsoftheEarthandhaveattractedmanypeople’sattentionsinceancienttimes.Beforethelate 1 970s,tidesweremeasuredmainlybycoastalgauges .Directmeasurementsaswellasnumericalsimulations,canprovidefairlyaccurateu…  相似文献   

3.
The diffuse attenuation coefficient for downwelling irradiance (Kd(λ)) is an important parameter for ocean studies. Based on the optical profile data measured during three cruises in the northern South China Sea in autumn from 2003 to 2005, variations in the Kd(λ) spectra were analyzed. The variability of Kd(λ) shows much distinct features in both magnitude and spectra pattern, it is much higher in coastal waters than that of open oceanic waters; and the blue-to-green (443/555) ratio of Kd(λ) tends to increase with chlorophyll a concentration ([Chl-a]) from open ocean to coastal waters. These characteristics can be explained most by the increase of aw+p(443)/aw+p(555) with [Chl-a]. In short waveband, the relation between Kd(λ)-Kw(λ) and [Chl-a] can be well described by a power law function, indicating the large contribution of phytoplankton to the variations in Kd(λ). As for the spectral model of the diffuse attenuation coefficient, there are good linear relationships between Kd(490) and Kd(λ) in other wavelengths with own slope and intercept of a linear functions in the spectral range 412-555 nm. Kd(490) is well correlated with the spectral ratio of remote sensing reflectance; and should enough measurement data are given, this empirical algorithm would be used in the Kd(λ) retrieval from ocean color satellite data. The variation in Kd(λ) provides much useful information for us to study the bio-optical property in the northern South China Sea.  相似文献   

4.
Zhang  Yanwei  Liang  Xinfeng  Tian  Jiwei  Yang  Lifen 《中国海洋湖沼学报》2009,27(1):129-134
TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M 2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M 2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M 2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M 2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide M 2 provides enough energy to maintain the large-scale thermohaline circulation of the ocean. Supported by the National Basic Research Program of China (973 Program, No. 2005CB422303), the International Cooperation Program (No. 2004DFB02700), and the National Natural Science Foundation of China (No. 40552002). The TOPEX/POSEIDON data are provided by Physical Oceanography Distributed Active Archive Center (PO DACC)  相似文献   

5.
1 Introduction Itisverycommontousetidalconstantsinoceanen gineering .Ingeneral,tidalconstantscanbeobtainedfromtidalharmonicanalysisbasedonthehourlydata .However ,thereisamassofhistoricaltidaldatamere lyonthetimeandmagnitudesofsuccessivehighandlowwaterlevels .Moreover ,sometimeswemayhavetidaltableswhichonly givethepredictedvaluesofhighandlowwatersforsomeports,withoutinforma tionontidalconstants .Inthesetablesthetimeinter valsbetweensuccessivetidalextremaareirregular .Therefore ,mostofthestan…  相似文献   

6.
Tidal effects on temperature front in the Yellow Sea   总被引:5,自引:0,他引:5  
Temperature front (TF) is one of the important features in the Yellow Sea, which forms in spring, thrives in summer, and fades in autumn as thermocline declines. TF intensity ⋎S T ⋎ is defined to describe the distribution of TF. Based on the MASNUM wave-tide-circulation coupled model, temperature distribution in the Yellow Sea was simulated with and without tidal effects. Along 36°N, distribution of TF from the simulated results are compared with the observations, and a quantitative analysis is introduced to evaluate the tidal effects on the forming and maintaining processes of the TF. Tidal mixing and the circulation structure adapting to it are the main causes of the TF. Supported by the National Basic Research Program of China (No. G1999043809) and the National Science Foundation of China (No. 49736190).  相似文献   

7.
This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surface wave radar (HFSWR) systems. The analysis shows that the tidal current pattern in the southwestern Taiwan Strait is primarily semi-diurnal and influenced significantly by shallow water constituents. The spatial distribution of tidal current ellipses of M2 is probably affected by the interaction between two different systems of tide wave, one from the northern mouth of Taiwan Strait and the other from the Bashi Channel. The directions of the major axes of M2 tidal current ellipses coincide roughly with the axis of the Taiwan Strait. The spatial distribution of the magnitudes of the probable maximum current velocity (PMCS) shows gradual increase of the velocity from northeast to southwest, which is in accordance with the spatial distribution of the measured maximum current velocity (MMCS). The directions of the residual currents are in accordance with the direction of the prevailing monsoon wind at the Taiwan Strait and the direction of the Taiwan warm current during summer. The bathymetry also shows a significant effect on the spatial distribution characteristics of tidal currents.  相似文献   

8.
During the 13th (1996–1997) and the 19th (2002–2003) Chinese National Antarctica Research Expeditions, we collected 60 discrete surface seawater samples along the cruise from the Chanjiang River (Yangtze) estuary (30°59′S, 122°26′E) through Taiwan Strait, the South China Sea, and the Eastern Indian Ocean to Prydz Bay, Antarctica (69°10′S, 74°30′E), and analyzed them for the 226Ra specific activity. The 226Ra specific activity of the Chanjiang River estuary surface water (3.15 Bq/m3) was found to be the highest among all the surface samples because of the desorption of 226Ra from riverine particles. Between Chanjiang River estuary and 40°S, 226Ra specific activity was found to be relatively uniform with a mean value of 1.07 Bq/m3 (n = 19, SD = 0.14), similar to that of the open ocean. From 40°S to 65°S, 226Ra specific activity increased intensively, then decreased moderately further southwards. Near the Antarctic shore, it increased again, to 2.31 Bq/m3. This distribution was controlled by a combination of deep water upwelling, Southern Ocean fronts, water mixing and the continental 226Ra import. In Prydz Bay and the adjacent sea area, the mean 226Ra activity value was 2.26 Bq/m3 (n = 31, SD = 0.28), with a relatively higher value outside of the bay and low 226Ra activity value in the center of the bay. This was consistent with the topography and hydrological setting of the bay. In addition, we extended the study area northward to the Arctic, by combining the published 226Ra dataset for surface water from the Bering Sea to the Japan Sea. We also discuss the 226Ra distribution of high latitude oceanic surface water and its mechanisms.  相似文献   

9.
A fully nonlinear,three-dimensional nonhydrostatic model driven by four principal tidal constituents(M2,S2,K1,and O1) is used to investigate the spatial-temporal characteristics and energetics of internal tides in Luzon Strait(LS).The model results show that,during spring(neap) tides,about 64(47) GW(1 GW=109 W) of barotropic tidal energy is consumed in LS,of which 59.0%(50.5%) is converted to baroclinic tides.About 22(11) GW of the derived baroclinic energy flux subsequently passes from LS,among which 50.9%(54.3%) flows westward into the South China Sea(SCS) and 45.0%(39.7%) eastward into the Pacific Ocean,and the remaining 16(13) GW is lost locally owing to dissipation and convection.It is revealed that generation areas of internal tides vary with the spring and neap tide,indicating different source areas for internal solitary waves in the northern SCS.The region around the Batan Islands is the most important generation region of internal tides during both spring and neap tides.In addition,the baroclinic tidal energy has pronounced seasonal variability.Both the total energy transferred from barotropic tides to baroclinic tides and the baroclinic energy flux flowing out of LS are the highest in summer and lowest in winter.  相似文献   

10.
In-situ measurements in Xiangshan Bay, the East China Sea, show that the duration of the rising tide is shorter than that of the falling tide around the bay mouth, while it becomes much longer in the inner bay. A finite volume coastal ocean model (FVCOM) with an unstructured mesh was applied to simulate the asymmetric tidal field of Xiangshan Bay. The model reproduced the observed tidal elevations and currents successfully. Several numerical experiments were conducted to clarify the roles of primary mechanisms underlying the asymmetric tidal field. According to the model results, the time-varying channel depth and nonlinear advection prefer shorter duration of the rising tide in Xiangshan Bay, while the time-varying bay width favors longer duration of the rising tide. The overtides generated by these two opposite types of nonlinear mechanisms are out of phase, resulting in smaller M4 amplitude than the sumfold of each individual contribution. Although the bottom friction as a nonlinear mechanism contributes little to the generation of overtide M4, it is regarded as a mechanism that could cause a shorter duration of the rising tide, for it can slow down the M2 phase speed much more than it slows down the M4 phase speed. The time-varying depth, nonlinear advection and bottom friction are dominating factors around the bay mouth, while the time-varying width dominates in the inner bay, causing the tidal elevation asymmetry to be inverted along the bay.  相似文献   

11.
Current data from a moored Acoustic Doppler Current Profiler(ADCP) deployed at 69?30.155′N,169?00.654′W in the central Chukchi Sea during 2012 summertime is analyzed in the present paper.Characteristics of tidal and residual currents are ob-tained with Cosine-Lanczos filter and cross-spectral analyses.The main achievements are as follows:1) Along with the local inertial frequency of 12.8 h,two other peaks at ~12-h and ~10-d dominate the time series of raw velocity;2) The M_2 dominates the 6 resolved tide constituents with significant amplitude variations over depth and the ratios of current speed of this constituent to that of the total tidal current are 54% and 47% for u and v components,respectively.All the resolved tidal constituents rotate clockwise at depth with the exception of MM and O1.The constituents of M_2 and S_2 with the largest major semi-axes are similar in eccentricity and orientation at deeper levels;3) The maximum of residual currents varies in a range of 20–30 cms~(-1) over depth and the current with lower velocities flow more true north with smaller magnitudes compared to the current in surface layer.The ~10 d fluctuation of residual current is found throughout the water column and attributed to the response of current to the local wind forcing,with an approximate 1.4 d lag-time at the surface level and occurring several hours later in the lower layer;4) Mean residual currents flow toward the north with the magnitudes smaller than 7 cms~(-1) in a general agreement with previous studies,which suggests a relatively weaker but stable northward flow indeed exists in the central Chukchi Sea.  相似文献   

12.
A three-dimensional isopycnic-coordinate ocean model for the study of internal tides is presented. In this model, the ocean interior is viewed as a stack of isopycnic layers, each characterized by a constant density. The isopycnic coordinate performs well at tracking the depth variance of the thermocline, and is suitable for simulation of internal tides. This model consists of external and internal modes, and barotropic and baroclinic motions are calculated in the two modes, respectively. The capability of simulating internal tides was verified by comparing model results with an analytical solution. The model was then applied to the simulation of internal tides in the South China Sea (SCS) with the forcing of M2 and K1 tidal constituents. The results show that internal tides in the SCS are mainly generated in the Luzon Strait. The generated M2 internal tides propagate away in three different directions (branches). The branch with the widest tidal beam propagates eastward into the Pacific Ocean, the most energetic branch propagates westward toward Dongsha Island, and the least energetic branch propagates southwestward into the basin of the SCS. The generated K1 internal tides propagate in two different directions (branches). One branch propagates eastward into the Pacific Ocean, and the other branch propagates southwestward into the SCS basin. The steepening process of internal tides due to shoaling effects is described briefly. Meridionally integrated westward energy fluxes into the SCS are comparable to the meridionally integrated eastward energy fluxes into the Pacific Ocean.  相似文献   

13.
Observations of current velocity, pressure, and temperature in the eastern Yellow Sea during January 10 to April 12, 1986, and geostrophic winds calculated from surface pressure distributions, are analyzed for a study of the synoptic band response of the Yellow Sea to the wintertime winds. Currents in shallow coastal waters along a straight portion of the coast are mostly downwind to the south. Along the northern coast sheltered by a large bay, the current is persistently northward. This could be the result of a domination by geostrophic currents associated with an offshore-directed density gradient which is known to form in areas around this location. In the Yellow Sea trough, strong upwind flows are found to follow closely surges in the north wind. Co-spectral analyses show that these events are driven by a longitudinal pressure gradient associated with the sea-level set-up along the west coast of South Korea under a prevailing north wind.  相似文献   

14.
Myosin subfragment-1 was prepared from the myofibrils of bighead carp (Aristichthys nobilis). The myosin subfrag- ment-1 was proved to have the activity of tripolyphosphatase (TPPase) responding to the hydrolysis of sodium tripolyphosphate (STPP). The optimum temperature and pH for the TPPase of myosin subfragment-1 were 30℃ and pH 5.0, and at pH 8.0 the TPPase also showed a high activity. Mg2 was necessary to TPPase. The TPPase activity of myosin subfragment-1 was activated by Mg2 under low concentrations, but was inhibited when the concentration was over 17 mmolL-1. The TPPase activity was also affected by KCl. The optimum concentration of KCl for TPPase was 0.3 molL-1 under the condition of 17 mmolL-1 Mg2 . The TPPase activity was significantly inhibited by EDTA-Na2. Reagents such as KBr, KI and KIO3 could inhibit the TPPase effectively. K2Cr2O7 as well as KMnO7 and KNO3 exhibited weak inhibiting effects. The TPPase converted STPP to pyrophosphate (PP) and orthophosphate (Pi) stoichiometrically with a KM of 3.2 mmolL-1.  相似文献   

15.
Microstructure profiling measurements taken on a shallow Black Sea shelf and in Lake Banyoles and Boadella reservoir (Both in Spain) are analyzed to investigate the influence of boundary-layer-induced turbulence of various sources on mixing in the water interior. The state of turbulence in shallow waters is examined and details of microstructure data processing and error analysis are discussed. The dependence between averaged activity parameter AG and buoyancy Reynolds number Reb for the shelf turbulence indicates that for Reb < 1 the state of turbulence can be described by the fossil turbulence model, which postulates AG-Reb1/2. For Reb> 1, however, the influence of Reb on AG is weak, signifying that the buoyancy Reynolds number can no longer serve as the governing parameter for active turbulent mixing. The generation of turbulence by a one-minute long wind bursts (the Boadella reservoir) increases the averaged dissipation rate (e) of the surface mixed layer by more than 5 times (up to 3×10-6 W kg-1). The influence of the wind bursts was also traced below the ther-mocline, where turbulent patches with  相似文献   

16.
The fundamental principle for differentiating water masses is a strict consideration of their “relative interier homogeneity” and obvious exterior differences with others in characteristics. The conceptions of water type, water mass and water system are dealt with on the basis of the theory of fuzzy sets. A proposal to apply the theory of fuzzy sets to define the water mass and its core, independent area, boundary and mixing area is put forward. As an example, the membership function of the surface water masses in the Yellow Sea and East China Sea in August, 1979, are considered. Their cores, independent areas, boundaries, mixing areas and the approximation degrees between different water masses are calculated respectively. The water masses are ranged according to their fuzzy degrees. This paper was published inOceanologia et Limnologia Sinica, 1986,17(2): 102–110. This study was financially supported by National Natural Sciences Foundation of China.  相似文献   

17.
Two field studies were conducted to measure pigments in the Southern Yellow Sea (SYS) and the northern East China Sea (NECS) in April (spring) and September (autumn) to evaluate the distribution pattern of phytoplankton stock (Chl a concentration) and the impact of hydrological features such as water mass, mixing and tidal front on these patterns. The results indicated that the Chl a concentration was 2.43±2.64 (Mean ± SD) mg m?3 in April (range, 0.35 to 17.02 mg m?3) and 1.75±3.10 mg m?3 in September (from 0.07 to 36.54 mg m?3) in 2003. Additionally, four areas with higher Chl a concentrations were observed in the surface water in April, while two were observed in September, and these areas were located within or near the point at which different water masses converged (temperature front area). The distribution pattern of Chl a was generally consistent between onshore and offshore stations at different depths in April and September. Specifically, higher Chl a concentrations were observed along the coastal line in September, which consisted of a mixing area and a tidal front area, although the distributional pattern of Chl a concentrations varied along transects in April. The maximum Chl a concentration at each station was observed in the surface and subsurface layer (0–10 m) for onshore stations and the thermocline layer (10–30 m) for offshore stations in September, while the greatest concentrations were generally observed in surface and subsurface water (0–10 m) in April. The formation of the Chl a distributional pattern in the SYS and NECS and its relationship with possible influencing factors is also discussed. Although physical forces had a close relationship with Chl a distribution, more data are required to clearly and comprehensively elucidate the spatial pattern dynamics of Chl a in the SYS and NECS.  相似文献   

18.
During the two cruises in March and July of 2011, the tidal cycling of turbulent properties and the T/S profiles at the same location in seasonally stratified East China Sea (ECS) were measured synchronously by a bottom-mounted fast sampling ADCP (acoustic Doppler current profiler) and a RBR CTD (RBR-620) profiler. While focusing on the tide-induced and stratification’s impact on mixing, the Reynolds stress and the turbulent kinetic energy (TKE) production rate were calculated using the ‘variance method’. In spring, the features of mixing mainly induced by tides were clear when the water column was well-mixed. Velocity shear and turbulent parameters intensified towards the seabed due to the bottom friction. The components of the velocity shear and the Reynolds stress displayed a dominant semi-diurnal variation related to velocity changes caused by the flood and ebb of M2 tide. Stratification occurred in summer, and the water column showed a strongly stratified pycnocline with a characteristic squared buoyancy frequency of N2 ~ (1–6) × 10?3 s?2. The components of the velocity shear and the Reynolds stress penetrated upwards very fast from the bottom boundary layer to the whole water column in spring, while in summer they only penetrated to the bottom of the pycnocline with a relatively slow propagation speed. In summer, the TKE production within the pycnocline was comparable with and sometimes larger than that in the well-mixed bottom layer under the pycnocline. Considering the associated high velocity shear, it is speculated that the mixing in the pycnocline is a result of the local velocity shear.  相似文献   

19.
Systematic studies of the changes in dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) and their effects on phytoplankton over the last 30 years in the Bohai Sea are presented. The amount of sewage disposal, use of fertilizer and the Huanghe River runoff were found to have a significant influence on the DIN or DIP concentrations in the Bohai Sea over the last 30 years. Moreover, the changes in DIN and DIP resulted in changes in the limiting nutrients of phytoplankton in the Bohai Sea from nitrogen in the early 1980s to nitrogen-phosphorus in the late 1980s, and then to phosphorus after the 1990s. In addition, changes in nitrogen and phosphorus had a significant effect on the phytoplankton community structure. The half saturation constant (K s) was used to evaluate the effect of nutrients on the phytoplankton community structure in the Bohai Sea over the last 30 years. Cell abundance percentages of dominant phytoplankton species with high K s values for phosphorus and low K s values for nitrogen have decreased since the 1980s, while those of dominant phytoplankton species with low K s values for phosphorus and high K s values for nitrogen increased during this period.  相似文献   

20.
Based on a ship survey during January 1998, the characteristics of the flow, the thermohaline properties and the volume transport of the Arabian Sea are discussed. A strong westward flow exists between 10.5?N and 11?N, part of which turns to the south as the Somali current near the coast at about 10?N and the rest turns north. At the passage between the African continent and the So- cotra Island, the northern branch separates into two flows: the left one enters the passage and the right one flows eastward along the southern slope of the island. Off the island the flow separates once more, most of it meandering northeast and a small fraction flow- ing southeast. Volume transport calculation suggests that the tidal transport is one or two orders of magnitude smaller than the total transport in this region and it becomes more important near the coast. The average velocity of the flow in the upper layer (0-150 m) is about 20 cm s-1, with a maximum of 53 cm s-1 appearing east of the Socotra Island, and the subsurface layer (200-800 m) has an aver- age velocity of 8.6 cm s-1; the velocity becomes smaller at greater depths. The depth of the seasonal thermocline is about 100 m, above which there is a layer with well mixed temperature and dissolved oxygen. High-salinity and oxygen-rich water appears near the surface of the northern Arabian Sea; a salinity maximum and oxygen minimum at 100 m depth along 8?N testifies the subduction of surface water from the northern Arabian Sea. Waters from the Red Sea and the Persian Gulf also influence the salinity of the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号