首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
凌其聪  刘从强 《岩石学报》2003,19(1):192-200
对安徽省冬瓜山层控夕卡岩型铜(金)矿床中穿层方向上不同蚀变程度的大理岩,顺层方向上距岩体远近不同但垂向深度的块状石榴子石夕卡岩及其主矿物石榴子石,不同演化阶段的石英及矿石等到的REE特征进行了系统研究,结果显示,在穿层方向上,大理岩被交代的程度愈深其稀土总量(∑REE)愈高,Eu负异常愈显著,尽管,夕卡岩全岩的RE分布模式与原岩(大理岩)相似,但前者的稀土总量(∑REE)远高于后者,且Eu异常更为显著,显然不是继续承原岩的REE特征所致,而是受控于其主矿物石榴子石的REE特征,后者又由参与交代作用的岩浆热液REE所决定,热液中的REE具有缓和右倾型分布模式,LREE富集,较显著的Eu负异常等基本特征,石榴子石晶体基本承袭了热液的REE特征,REE的空间变化特征结果地层的构造特征可以揭示夕卡岩及相关矿体形成过程中流体的输运径及输运方式,REE的研究有助于深化对层控夕卡岩及其相关矿床形成过程的认识。  相似文献   

2.
The Sangan iron skarn deposit is located in the Sabzevar-Dorouneh Magmatic Belt of northeastern Iran. The skarn contains zoned garnet, clinopyroxene and magnetite. Cores and rims of zoned garnets are generally homogeneous, having a relatively high ΣREE, low ΣLREE/ΣHREE ratios, and positive Eu anomalies. The cores of the zoned clinopyroxenes are exceptionally HREE-rich, with relatively high ΣREE and HREE/LREE ratios, as well as positive Eu anomalies. Clinopyroxene rims are LREE-rich, with relatively low ΣREE contents and HREE/LREE ratios, and do not have Eu anomalies. Magnetite grains are enriched in LREEs in comparison with the HREEs and lack Eu anomalies. Variations of fluid composition and physicochemical conditions rather than YAG-type substitution mechanism are considered to have major control on incorporating trace elements, including REE, into the skarn mineral assemblage. Based on baro-acoustic decrepitation analysis, the calc-silicate and magnetite dominant stages were formed at similar temperatures, around 350–400 °C. In the Sangan skarns, hydrothermal fluids shifted from near-neutral pH, reduced conditions with relatively high ΣREE, low LREE/HREE ratios, and U-rich characteristics towards acidic, oxidized conditions with relatively low ΣREE, high LREE/HREE ratios, and U-poor characteristics.  相似文献   

3.
Garnets from skarns in the Beinn an Dubhaich granite aureole,Isle of Skye, Scotland, have a large range of concentrationsof uranium (0·2–358 ppm) and the rare earth elements(REE) (23–4724 ppm). Variations in these concentrationscorrelate with major element zonation within the garnets, andwith changes in the shape of REE patterns. Typical patternsin most garnets display light REE (LREE) enrichment, flat heavyREE (HREE) distribution and a negative Eu anomaly. These patternsare interpreted to represent equilibrium trace element exchangebetween pre-existing pyroxene, hydrothermal fluid and calcicgarnets. Iron-rich zones are characterized by positive Eu anomaliesand an increase in the abundance of the LREE relative to theHREE. These patterns are interpreted as resulting from changesin REE speciation related to the introduction of externallybuffered fluid to the skarn system. Relatively Fe-poor zonesshow strongly HREE-enriched patterns with negative Eu anomaliesand in some instances depletions in Y relative to Ho and Dy,which are interpreted as resulting from surface sorption ofthe REE during rapid, disequilibrium garnet growth. Strong correlationsbetween U abundance and the REE patterns indicate that the sameprocesses have affected U distribution. Both types of patterncan be modified by the effects of closed-system crystallizationon REE abundance in the fluid, and changes in fluid major elementchemistry. KEY WORDS: fractionation; garnet; hydrothermal; rare earth elements; skarn  相似文献   

4.
Garnet-rich rocks occur throughout the Proterozoic southern Curnamona Province, Australia, where they are, in places, spatially related to Broken Hill-type Pb-Zn-Ag deposits. Fine-scale bedding in these rocks, their conformable relationship with enclosing metasedimentary rocks, and their enrichment in Mn and Fe suggest that they are metamorphosed chemical precipitates. They formed on the floor of a 1.69?Ga continental rift basin from hydrothermal fluids mixed with seawater and detritus. Garnet in garnet-quartz and garnet-amphibole rocks is generally light rare earth element (LREE) depleted, and has flat heavy REE (HREE) enriched chondrite-normalized REE patterns, and negative Eu anomalies (Eu/Eu*?<?1). Garnet in garnet-rich rocks from the giant Broken Hill deposit has similar REE patterns and either positive (Eu/Eu*?>?1) or negative Eu anomalies. Manganese- and Mn-Ca-rich, Fe-poor garnets in garnetite, garnet-hedenbergite, and garnet-cummingtonite rocks at Broken Hill have Eu/Eu*?>?1, whereas garnet in Mn-poor, Fe-rich quartz garnetite and quartz-garnet-gahnite rocks from Broken Hill, and quartz garnetite from other locations have Eu/Eu*?<?1. The REE patterns of garnet and its host rock and interelement correlations among REEs and major element contents in garnet and its host rock indicate that the Eu anomaly in garnet reflects that of its host rock and is related to the major element composition of garnet and its host rock. The value of Eu/Eu* in garnet is related to its Mn, Fe, and Ca content and that of its host rock, and the distribution of REEs among garnet and accessory phases (e.g., feldspar). Positive Eu anomalies reflect high amounts of Eu that was preferentially incorporated into Mn- and Mn-Ca-rich oxides and carbonates in the protolith. In contrast, Eu/Eu*?<?1 indicates the preferential discrimination against Eu by Fe-rich, Mn-poor precursor minerals. Precursors to Mn-rich garnets at Broken Hill formed by precipitation from cooler and more oxidized hydrothermal fluids compared to those that formed precursors to Mn-poor, Fe-rich garnet at Broken Hill and the other locations. Garnet from the Broken Hill deposit is enriched in Zn (> 400?ppm), Cr (> 140?ppm), and Eu (up to 6?ppm and positive Eu anomalies), and depleted in Co, Ti, and Y compared to garnet in garnet-rich rocks from other localities. These values, as well as MnO contents ?>?15 wt. % and Eu/Eu*?>?1 are only found at the Broken Hill deposit and are good indicators of the presence of Broken Hill-type mineralization.  相似文献   

5.
Abstract: Systematic data of rare earth elements (REEs) are presented in order to put some constraints on the origin of hydrothermal fluids responsible for two contrastive skarn deposits in Japan; the Kamioka Zn-Pb and Yoshiwara-Sannotake Cu(-Fe) deposits. Carbon and oxygen isotopic studies have demonstrated that the hydrothermal fluids responsible for the Kamioka Zn-Pb deposits are of meteoric water origin whereas those for the Yoshiwara-Sannotake Cu(-Fe) deposits are of magmatic water origin. The REE abundances of epidote skarn derived from aluminous rocks, garnet and clinopyroxene in calcic exoskarn derived from limestone, and interstitial calcite associated with sulfide minerals were determined for these contrastive skarn deposits by inductively-coupled plasma mass spectrometry (ICP-MS). A significant difference in the REE concentrations is not found between epidote skarn and aluminous original rock (plagioclase-clinopyroxene rock, called Inishi rock) from the Kamioka Zn-Pb deposits, indicating that the REEs are generally immobile during the formation of epidote skarn, and that the REE concentrations of the hydrothermal fluid are considerably low relative to the aluminous original rock. In contrast, the epidote skarn exhibits enrichment of Eu with increasing total REE concentrations relative to the aluminous original rock (quartz diorite) in the Yoshiwara-Sannotake Cu(-Fe) deposits, implying a contribution of magmatic fluid derived from granitoids during the skarn formation. Limestone generally has much lower REE concentrations related to surrounding aluminous rocks, and thus the REE concentrations of garnet and clinopyroxene in calcic exoskarn, originated from limestone, are variable due to the interaction with the hydrothermal fluids. The chondrite-normalized REE patterns of garnet, clinopyroxene, and interstitial calcite exactly provide useful information on origins of hydrothermal fluids. The REE patterns of these minerals from the Kamioka Zn-Pb deposits show lower (Pr/Yb)cn ratios, and negative Ce and Eu anomalies inherited from limestone with the decrease of This suggests that the hydrothermal fluids responsible for the Kamioka Zn-Pb deposits were depleted in REEs, and were not magmatic water in origin, but presumably meteoric one. In striking contrast, the REE patterns of exoskarn minerals and calcite from the Yoshiwara-Sannotake Cu(-Fe) deposits exhibit a positive Eu anomaly, and high (Pr/Yb)cn ratios with the considerable increase of σREE and the disappearance of negative Ce anomaly, implying that the fluids were dominantly of magmatic origin. The REE indices are very likely to be an excellent indicator to origins of the skarn deposits.  相似文献   

6.
相山铀矿田的成矿流体性质和来源存在争议,为进一步探讨相山铀矿田成矿流体的性质和来源,本文对相山铀矿田西部的居隆庵铀矿床和北部的沙洲铀矿床中的新鲜围岩、蚀变围岩及矿石的微量、稀土元素含量及其变化进行了研究。结果显示:在含较多热液成因萤石的居隆庵铀矿床中,从新鲜围岩到蚀变围岩到矿石,Zr、Hf含量先降低再升高;而在含少量热液萤石的沙洲铀矿床中,新鲜围岩、蚀变围岩和矿石的Zr、Hf含量基本一致。鉴于富F流体易汲取岩石中的Zr、Hf,因此,这两个矿床中不同类型样品Zr、Hf含量的不同变化趋势,可能与居隆庵铀矿床的成矿流体富F、而沙洲铀矿床的成矿流体相对贫F有关。这两个铀矿床中矿石的稀土配分曲线与其各自的新鲜及蚀变围岩的稀土配分曲线形态相似但又存在差异,说明每个矿床的新鲜围岩、蚀变围岩和矿石之间的稀土元素既具有继承性、又受到不同性质的流体的影响。居隆庵铀矿床中矿石显示Eu负异常,可能主要是继承了围岩的Eu负异常;沙洲铀矿床中矿石Eu显示弱负异常至弱正异常的特征,可能与围岩中斜长石因热液蚀变作用而释放出的Eu的进入流体有关。基于新鲜围岩、蚀变围岩及矿石的U和REE研究,推断居隆庵铀矿床成矿流体中U和REE均以F的络合物形式迁移;但沙洲铀矿床中铀矿石品位较低,可能是与流体中相对贫F有关。  相似文献   

7.
黔西北天桥铅锌矿床热液方解石C、O同位素和REE地球化学   总被引:9,自引:0,他引:9  
利用连续流动质谱和电感耦合等离子体质谱(ICP-MS)对黔西北天桥铅锌矿床原生矿石中脉石矿物热液方解石C、O同位素组成和稀土元素含量进行了分析,结果表明热液方解石C、O同位素组成相对均一,不同标高方解石C、O同位素组成不具明显差别,其δ13CPDB和δ18OSMOW分别为-3.4‰~-5.3‰和14.7‰~19.5‰,在δ13CPDB-δ18OSMOW图上介于原始碳酸岩与海相碳酸盐岩之间。热液方解石总稀土元素含量较低(ΣREE=6.80×10-6~49.1×10-6),表现为轻稀土富集、Eu负异常的"M"型,其Eu/Eu*变化范围为0.30~0.55,与硫化物具有相似的稀土配分模式。根据热液方解石与蚀变围岩、远矿围岩及不同时代地层碳酸盐岩的C、O同位素组成和REE含量特征对比结果,结合前人研究成果,认为该矿床成矿流体具"多来源混合"特征,其中围岩碳酸盐岩为成矿流体提供了主要的C和REE来源,地层中膏岩海相硫酸盐岩为成矿流体提供了主要的S来源,而成矿流体中的水则主要为变质基底昆阳群等提供的变质水,并受到大气降水的影响。  相似文献   

8.
The trace element composition of silicate inclusions in diamonds: a review   总被引:1,自引:0,他引:1  
On a global scale, peridotitic garnet inclusions in diamonds from the subcratonic lithosphere indicate an evolution from strongly sinusoidal REEN, typical for harzburgitic garnets, to mildly sinusoidal or “normal” patterns (positive slope from LREEN to MREEN, fairly flat MREEN–HREEN), typical for lherzolitic garnets. Using the Cr-number of garnet as a proxy for the bulk rock major element composition it becomes apparent that strong LREE enrichment in garnet is restricted to highly depleted lithologies, whereas flat or positive LREE–MREE slopes are limited to less depleted rocks. For lherzolitic garnet inclusions, there is a positive relation between equilibration temperature, enrichment in MREE, HREE and other HFSE (Ti, Zr, Y), and decreasing depletion in major elements. For harzburgitic garnets, relations are not linear, but it appears that lherzolite style enrichment in MREE–HREE only occurs at temperatures above 1150–1200 °C, whereas strong enrichment in Sr is absent at these high temperatures. These observations suggest a transition from melt metasomatism (typical for the lherzolitic sources) characterized by fairly unfractionated trace and major element compositions to metasomatism by CHO fluids carrying primarily incompatible trace elements. Melt and fluid metasomatism are viewed as a compositional continuum, with residual CHO fluids resulting from primary silicate or carbonate melts in the course of fractional crystallization and equilibration with lithospheric host rocks.

Eclogitic garnet inclusions show “normal” REEN patterns, with LREE at about 1× and HREE at about 30× chondritic abundance. Clinopyroxenes approximately mirror the garnet patterns, being enriched in LREE and having chondritic HREE abundances. Positive and negative Eu anomalies are observed for both garnet and clinopyroxene inclusions. Such anomalies are strong evidence for crustal precursors for the eclogitic diamond sources. The trace element composition of an “average eclogitic diamond source” based on garnet and clinopyroxene inclusions is consistent with derivation from former oceanic crust that lost about 10% of a partial melt in the garnet stability field and that subsequently experienced only minor reenrichment in the most incompatible trace elements. Based on individual diamonds, this simplistic picture becomes more complex, with evidence for both strong enrichment and depletion in LREE.

Trace element data for sublithospheric inclusions in diamonds are less abundant. REE in majoritic garnets indicate source compositions that range from being similar to lithospheric eclogitic sources to strongly LREE enriched. Lower mantle sources, assessed based on CaSi–perovskite as the principal host for REE, are not primitive in composition but show moderate to strong LREE enrichment. The bulk rock LREEN–HREEN slope cannot be determined from CaSi–perovskites alone, as garnet may be present in these shallow lower mantle sources and then would act as an important host for HREE. Positive and negative Eu anomalies are widespread in CaSi–perovskites and negative anomalies have also been observed for a majoritic garnet and a coexisting clinopyroxene inclusion. This suggests that sublithospheric diamond sources may be linked to old oceanic slabs, possibly because only former crustal rocks can provide the redox gradients necessary for diamond precipitation in an otherwise reduced sublithospheric mantle.  相似文献   


9.
热液型矿床形成过程中流体的组成、运移、演化及其矿质沉淀机制是矿床学研究的重点内容和难点。矽卡岩矿床中具有震荡环带结构的石榴子石完整记录了热液流体的性质、组成及演化过程,这种震荡环带的出现暗示了不同成分系列的石榴子石对不同阶段热液流体成矿物化环境的特定选择性。石榴子石晶体元素化学分带现象是流体运移和矿物再沉淀过程周期性循环再现的结果,对指示早期矽卡岩阶段热液流体中主、微量元素化学分带机制具有重要意义。不同成分系列、不同期次石榴子石的Fe_2O_3和Al_2O_3含量差异显著,其对热液流体演化过程中氧化还原环境的变化具有较好的示踪作用;相对主量元素而言,微量元素在流体演化过程中具有更好的探针作用,钙铝榴石常富集Al、Ti、Zr、HREE元素,而钙铁榴石常富集As、W、Mo、Fe、LREE元素。借助EMPA和LA_ICP_MS技术对具震荡环带结构的石榴子石进行主、微量元素(包括稀土元素)的微区和原位分析是探讨成矿过程中流体组成和性质演化的重要手段,其有可能揭示矿物生长机制、成矿环境以及成矿流体组成与性质的演化,而这一地质信息对于全面理解矽卡岩型矿床的矿化分带及成矿作用非常重要。  相似文献   

10.
本文对朱溪超大型钨(铜)矿床中两类与白钨矿密切相关的石榴石进行了研究。研究表明,这两类共存的石榴石与夕卡岩型矿床中常见的同期热液在不同阶段形成的两种石榴石不同。早期石榴石相对更加富Fe(Ad37.17~41.84Gr54.83~59.57Sp3.10~4.62),而晚期石榴石更加富Al(Ad12.69~14.42Gr77.56~79.03Sp0.44~0.92),成分上更接近钙铝榴石端员,具有更低的Sn含量,更高的U含量,并在稀土配分曲线中显示出更明显的正Eu异常,表明晚期石榴石形成时的氧逸度明显低于早期石榴石形成时的氧逸度。晚期石榴石相对于早期石榴石具有更高的Cu、Pb、Zn、Li、Be、B、Rb、Cs、Sr含量和更低的W、Mo、Ga、Ge含量,并且与成矿相关岩体具有相似的稀土配分模式曲线,表明晚期石榴石与朱溪矿床的成矿相关岩浆演化而形成的残余岩浆热液流体具有更加密切的相关性。本文研究的两类共存的石榴石可能是两期成矿热液流体作用的产物,暗示朱溪矿床的成矿作用可能与多期岩浆活动有关。  相似文献   

11.
The Wadi Bidah Mineral District of Saudi Arabia contains more than 16 small outcropping stratabound volcanogenic Cu–Zn–(Pb) ± Au-bearing massive sulphide deposits and associated zones of hydrothermal alteration. Here, we use major and trace element analyses of massive sulphides, gossans, and hydrothermally altered and least altered metamorphosed host rock (schist) from two of the deposits (Shaib al Tair and Rabathan) to interpret the geochemical and petrological evolution of the host rocks and gossanization of the mineralization. Tectonic interpretations utilize high-field-strength elements, including the rare earth elements (REE), because they are relatively immobile during hydrothermal alteration, low-grade metamorphism, and supergene weathering and therefore are useful in constraining the source, composition, and physicochemical parameters of the primary igneous rocks, the mineralizing hydrothermal fluid and subsequent supergene weathering processes. Positive Eu anomalies in some of the massive sulphide samples are consistent with a high temperature (>250°C) hydrothermal origin, consistent with the Cu contents (up to 2 wt.%) of the massive sulphides. The REE profiles of the gossans are topologically similar to nearby hydrothermally altered felsic schists (light REE (LREE)-enriched to concave-up REE profiles, with or without positive Eu anomalies) suggesting that the REE experienced little fractionation during metamorphism or supergene weathering. Hydrothermally altered rocks (now schists) close to the massive sulphide deposits have high base metals and Ba contents and have concave-up REE patterns, in contrast to the least altered host rocks, consistent with greater mobility of the middle REE compared to the light and heavy REE during hydrothermal alteration. The gossans are interpreted to represent relict massive sulphides that have undergone supergene weathering; ‘chert’ beds within these massive sulphide deposits may be leached wall-rock gossans that experienced silicification and Pb–Ba–Fe enrichment from acidic groundwaters generated during gossan formation.  相似文献   

12.
Scheelite and rutile from several metaturbidite-hosted gold-bearing quartz vein deposits of the Meguma Terrane of Nova Scotia were analyzed for trace elements including rare earth elements, niobium and tantalum. Scheelites have high concentrations of Sr, Nb, Y and rare earth elements (REE) with bell-shaped chondrite-normalized REE patterns accompanied by both positive and negative Eu anomalies. They also have high Nb/Ta ratios (80–300). Three distinct trace element types of the scheelites are interpreted to reflect chemical differences in the pulses of hydrothermal fluids. Hydrothermal rutiles have high contents of W (up to 4.2 wt.% WO3), are rich in Ta compared to Nb and have a very low Nb/Ta ratio (~0.3). Hydrothermal fluids which produced both scheelite with a high Nb/Ta and rutile with a low Nb/Ta ratio are an efficient medium for fractionation of this ratio although these two minerals play an important role during the process.  相似文献   

13.
Uranium mineralizations occur and form in a broad range of geologic setting and age, including magmatic to surfacial conditions, and there are numerous controls on their transportation and deposition, such as redox, pH, ligand concentration, complexation, and temperature. These temporal and spatial variations have caused a range of ore deposit mineral assemblages. Consequently, understanding their conditions of formation is still in its infancy. This research reports rare earth elements (REE) and trace elements of fluorite associated with hexavalent uranium mineralizations and tests of genetic models for the deposits. These data contribute to a better understanding of the variables controlling fluorite formation and uranium ore composition through understanding the evolution of these ore-forming hydrothermal systems. Fluorite in Gabal Gattar granite occurs as disseminations and/or thin veinlets and encrustations filling some uranium mineralized fissures and fractures along the northern margin of host granite mass. In the U-poor samples, fluorite forms well-developed large crystals that are commonly zoned. The zones are represented by alternating colorless and violet zones, and the outer zones are frequently dark violet. In the U-rich samples, fluorite is usually anhedral, unzoned, and has a dark violet color. The results of analysis of REE and trace element contents of fluorites using laser ablation inductively coupled plasma mass spectrometry indicate that total REE in the anhedral unzoned fluorite are elevated compared to the well developed zoned fluorite, and also total REE in dark violet zones of zoned fluorite are elevated with respect to the colorless zones. The fluorites and host granite are generally characterized by strongly negative Eu anomalies and slightly negative or chondritic Ce anomalies. Accordingly, REE patterns of the fluorite and host granite are roughly alike, indicating that the source of REE and trace elements of hydrothermal fluids is the host granite leached by fluids. Y/Y*, Ce/Ce,* and Eu/Eu* patterns show that fluorite clearly records the compositional evolution of the hydrothermal solutions that have transferred trace and REE from host granite during the fluid–wall rocks interactions. The high uranium contents of fluorite in Gabal Gattar granite suggest that parent fluids bearing fluorine have interacted with host granite to leach uranium from the accessory minerals of granite and tetravalent uranium minerals in reduced or weakly oxidized zones.  相似文献   

14.
滇东南老君山矿集区广泛分布的矽卡岩是本区锡-钨-锌-铟多金属矿床的主要赋存围岩。长期以来,该区含矿矽卡岩的成因争议较大,由此也制约了对该区锡钨多金属成矿规律的认识。本文以区内代表性的都龙和南秧田矿区含矿矽卡岩为研究对象,在对其地质特征详细研究的基础上,运用电子探针和ICP-MS分别测定了上述两个矿区含矿矽卡岩的矿物成分、微量和稀土元素组成,探讨了它们和多金属矿床的成岩成矿机制的关系。结果表明,区内同时存在与地层产状一致的"层状"含矿矽卡岩和明显切割层理的穿层含矿矽卡岩。都龙矿区含矿矽卡岩富Fe、贫Al,主要矿物端元成分为钙铁榴石(And_(52-69)Gro_(28-45)Spe_(1-4))、钙铁辉石(Di_(11-41)Hd_(51-73)Jo_(0-28))和铁阳起石等,从干矽卡岩到退化蚀变阶段,形成环境由酸性的弱还原环境向偏碱性的相对氧化环境变化。南秧田矿区含矿矽卡岩富Mg、Al,贫Fe,主要矿物端元成分为钙铝榴石(Gro_(82-89)Alm_(7-13)And_(2-5))、透辉石(Di_(55-81)Hd_(18-42)Jo_(0-5))和透闪石(阳起石)等,形成于相对还原的环境。都龙和南秧田矿区含矿矽卡岩与花岗岩都显示出相似的、LREE相对富集的右倾型稀土配分模式,多具有中等-弱Eu负异常,与典型的热液交代成因矽卡岩特征相似。综合分析认为,该区含矿矽卡岩主要形成于燕山晚期花岗岩浆热液与围岩的交代作用,"层状"矽卡岩可能是热液沿层间构造、岩相突变带等有利位置进行交代的结果。  相似文献   

15.
海底热液系统高温流体的稀土元素组成及其控制因素   总被引:33,自引:0,他引:33  
研究稀土元素在流体中的地球化学行为及其控制因素,对利用稀土示踪与流体有关的地球化学过程具有重要意义。海底高温流体稀土组成研究表明,不同背景、岩性热液系统喷口流体的稀土含量差别较大,与海水之间可达几个数量级,但配分模式却非常类似,即普遍具有LREE富集、高的正Eu异常特征。流体的稀土组成与岩石或矿物的蚀变程度、结构构造有关,同时受流体的温压、pH值、Eh值、络合介质种类等因素的影响,其配分模式是流体循环、迁移过程中络合、吸附、矿物沉淀等不同因素共同作用而再次调整的结果。正Eu异常作为高温流体的特征标志,可以用来示踪与高温流体有关的地球化学作用过程,同时Y/Ho比值、负Ce异常可以用来示踪与流体/海水混合有关的化学过程。  相似文献   

16.
大冶-武山矿化夕卡岩的稀土元素地球化学研究   总被引:15,自引:1,他引:15  
用ICP-MS分析了25个含矿夕卡岩样品的REE含量,其中对8个样品的石榴子石等矿物中的熔融包裹体进行了均一温度测定,还对5个夕卡岩样品石榴子石中的熔融包裹体进行了电子探针分析.在这些样品的石榴子石、辉石或方解石中都观察到熔融包裹体.夕卡岩的球粒陨石标准化REE分布模式具有两个突出特点:其一是以富集轻稀土元素(LREE)右倾为特征;其二是多数以具有Eu正异常为特征.夕卡岩球粒陨石标准化REE分布模式有三种类型:第一类型显示斜率不大的右倾直线;第二类型具有以Ce为峰值的折线的特征,即REE线段向上凸,在Ce处有一极大值(个别无峰值,LREE曲线向上凸,呈穹隆状);第三类型为过渡型REE分布模式.在当今REE资料有限的情况下,利用稀土元素地球化学特点鉴别夕卡岩成因是困难的.  相似文献   

17.
Recently,time-boundcharacteristicsofmineralizationbe-comeoneofthemostimportantgrowingpointsinoredepositgeochemistryandconcent...  相似文献   

18.
新疆蒙库铁矿床稀土元素地球化学及对铁成矿作用的指示   总被引:16,自引:4,他引:16  
新疆富蕴县蒙库大型铁矿呈层状、似层状、透镜状赋存于下泥盆统康布铁堡组变质火山-沉积岩系中.矿体中发育矽卡岩,但矽卡岩并不产在侵入岩接触带上.绿帘石、石榴石和矿石的稀土配分模式具有相似性,均为轻稀土富集,正铕异常,基本上无铈异常,暗示它们之间存在成因联系.石榴石稀土配分模式呈折线型,具有明显的正铕异常,石榴石流体包裹体中熔融包裹体、熔流包裹体和气液包裹体共存,表明石榴石矽卡岩具有岩浆成因和热液成因的特征,形成于晶体 熔体 流体三相共存的岩浆-热液过渡阶段.矿床地质特征、矽卡岩矿物和矿石稀土特征表明蒙库铁矿为矽卡岩型矿床.  相似文献   

19.
稀土元素主要通过交代碳酸盐矿物的Ca2+0进入碳酸盐格架,所以沉积碳酸盐(岩的稀土元素特征能够很好的指示沉积流体来源和古环境。常用的稀土元素指标包括稀土元素总量(ΣREE)、稀土元素配分型式、以及La、Ce、Eu、Gd和Y等元素的异常指数。碳酸盐(岩)的稀土元素含量可能受到硅酸盐矿物、Fe-Mn氧化物/氢氧化物和磷酸盐等非碳酸盐组分以及成岩蚀变作用的影响。因此,在分析过程中,我们只有排除这些影响因素,才能用碳酸盐(岩)的稀土元素指标来探讨流体来源和古环境。这要求我们采集新鲜剖面上的样品,并用适当浓度的弱酸进行分步溶样,提取适当的组分,避免样品中的非碳酸盐组分干扰原始沉积组分的稀土元素特征。不同的沉积水体和沉积相下形成的碳酸盐(岩)具有不同的稀土元素特征:从太古宙到全新世的海相碳酸盐(岩)记录了LREE亏损、La正异常和高Y/Ho值的稀土元素特征;海底孔隙水的稀土元素特征则受氧化-还原条件、离子络合形式、孔隙流体来源的制约;热液流体具有LREE富集、Eu正异常的稀土元素特征;河水和湖泊有相对平坦的稀土元素特征。因此,碳酸盐(岩)的稀土元素特征具有重要的古环境指示意义。  相似文献   

20.
罗山金矿床是胶东玲珑金矿田最大的金矿床之一,同时发育蚀变岩型矿化和石英脉型矿化。本研究在系统的野外和镜下工作基础上,利用电感耦合等离子体质谱(ICP-MS)技术分析了载金黄铁矿的微量和稀土元素,对比了蚀变岩型和石英脉型矿石载金黄铁矿稀土和微量元素特征,探讨了成矿流体的性质与来源。黄铁矿稀土总含量较低,多呈较明显的"右倾"式稀土配分模式,总体表现出负Eu异常,基本无Ce异常; Hf/Sm、Th/La、Nb/La值均<1,推断成矿流体为富Cl的还原性流体。Co/Ni比值范围在0. 08~3. 77,平均值为1. 09; Co/Ni值以及Co、Ni、Bi、Cu和Zn含量均与变质热液型金矿平均含量相近; Y/Ho比值范围总体在21~32之间,与中国东部大陆地壳Y/Ho比值(20~35)基本重合;结合个别样品的弱正Eu异常以及前人的研究成果,推断成矿流体与变质热液类似,主要来源于古太平洋板块俯冲板片脱水和脱碳作用,且可能有长英质岩浆流体和地壳流体的混入。蚀变岩型和石英脉型矿石内的载金黄铁矿的稀土、微量元素组成没有明显区别,Y/Ho、Nb/Ta和Zr/Hf比值变化范围均很小,表明两类矿石的载金黄铁矿为同一期热液活动作用的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号