首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Recent studies have revealed that the Makeng Fe deposit is a skarn type deposit. However, the skarns in Makeng, occurring primarily between limestone and sandstone, are not typically associated with limestone and plutons. Different periods of intrusions, e.7. Hercynian mafic intrusions and Yanshanian (i.e. early Cretaceous) Dayang–Juzhou granitic intrusion, occurred in the Makeng deposit district. In this study, the formation processes of the skarns and Fe mineralization are constrained by detailed fieldwork, petrology, geochronology, and geochemistry. Skarns and Fe mineralization intersecting the Hercynian mafic intrusions are observed in consecutive specimens from the 106# tunnel. They suggest that the skarn formation and Fe mineralization occurred after the Hercynian mafic intrusions and are related to the later Yanshanian Dayang–Juzhou granitic intrusion. The geochronological characteristics of weakly skarn‐altered diabases, the decreasing nature of Fe contents in altered diabase, and the major element compositions of pyroxenes and garnets also support that Hercynian mafic intrusions are strongly reformed by Yanshanian granitic magmas and the Fe migrated from mafic intrusion was responsible for formation of iron ore.  相似文献   

2.
Post‐collisional granitoid plutons intrude obducted Neo‐Tethyan ophiolitic rocks in central and eastern Central Anatolia. The Bizmişen and Çaltı plutons and the ophiolitic rocks that they intrude are overlain by fossiliferous and flyschoidal sedimentary rocks of the early Miocene Kemah Formation. These sedimentary rocks were deposited in basins that developed at the same time as tectonic unroofing of the plutons along E–W and NW–SE trending faults in Oligo‐Miocene time. Mineral separates from the Bizmişen and Çaltı plutons yield K‐Ar ages ranging from 42 to 46 Ma, and from 40 to 49 Ma, respectively. Major, trace, and rare‐earth element geochemistry as well as mineralogical and textural evidence reveals that the Bizmişen pluton crystallized first, followed at shallower depth by the Çaltı pluton from a medium‐K calcalkaline, I‐type hybrid magma which was generated by magma mixing of coeval mafic and felsic magmas. Delta 18O values of both plutons fall in the field of I‐type granitoids, although those of the Çaltı pluton are consistently higher than those of the Bizmişen pluton. This is in agreement with field observations, petrographic and whole‐rock geochemical data, which indicate that the Bizmişen pluton represents relatively uncontaminated mantle material, whereas the Çaltı pluton has a significant crustal component. Structural data indicating the middle Eocene emplacement age and intrusion into already obducted ophiolitic rocks, suggest a post‐collisional extensional origin. However, the pure geochemical discrimination diagrams indicate an arc origin which can be inherited either from the source material or from an upper mantle material modified by an early subduction process during the evolution of the Neo‐Tethyan ocean. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
《Precambrian Research》2004,132(3):303-326
The granitoid rock dominated central Wabigoon subprovince of the Superior Province records low-K trondhjemite–tonalite–granodiorite (TTG) type magmatic episodes at <2.83–2.74 and 2.722–2.709 Ga, and high-K mafic to felsic plutonism at 2.690–2.685 Ga. High-K units consist of granite to granodiorite dykes and sills, a K-feldspar megacrystic granodiorite suite of sanukitoid affinity and a suite of mafic dykes and intrusions. Initial ϵNd values (−3.1 to +3.3) indicate variable input to all units from light REE-enriched older crustal materials. The δ18O (VSMOW) range of felsic compositions (+7.1 to +8.9%) overlaps closely that of average upper Superior Province crust. The granite/granodiorite units probably received melt components derived from both older tonalitic crust and isotopically juvenile supracrustal material. The thermal flux for partial melting was provided by mafic components of the coeval megacrystic granodiorite suite. This latter suite likely formed by extensive crustal assimilation and fractionation of enriched-mantle-derived high-Mg dioritic magmas in a post-collisional setting, possibly resulting from slab breakoff or broader scale lithospheric delamination. A genetic link is inferred between mafic magmatism and the late- to post-tectonic high-K granitoid magmatism that typically represents the last stabilization event within Superior subprovinces. That crustal recycling processes played a major role in the petrogenesis of central Wabigoon high-K granitoid suites is consistent with other evidence that supports repeated and substantial continental recycling within this subprovince as far back as the Mesoarchean.  相似文献   

4.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   

5.
Nd and Sr isotope data were obtained for three plutonic suites (595–505 Ma) and distinct young granitoid intrusions (503 Ma), from the southern part of the Neoproterozoic Araçuaí Orogen. The Sr and Nd isotopes (87Sr/86Sr, eNd) and TDM values from the plutons and distinct basement rocks are used to constrain the magma genesis of the granitoid plutons. These isotopic parameters, with eNd values ranging from −4 to −24 and TDM ages from 1.3 to 2.8 Ga, for the granitoid suites, and −5 to −40 and 3.5 to 1.5 Ga, for the distinct Archean and Proterozoic basement complexes, suggest that the Jequitinhonha Complex metasediments are the main crustal source for most of these plutons, except for the youngest granitoid intrusions, which may have a protolith similar to the Mantiqueira and Guanhães complexes. Furthermore, the isotope data indicate a minor, but important, participation of Neoproterozoic oceanic lithosphere in the granite genesis, which corroborates with a confined orogenic model and a narrow oceanic consumption (B-subduction) for the Araçuaí Orogen.  相似文献   

6.
滇东南老君山矿集区广泛分布的矽卡岩是本区锡-钨-锌-铟多金属矿床的主要赋存围岩。长期以来,该区含矿矽卡岩的成因争议较大,由此也制约了对该区锡钨多金属成矿规律的认识。本文以区内代表性的都龙和南秧田矿区含矿矽卡岩为研究对象,在对其地质特征详细研究的基础上,运用电子探针和ICP-MS分别测定了上述两个矿区含矿矽卡岩的矿物成分、微量和稀土元素组成,探讨了它们和多金属矿床的成岩成矿机制的关系。结果表明,区内同时存在与地层产状一致的"层状"含矿矽卡岩和明显切割层理的穿层含矿矽卡岩。都龙矿区含矿矽卡岩富Fe、贫Al,主要矿物端元成分为钙铁榴石(And_(52-69)Gro_(28-45)Spe_(1-4))、钙铁辉石(Di_(11-41)Hd_(51-73)Jo_(0-28))和铁阳起石等,从干矽卡岩到退化蚀变阶段,形成环境由酸性的弱还原环境向偏碱性的相对氧化环境变化。南秧田矿区含矿矽卡岩富Mg、Al,贫Fe,主要矿物端元成分为钙铝榴石(Gro_(82-89)Alm_(7-13)And_(2-5))、透辉石(Di_(55-81)Hd_(18-42)Jo_(0-5))和透闪石(阳起石)等,形成于相对还原的环境。都龙和南秧田矿区含矿矽卡岩与花岗岩都显示出相似的、LREE相对富集的右倾型稀土配分模式,多具有中等-弱Eu负异常,与典型的热液交代成因矽卡岩特征相似。综合分析认为,该区含矿矽卡岩主要形成于燕山晚期花岗岩浆热液与围岩的交代作用,"层状"矽卡岩可能是热液沿层间构造、岩相突变带等有利位置进行交代的结果。  相似文献   

7.
The K‐rich granitoids of the southern Mt Angelay igneous complex belong to the younger phases of the Williams and Naraku Batholiths (<1540 Ma) in the Cloncurry district. Granitoids of the complex form a series of I‐type, K‐rich, metaluminous monzodiorite to subaluminous syenogranite. These intrusions have geochemical affinities akin to ‘A‐type’ granites and contain plagioclase, alkali feldspar, quartz, biotite, hornblende and typically accessory magnetite, titanite, apatite and zircon. With increasing SiO2 the granitoids vary from alkaline to subalkaline, and exhibit a decrease in TiO2, Al2O3, Fe2O3*, MnO, MgO, CaO, P2O5, Cu, Sr, Zr, LREE and Eu, with an increase in Na2O, K2O, Rb, Pb, Th, U, Y and HREE. This suite of relatively oxidised granitoids (<1.0 log units above NNO) were emplaced after the peak of metamorphism and pre‐ to post‐D3, a major east‐west horizontal‐shortening event. The synchronous emplacement of high‐temperature mafic (>960°C) and foliated felsic (>900°C) granitoids formed zones of mingled and mixed monzonite and quartz monzonite to monzogranite containing abundant rapakivi K‐feldspar. These intrusions are interpreted to have been derived from source rocks of different compositions, and probably by different degrees of partial melting. The unfoliated felsic granitoids are considered to represent the fractionated equivalents of older foliated felsic granitoids. All granitoids possess a Sr‐depleted and Y‐undepleted signature, which suggests that the source material probably contained plagioclase and no garnet, restricting magma production to <800–1000 MPa (~24–30 km). Underplating of mantle‐derived mafic material into mid‐crustal levels is considered the most viable mechanism to produce these high‐temperature K‐rich granitoids at these pressures. The composition of the felsic granitoids is consistent with derivation from a crustal source with a tonalitic to granodioritic composition. However, the mafic granitoids require a more mafic, possibly gabbroic source, which may have been supplemented with minor mantle‐derived material. These granitoids are also enriched in Th, U, LREE and depleted in Ba, Ti, Nb and Sr and compare closely to the Mesoproterozoic granitoids of the Gawler Craton. The economic significance of these styles of granitoids may also be highlighted by the close spatial relationship of hematitic K‐feldspar, magnetite, fluorite and pyrite‐rich veins, alteration and filled miarolitic cavities with the least‐evolved felsic intrusions. This style of veining has a probable magmatic origin and is similar to the gangue assemblage associated with Ernest Henry‐style Fe‐oxide‐(Cu–Au) mineralisation, which suggests that these granitoids represent prospective sources of fluids associated with Cu–Au mineralisation in the district.  相似文献   

8.
Whole rock major and trace element geochemistry together with zircon U-Pb ages and Sr-Nd isotope compositions for the Middle Eocene intrusive rocks in the Haji Abad region are presented. The granitoid hosts, including granodiorite and diorite, yielded zircon U-Pb ages with a weighted mean value of 40.0 ± 0.7 Ma for the granodiorite phase. Mafic microgranular enclaves(MMEs) are common in these plutons, and have relatively low SiO_2 contents(53.04-57.08 wt.%) and high Mg#(42.6-60.1), probably reflecting a mantle-derived origin. The host rocks are metaluminous(A/CNK = 0.69-1.03), arc-related calc-alkaline, and I-type in composition, possessing higher SiO_2 contents(59.7-66.77 wt.%) and lower Mg#(38.6-52.2); they are considered a product of partial melting of the mafic lower crust. Chondritenormalized REE patterns of the MMEs and granitoid hosts are characterized by LREE enrichment and show slight negative Eu anomalies(Eu/Eu* = 0.60-0.93). The host granodiorite samples yield(87Sr/86Sr);ratios ranging from 0.70498 to 0.70591,positive eNd(t) values varying from +0.21 to +2.3, and TDM2 ranging from 760 to 909 Ma, which is consistent with that of associated mafic microgranular enclaves(87Sr/86Sr)i = 0.705111-0.705113, εNd(t)= +2.14 to +2.16, TDM2 = 697-785 Ma). Petrographic and geochemical characterization together with bulk rock Nd-Sr isotopic data suggest that host rocks and associated enclaves originated by interaction between basaltic lower crust-derived felsic and mantlederived mafic magmas in an active continental margin arc environment.  相似文献   

9.
We present field and petrographic data on Mafic Magmatic Enclaves (MME), hybrid enclaves and synplutonic mafic dykes in the calc-alkaline granitoid plutons from the Dharwar craton to characterize coeval felsic and mafic magmas including interaction of mafic and felsic magmas. The composite host granitoids comprise of voluminous juvenile intrusive facies and minor anatectic facies. MME, hybrid enclaves and synplutonic mafic dykes are common but more abundant along the marginal zone of individual plutons. Circular to ellipsoidal MME are fine to medium grained with occasional chilled margins and frequently contain small alkali feldspar xenocrysts incorporated from host. Hybrid magmatic enclaves are intermediate in composition showing sharp to diffused contacts with adjoining host. Spectacular synplutonic mafic dykes commonly occur as fragmented dykes with necking and back veining. Similar magmatic textures of mafic rocks and their felsic host together with cuspate contacts, magmatic flow structures, mixing, mingling and hybridization suggest their coeval nature. Petrographic evidences such as disequilibrium assemblages, resorption, quartz ocelli, rapakivi-like texture and poikilitically enclosed alkali feldspar in amphibole and plagioclase suggest interaction, mixing/mingling of mafic and felsic magmas. Combined field and petrographic evidences reveal convection and divergent flow in the host magma chamber following the introduction of mafic magmas. Mixing occurs when mafic magma is introduced into host felsic magma before initiation of crystallization leading to formation of hybrid magma under the influence of convection. On the other hand when mafic magmas inject into host magma containing 30–40% crystals, the viscosities of the two magmas are sufficiently different to permit mixing but permit only mingling. Finally, if the mafic magmas are injected when felsic host was largely crystallized (~70% or more crystals), they fill early fractures and interact with the last residual liquids locally resulting in fragmented dykes. The latent heat associated with these mafic injections probably cause reversal of crystallization of adjoining host in magma chamber resulting in back veining in synplutonic mafic dykes. Our field data suggest that substantial volume of mafic magmas were injected into host magma chamber during different stages of crystallization. The origin of mafic magmas may be attributed to decompression melting of mantle associated with development of mantle scale fractures as a consequence of crystallization of voluminous felsic magmas in magma chambers at deep crustal levels.  相似文献   

10.
The Agacoren Intrusive Suite is exposed as a large intrusive body over ~500 km2 east of Lake Tuz in central Anatolia and consists of the Cokumkaya gabbro, the Agacoren granitoid, and young dikes. The Agacoren granitoid is the predominant lithology of the Agacoren Intrusive Suite, and is differentiated into several subunits ranging in composition from monzonite, through granite, to alkali feldspar granite. The Cokumkaya gabbro occurs as stocks enclosed in the Agacoren granitoid; individual bodies range in size from 10 m × 20 m to 7 km × 3 km. Young dikes cut both the Cokumkaya gabbro and the Agacoren granitoid, and are particularly abundant in the central part of the intrusive body.

Centimeter- to meter-size mafic microgranular enclaves (MME) are enclosed in the Agacoren granitoid. The enclaves are diorite, quartz diorite, and monzodiorite in composition, and represent blobs of mafic magma injected into a felsic host magma. The MME have a mineral assemblage (plagioclase + amphibole + biotite ± quartz ± K-feldspar) almost identical to that of host granitoid, but with different mineral proportions. The characteristic petrographic features of the MME are the presence of acicular apatite, blade-shaped biotite, quartz ocelli, and K-feldspar poikilitically enclosing mafic minerals. Microprobe analyses performed on amphibole and plagioclase reveal similar mineral chemistries for both the MME and the host granitoid. The anorthite contents of the plagioclases show an increase from rim to core in both the MME and the host granitoid. The rims of the MME plagioclase have compositions ranging from An5 to An40, whereas those of the host granitoid vary from An0 to An42. The cores, on the other hand, range from An30 to An90 and An20 to An90 in the MME and the host, respectively. Amphiboles are essentially of ferro-hornblende composition in the MME, and of ferro- to magnesiohornblende composition in the host granitoid. The similarity in mineral compositions reflects chemical equilibrium attained through the magma-mixing process.  相似文献   

11.
Palaeoproterozoic (ca 2,480 Ma) felsic magmatism of Malanjkhand region of central Indian Precambrian shield, referred to as Malanjkhand granitoids (MG), contain xenoliths of country rocks and mesocratic to melanocratic, fine-grained porphyritic microgranular enclaves (ME). The shape of ME is spheroidal, ellipsoidal, discoidal, elongated, and lenticular, varying in size from a few centimeters to about 2 m across. The contact of ME with the host MG is commonly sharp, crenulate, and occasionally diffuse, which we attribute to the undercooling and disaggregation of ME globules within the cooler host MG. The ME as well as MG show hypidiomorphic texture with common mineral Hbl-Bt-Kfs-Pl-Qtz assemblage, but differ in modal proportions. The variation in minerals' composition, presence of apatite needles, elongated biotites, resorbed plagiclase, ocellar quartz, and other mafic–felsic xenocrysts strongly oppose the restite and cognate origins of ME. Compositions of plagioclases (An3–An29), amphiboles (Mg/Mg+Fe2+=0.55–0.69), and biotites (Mg/Mg+Fe2+=0.46–0.60) of ME are slightly distinct or similar to those of MG, which suggest partial to complete equilibration during mafic–felsic magma interactions. Al-in-amphibole estimates the MG pluton emplacement at ca 3.4 ± 0.5 kbar, and therefore, magma mixing and mingling must have occurred at or below this level. The substitution in biotites of ME and MG largely suggests subduction-related, calc–alkaline metaluminous (I-type) nature of felsic melts. Most major and trace elements against SiO2 produce near linear variation trends for ME and MG, probably generated by the mixing of mafic and felsic magmas in various proportions. Trace including rare earth elements patterns of ME–MG pairs, however, show partial to complete equilibration, most likely governed by different degrees of elemental diffusion. The available evidence supports the model of ME origin that coeval mafic (enclave) and felsic (MG) magmas produced a hybrid (ME) magma layer, which injected into cooler, partly crystalline MG, and dispersed, mingled, and undercooled as ME globules in a convectively dynamic magma chamber.  相似文献   

12.
ABSTRACT

The Dayinsu area is located in the northern part of the West Junggar district near the border between China and Kazakhstan and is an important component of the Central Asian Orogenic Belt (CAOB). The Dayinsu area hosts numerous granitoid plutons in Devonian–Carboniferous volcano–sedimentary strata. The older Laodayinsu and Kubei (345–330 Ma) plutons are located in the west with the younger Bayimuzha and Qianfeng (330–325 Ma) plutons in the east. The whole-rock SiO2 contents of the four granitoid plutons range from 52.22 to 68.42 wt.% and total alkaline contents (K2O + Na2O) range from 4.94 to 9.16 wt.%. The granites are enriched in large ion lithophile elements and light rare earth elements with depletions in Nb, Ta, Ce, Pr, P, and Ti. The plutons are metaluminous with I-type signatures. The geochemistry of the intrusions suggests that they formed in a subduction zone setting, and subsequently underwent fractional crystallization during emplacement, with higher degrees of fractionation in the eastern sector than in the west. Similarities in the geochronology and geochemical characteristics of the granitoid plutons in Dayinsu to those in the Tabei district (west to Dayinsu area) suggest that both districts are part of the Carboniferous Tarbagatay Mountain intrusive event. The early Carboniferous (345–324 Ma) granitoid intrusions in the Tarbagatay Mountain likely formed in an island arc subduction setting during the evolution of the CAOB.  相似文献   

13.
Four plutons from the W-Tibati area of central Cameroon crop out in close relationships with the Pan-African Adamawa ductile shear zone (Central Cameroon Shear Zone: CCSZ). These plutons include diorites, tonalites, granodiorites and granites, and most of them are porphyritic due to the abundance of pink K-feldspar megacrysts. Syn-kinematic magma emplacement is demonstrated by the elongate shape of the plutons and by magmatic and ductile (gneissic) foliations that strike parallel to or at a low angle with the CCSZ; the foliation obliquity is consistent with dextral transcurrent tectonics. Whole-rock geochemistry points to high-K calc-alkaline to shoshonitic magmatism. Mixing-mingling features can be observed in the field. However, fractional crystallization of plagioclase, amphibole, biotite (+ K-feldspar in the more felsic compositions) appears to have played a dominant role in the magmatic differentiation processes, as confirmed by mass balance calculations based on major elements. Isotopic signatures suggest that the magmas may have originated from different sources, i.e. either from a young mafic underplate for most magmas with εNdi(600 Ma) around −1 to −2 and Sri(600 Ma) around 0.705, or from an enriched lithospheric mantle for some diorites with εNdi(600 Ma) at −6 and Sri(600 Ma) at 0.7065; mixing with young crustal component is likely. The plutonic rocks of W-Tibati are similar to other Pan-African high-K calk-alkaline syn-kinematic plutons in western Cameroon. They also display striking similarities with high-K calk-alkaline plutons associated with the Patos and Pernambuco shear zones of the Borborema province in NE Brazil.  相似文献   

14.
Precise U–Pb geochronology and Hf isotope tracing of zircon is combined with whole-rock geochemical and Sr and Nd isotope data in order to unravel processes affecting mafic to felsic calcalkaline magmas prior to and during their crystallization in crustal magma chambers along the southern border of Central Srednogorie tectonic zone in Bulgaria (SE Europe). ID-TIMS U–Pb dating of single zircons from felsic and mixed/mingled dioritic to gabbroic horizons of single plutons define crystallization ages of around 86.5–86.0, 85.0–84.5 and 82 Ma. Concordia age uncertainties are generally less than 0.3 Ma (0.35%–2σ), and as good as 0.08 Ma (0.1%), when the weighted mean 206Pb/238U value is used. Such precision allows the distinction of magma replenishment processes if separated by more than 0.6–1.0 Ma and when they are marked by newly saturated zircons. We interpret zircon dates from a single sample that do not overlap to reflect new zircon growth during magma recharge in a long-lived crustal chamber. Mingling/mixing of the basaltic magma with colder granitoid mush at mid- to upper-crustal levels is proposed to explain zircon saturation and fast crystallization of U- and REE-rich zircons in the hybrid gabbro.Major and trace-element distribution and Sr and Nd whole-rock isotope chemistry define island arc affinities for the studied plutons. Slab derived fluids and a sediment component are constrained as enrichment sources for the mantle wedge-derived magma, though Hf isotopes in zircon suggest crustal assimilation was also important. Inherited zircons, and their corresponding ε-Hf, from the hybrid gabbroic rocks trace the lower crust as possible source for enrichment of the mantle magma. These inherited zircons are about 440 Ma old with ε-Hf of − 7 at 82 Ma, whereas newly saturated concordant Upper Cretaceous zircons reveal mantle ε-Hf values of + 7.2 to + 10.1. The upper and middle crusts contribute in the generation of the granitoid rocks. Their zircon inheritance is Lower Palaeozoic or significantly older and crustal dominated with 82–85 Ma corrected ε-Hf values of − 28. The Cretaceous concordant zircons in the granitoids are mantle dominated with a ε-Hf values spreading from + 3.9 to + 7.  相似文献   

15.
Sulphide inclusions, which represent melts trapped in the minerals of magmatic rocks and xenoliths, provide important clues to the behaviour of immiscible sulphide liquids during the evolution of magmas and the formation of NieCueFe deposits. We describe sulphide inclusions from unique ultramafic clots within mafic xenoliths, from the mafic xenoliths themselves, and from the three silica-rich host plutons in Tongling, China. For the first time, we are able to propose a general framework model for the evolution of sulphide melts during the evolution of mafic to felsic magmas from the upper mantle to the upper crust. The model improves our understanding of the sulphide melt evolution in upper mantle to upper crust magmas, and provides insight into the formation of stratabound skarn-type FeeCu polymetallic deposits associated with felsic magmatism, thus promising to play an important role during prospecting for such deposits.  相似文献   

16.
Magma mingling has been identified within the continental margin of southeastern China.This study focuses on the relationship between mafic and felsic igneous rocks in composite dikes and plutons in this area,and uses this relationship to examine the tectonic and geodynamic implications of the mingling of mafic and felsic magmas.Mafic magmatic enclaves(MMEs) show complex relationships with the hosting Xiaocuo granite in Fujian area,including lenticular to rounded porphyritic microgranular enclaves containing abundant felsic/mafic phenocrysts,elongate mafic enclaves,and back-veining of the felsic host granite into mafic enclaves.LA-ICP-MS zircon U-Pb analyses show crystallization of the granite and dioritic mafic magmatic enclave during ca.132 and 116 Ma.The host granite and MMEs both show zircon growth during repeated thermal events at-210 Ma and 160-180 Ma.Samples from the magma mingling zone generally contain felsic-derived zircons with well-developed growth zoning and aspect ratios of 2-3,and maficderived zircons with no obvious oscillatory zoning and with higher aspect ratios of 5-10.However,these two groups of zircons show no obvious trace element or age differences.The Hf-isotope compositions show that the host granite and MMEs have similar ε_(Hf)(t) values from negative to positive which suggest a mixed source from partial melting of the Meso-Neoproterozoic with involvement of enriched mantlederived magmas or juvenile components.The lithologies,mineral associations,and geochemical characteristics of the mafic and felsic rocks in this study area indicate that both were intruded together,suggesting Early Cretaceous mantle—crustal interactions along the southeastern China continental margin.The Early Cretaceous magma mingling is correlated to subduction of Paleo-Pacific plate.  相似文献   

17.
South Qinling Tectonic Belt (SQTB) is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures. There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui granitoid plutons at the northeast, Huayang-Wulong-Laocheng granitoid plutons at the central part, Xiba granitoid pluton at the northwest and Guangtoushan-Liuba granitoid plutons at the southwest. These Indonisian granitoids contain a mass of various scale mafic enclaves, which show sometimes clear boundaries and sometimes transitional boundaries with their host granitoids. These granitoids also exhibit metaluminous to peraluminous series, commonly higher Mg# and a wide range of petrochemistry from low-K tholeiite series, through mid-K and high-K calc-alkaline series to shoshonite series and predominated samples are attributed to mid-K and high-K calc-alkaline series. Detailed analyses in Sr-Nd isotopic systematics and petrochemistry reveal that there may be regionally initial granitoid magma of the Indonisian granitoid plutons, comprising Dongjiangkou-Zhashui, Huayang-Wulong-Laocheng, Xiba, and Guangtoushan-Liuba granitoid plutons, which were produced by hybrids of magmas in various degrees, and the initial magmas were derived from both the mantle and the lower continental crust (LCC) sources in the SQTB. The initial granitoid magma further did the magma hybrid with the magmas from the LCC, crystallization fractionation, and assimilation with upper crustal materials during their emplacement to produce these granitoid plutons in the SQTB. These magmatism processes are most likely to occur under continent marginal arc and syn-collision to post-collision tectonic backgrounds.  相似文献   

18.
A detailed study of apatite and biotite compositions in multiple intrusive phases from five composite plutons in the northern Canadian Cordillera was undertaken with the aim of determining the composition of magmatic fluids relative to F:Cl:OH for several plutons―both barren and mineralizing―and for specific intrusive phases from each pluton that may be related to nearby tungsten skarns. Magmatic apatite and biotite compositions are consistent with a crustal source of magma, either derived from predominantly supracrustal rocks, and (or) derived from predominantly infracrustal rocks and fractionated to felsic compositions. Increasing MnO (± FeO and XF:XCl) with decreasing CaO in apatite broadly correlates with an increasing degree of magmatic differentiation, although Fe# vs. total aluminum in biotite is a better indicator of inter- and intra-plutonic differentiation. Anomalously iron-rich biotites occur in highly fractionated and (or) wallrock-contaminated phases of plutons associated with tungsten skarns.Estimates of magmatic fluid composition―calculated as the activity ratios log[aHCl / aHF] and log[aHOH / aHF] from apatite and biotite compositions―show several trends with respect to magmatic differentiation. Two barren plutons demonstrate that fluids in silicic magmas become HF enriched relative to HCl with increasing differentiation, although re-equilibration with late-stage sub-solidus or hydrothermal fluids may obscure this trend. The three intrusions with associated tungsten skarn mineralization, including the world-class Cantung deposit, also become HF-enriched with magmatic evolution. However, magmatic apatite and biotite in individual intrusive phases that are the most closely associated with mineralization have equilibrated with compositionally distinct fluids. In these particular intrusive phases, apatite appears to have equilibrated with an earlier HCl- and H2O-rich magmatic fluid, and biotite appears to have equilibrated with a later HCl- and (a particularly) H2O-rich magmatic fluid. The fluid in these magmas apparently evolved to a H2O-rich (or less saline) composition as the temperature of the magma decreased. None of the other intrusive phases, from either the barren or tungsten-associated plutons, have apatite and biotite activity ratios that are suggestive of equilibration with such an HCl/HF- and H2O/HF-rich fluid. Instead, the activity ratios calculated from apatite and biotite in intrusive phases that are not as closely associated with mineralization are well-coupled and unremarkable (although small variations are common), which would suggest that both minerals equilibrated with similar fluids. These intrusive phases do not appear to have produced a large quantity of saline hydrous fluid capable of seggregating and transporting tungsten. The identification of intrusive phases that did produce magmatic fluids that were anomalously enriched in HCl and H2O could, therefore, be a predictor of nearby tungsten skarn mineralization.  相似文献   

19.
The southernmost Guyana Shield-Uatumã subdomain, northeastern Amazonas State, Brazil is dominantly formed by granitoid and volcanic rocks from the Água Branca Suite (ABS), undivided Granite Stocks (GS) and São Gabriel volcano–plutonic system (SGS). The ABS is characterized by a granite series that exhibits comparatively low Fe/(Fe + Mg) ratio, low (Nb/Zr)N, high Sr values and high Rb/Zr ratio. Its rocks display metaluminous to weakly peraluminous (A/CNK 0.94–1.06), high-K calc-alkaline, I normal-type character and have moderately to strongly fractionated rare earth elements (REE) pattern. The SG granites and SGS effusive–ignimbrite–granite association is metaluminous to weakly peraluminous (A/CNK 0.84–1.18), high-K calc-alkaline, has moderately to weakly fractionated REE trend, higher Fe/(Fe + Mg) ratio, lower Sr content and lower Rb/Zr ratio. The ABS geochemical signature is consistent with formation from volcanic arc rocks and small participation of collisional setting rocks, whereas the SG and SGS have post-collisional tectonic rocks-related geochemical signature. This model is in harmony with a post-collisional extensional regime, started with the 1.90–1.89 Ga Água Branca magmatism, and culminated with the 1.89–1.88 Ga São Gabriel system at an early stage of intracratonic reactivation, which included intrusion of mafic dikes. The Uatumã subdomain was related to mantle underplating with continental uplift and its origin involved contributions of 2.3–2.44 Ga Archean-contaminated Trans-Amazonian, 2.13–2.21 Ga Trans-Amazonian, 1.93–1.94/2.0 Ga Tapajós-Parima. Foliation styles point out that part of the Água Branca granitoids recorded later deformational effects, likely related to the Rio Negro Province formation.  相似文献   

20.
Petrogenesis of Mafic Inclusions in Granitoids of the Adamello Massif, Italy   总被引:16,自引:7,他引:9  
ABSTRACT The Tertiary Adamello calc-alkaline batholith in the ItalianAlps is characterized by tonalite and granodiorite plutons associatedwith small mafic/ultramafic intrusions, syn-plutonic mafic dykesand sills, and ubiquitous mafic inclusions. In the southernmostVal Fredda Complex, syn-plutonic hornblende-gabbro and dioritesheets pass laterally into swarms of mafic inclusions intermingledwith tonalite. Petrological and geochemical data show that themafic sheets represent hydrous mafic magmas derived by fractionalcrystallization from parental hydrous basalt and picro-basalt.The fractionation process is recorded by inclusions of spinel,olivine, and pyroxenes in the cores of hornblende phenocrystsand by the widespread occurrence of calcic plagioclase. Fractionationoccurred at high pressure (Ptoul = 8–10 kb) before intrusionat shallow depths (Ptotal 2 kb). Geothermometry and meltingexperiments at PH2O= 1 kb, combined with textural evidence,indicate that the mafic sheets were emplaced at temperaturesof 1050–1100C into hot, but consolidated, granitoid hostrocks. Transfer of heat and hydrous fluids from the sheets remobilizedthe host rocks into crystal-mush, which in turn disrupted thesheet margins to form mafic inclusions. Dynamic crystallizationexperiments indicate that the mafic inclusions and sheet marginswere quenched to temperatures below 970 C, resulting in thefailure of the high-temperature liquidus phases olivine andclinopyroxene to nucleate and the formation of acicular hornblendeand plagioclase. Several other Adamello plutons display syn-plutonicintrusions and mafic inclusions with comparable features tothe Val Fredda Complex. The Adamello mafic inclusions show pronounced enrichments incertain trace elements compared with values expected by fractionalcrystallization and magma mixing. K, Rb, Ba, Y, heavy REE, Mn,and Nb have absolute abundances in the inclusions greater thanthe interiors of neighbouring mafic sheets and, in some cases,than the host granitoids. Many inclusions also display leucocratichaloes, margins rich in ferromagnesian minerals and abundantgroundmass biotite. These features are interpreted in termsof a three-stage evolution. (1) A blob of mafic magma is quenchedby the felsic host to form a rigid crystal-rich inclusion containingan interstitial melt phase. Leucocratic haloes and crenulatemargins to the inclusions form as a result of volume contractionon cooling. (2) The more mobile elements (notably the alkalisand H2O) diffuse between the melt phases of host and inclusion.Using published experimental data on the variation of melt fractionwith temperature in hydrous basic and acid magmas, it is arguedthat the observed diffusion of K from host to inclusion requiresinteraction temperatures of >900C. Reaction of K-enrichedmelt with existing hornblende in the inclusion forms biotite,which sequesters and concentrates further K2O and other alkalineelements. (3) During protracted cooling the mafic inclusionsequilibrate with interstitial melt in the host granitoid. Equilibriumpartitioning of heavy REE and Y into the mafic minerals in theinclusion results in the observed enrichments. Magnetite likewiseconcentrates Nb and Mn. It is proposed that mafic inclusions form in the waning stageof pluton evolution when the granitoid magma is sufficientlyconsolidated to allow the penetration of mafic intrusions, butsufficiently hot to be readily remobilized and disrupt theseintrusions to form mafic inclusions. Subsequent chemical equilibrationof mafic inclusions with their host can have a marked impacton the trace element chemistry of both rock types. Granitoidswhich have experienced extensive interaction with mafic inclusion-formingmagmas may undergo significant depletion in those trace elementswhich partition strongly into the minerals of the mafic inclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号