首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Data obtained during the first rocket flight of the NRL High Resolution Telescope and Spectrograph (HRTS) have been used to study nonthermal velocities for spectral lines primarily covering the temperature range 104 to 2 × 106 K. The high spectral and spatial resolution, combined with an enhanced dynamic intensity range of the reduced data, has enabled us to study the distribution of the nonthermal velocities for quiet and active regions. Average values of the nonthermal velocities peak at about 27 km s–1 at 105 K for the quiet regions, with a wide distribution of nonthermal velocities for each line. The active region nonthermal velocities have a narrower distribution which is weighted towards higher values. The SiIV and C IV line profiles are not well described by a single Gaussian, indicating that high-velocity components (above 30 km s–1) are present in the quiet-Sun spectra. The radiative losses for all plasma above l05 K have been calculated for the quiet Sun, an active region and a coronal hole. These have been compared with the acoustic wave flux inferred from the nonthermal line widths. There appears to be a sufficient flux of waves to heat these regions of the atmosphere.  相似文献   

2.
We apply the ring diagram technique to source regions of halo coronal mass ejections (CMEs) to study changes in acoustic mode parameters before, during, and after the onset of CMEs. We find that CME regions associated with a low value of magnetic flux have line widths smaller than the quiet regions, implying a longer life-time for the oscillation modes. We suggest that this criterion may be used to forecast the active regions which may trigger CMEs.  相似文献   

3.
We report measurements of line intensities and line widths for three quiescent prominences observed with the Naval Research Laboratory slit spectrograph on ATM/Skylab. The wavelengths of the observed lines cover the range 1175 Å to 1960 Å. The measured intensities have been calibrated to within approximately a factor 2 and are average intensities over a 2 arc sec by 60 arc sec slit. We derive nonthermal velocities from the measured line widths. The nonthermal velocity is found to increase with temperature in the prominence transition zone. Electron densities and pressures are derived from density sensitive line ratios. Electron pressures for two of the prominences are found to lie in the range 0.04–0.08 dyn cm–2, while values for the third and most intense and active of the three prominences are in the range 0.07–0.22 dyn cm–2.  相似文献   

4.
We analyze the evolution of coronal plasma upflows from the edges of AR 10978, which has the best limb-to-limb data coverage with Hinode’s EUV Imaging Spectrometer (EIS). We find that the observed evolution is largely due to the solar rotation progressively changing the viewpoint of nearly stationary flows. From the systematic changes in the upflow regions as a function of distance from disc center, we deduce their 3D geometrical properties as inclination and angular spread in three coronal lines (Si vii, Fe xii, and Fe xv). In agreement with magnetic extrapolations, we find that the flows are thin, fan-like structures rooted in quasi separatrix layers (QSLs). The fans are tilted away from the AR center. The highest plasma velocities in these three spectral lines have similar magnitudes and their heights increase with temperature. The spatial location and extent of the upflow regions in the Si vii, Fe xii, and Fe xv lines are different owing to i) temperature stratification and ii) line of sight integration of the spectral profiles with significantly different backgrounds. We conclude that we sample the same flows at different temperatures. Further, we find that the evolution of line widths during the disc passage is compatible with a broad range of velocities in the flows. Everything considered, our results are compatible with the AR upflows originating from reconnections along QSLs between over-pressure AR loops and neighboring under-pressure loops. The flows are driven along magnetic field lines by a pressure gradient in a stratified atmosphere. Our interpretation of the above results is that, at any given time, we observe the superposition of flows created by successive reconnections, leading to a broad velocity distribution.  相似文献   

5.
Brynildsen  N.  Brekke  P.  Fredvik  T.  Haugan  S. V. H.  Kjeldseth-Moe  O.  Maltby  P.  Harrison  R. A.  Wilhelm  K. 《Solar physics》1998,181(1):23-50
We present high spatial and spectral resolution observations of one active and one quiet-Sun region, obtained with CDS and SUMER on SOHO. The connections between the line profile parameters are studied and a systematic wavelength shift towards the red with increasing peak line intensity (line broadening) is detected. The large scatter in the data calls for another approach. We apply conditional probability analysis to a series of EUV emission lines and find significant correlations between line profile parameters. For a given interval in wavelength shift we find that: (1) line profiles with large intensities (line widths) and red shifts above the average constitute an increasing fraction of the profiles as the relative wavelength shift increases, (2) line profiles with large intensities (line widths) and blue shifts compared to the average, on the other hand, constitute a decreasing fraction of the profiles as the relative wavelength shift increases. These results extend the findings of an earlier quiet-Sun study from one to several emission lines and expand the validity to include the active region. Interestingly, the active region observations show correlations between peak line intensity and wavelength shift in the coronal lines.The tendency for red-shifted profiles to be more intense than blue-shifted profiles will shift line profiles derived by integrating along the slit towards the red. From the present observations we are not able to determine the fraction of the net red shift that emerges from this correlation. We suggest that the same mechanism is responsible both for the correlation between the line profile parameters and for the differential red shift between the transition region and chromospheric emission lines.  相似文献   

6.
Coronal holes are regions of dominantly monopolar magnetic field on the Sun where the field is considered to be ‘open’ towards interplanetary space. Magnetic bipoles emerging in proximity to a coronal hole boundary naturally interact with this surrounding open magnetic field. In the case of oppositely aligned polarities between the active region and the coronal hole, we expect interchange reconnection to take place, driven by the coronal expansion of the emerging bipole as well as occasional eruptive events. Using SOHO/EIT and SOHO/MDI data, we present observational evidence of such interchange reconnection by studying AR 10869 which emerged close to a coronal hole. We find closed loops forming between the active region and the coronal hole leading to the retreat of the hole. At the same time, on the far side of the active region, we see dimming of the corona which we interpret as a signature of field line ‘opening’ there, as a consequence of a topological displacement of the ‘open’ field lines of the coronal hole. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We develop a technique for the analysis of Hei 1083 nm spectra which addresses several difficulties through determination of a continuum background by comparison with a well-calibrated standard and through removal of nearby solar and telluric blends by differential comparison to an average spectrum. The method is compared with earlier analysis of imaging spectroscopy obtained at the National Solar Observatory/Kitt Peak Vacuum Telescope (NSO/KPVT) with the NASA/NSO Spectromagnetograph (SPM). We examine distributions of Doppler velocity and line width as a function of central intensity for an active region, filament, quiet Sun, and coronal hole. For our example, we find that line widths and central intensity are oppositely correlated in a coronal hole and quiet Sun. Line widths are comparable to the quiet Sun in the active region, are systematically lower in the filament, and extend to higher values in the coronal hole. Outward velocities of 2–4 km s–1 are typically observed in the coronal hole. The sensitivity of these results to analysis technique is discussed.  相似文献   

8.
We reassess the hypothesis that Lyman-break galaxies (LBGs) at redshifts   z ∼ 3  mark the centres of the most massive dark matter haloes at that epoch. First we reanalyse the kinematic measurements of Pettini et al. and Erb et al. of the rest-frame optical emission lines of LBGs. We compare the distribution of the ratio of the rotation velocity to the central line width, against the expected distribution for galaxies with random inclination angles, modelled as singular isothermal spheres. The model fits the data well. On this basis we argue that the central line width provides a predictor of the circular velocity at a radius of several kpc. Assembling a larger sample of LBGs with measured line widths, we compare these results against the theoretical ΛCDM rotation curves of Mo, Mao & White, under the hypothesis that LBGs mark the centres of the most massive dark matter haloes. We find that the circular velocities are overpredicted by a substantial factor, which we estimate conservatively as  1.8 ± 0.4  . This indicates that the model is probably incorrect. The model of LBGs as relatively low-mass starburst systems, of Somerville, Primack & Faber, provides a good fit to the data.  相似文献   

9.
We use H line profiles as a diagnostic of mass motion and nonthermal electron precipitation in the white-light flare (WLF) of 1991 June 9 01:34 UT. We find only weak downflow velocities (10 km s–1) at the site of white-light emission, and comparable velocities elsewhere.We also find that electron precipitation is strongest at the WLF site. We conclude that continuum emission in this flare was probably caused by nonthermal electrons and not by dynamical energy transport via a chromospheric condensation.  相似文献   

10.
We present a preliminary analysis of spectral lines obtained with the SUMER instrument (Solar Ultraviolet Measurements of Emitted Radiation) onboard the Solar and Heliospheric Observatory (SOHO), as observed during three observing campaigns. From the 70 observed spectral lines, we selected 12, representing 9 ions or atoms, in order to analyse line intensities, shifts and widths in polar coronal holes as well as in the normal quiet Sun. We find that coronal lines show a distinct blueshift in coronal holes relative to the quiet Sun at equal heliospheric angle, while there is no evidence for such a shift for lines formed at temperatures below 105K. The widths of lines formed at temperatures above 3 – 104K are slightly increased inside the coronal hole, but unaffected for lower temperatures. Intensity measurements clearly show the center-to-limb variation, as well as an intensity diminution inside the coronal hole for lines formed above approximately 105K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
12.
X-ray and extreme-ultraviolet emission from the coronae of Capella   总被引:1,自引:0,他引:1  
The primary objective of this work is the analysis and interpretation of coronal observations of Capella obtained in 1999 September with the High Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory and the Extreme Ultraviolet Explorer ( EUVE ). He-like lines of O (O  vii ) are used to derive a density of 1.7×1010 cm−3 for the coronae of the binary, consistent with the upper limits derived from Fe  xxi , Ne  ix and Mg  xi line ratios. Previous estimates of the electron density based on Fe  xxi should be considered as upper limits. We construct emission measure distributions and compare the theoretical and observed spectra to conclude that the coronal material has a temperature distribution that peaks around 4–6 MK , implying that the coronae of Capella were significantly cooler than in the previous years. In addition, we present an extended line list with over 100 features in the 5–24 Å wavelength range, and find that the X-ray spectrum is very similar to that of a solar flare observed with SMM . The observed to theoretical Fe  xvii 15.012-Å line intensity reveals that opacity has no significant effect on the line flux. We derive an upper limit to the optical depth, which we combine with the electron density to derive an upper limit of 3000 km for the size of the Fe  xvii emitting region. In the same context, we use the Si  iv transition region lines of Capella from HST /Goddard High-Resolution Spectrometer observations to show that opacity can be significant at T =105 K , and derive a path-length of ≈75 km for the transition region. Both the coronal and transition region observations are consistent with very small emitting regions, which could be explained by small loops over the stellar surfaces.  相似文献   

13.
We study pre-eruptive, eruptive, and post-eruptive phenomena related to a CME that occurred on November 23, 2000 by means of joint analyses of data from various spectral ranges. Almost all known CME-associated phenomena were observed during this event, i.e., a filament eruption, solar flare, dimmings, and a post-eruptive arcade formation. Following a chain of events observed in various spectral ranges, we find that the event occurred in an activity complex consisting of active regions 9231 and 9238, and that it was triggered by a magnetic flux emergence, which caused a flare in AR 9231. In turn, the flare triggered activation and eruption of the filament followed by the CME and the flare in AR 9238 in which the post-eruptive arcade was observed. We discuss some characteristics of the flare and CME and also estimate the magnetic field strength in the coronal arcade to be about 200 G from spatially resolved polarization measurements in microwaves with radio telescopes. In this particular case, the only significant emission mechanism is optically thin free-free emission, and the possible contribution of nonthermal emissions cannot change our estimate of the magnetic field strength in the corona. However, generally one should make sure that the nonthermal contribution cannot be important in similar cases; otherwise, the magnetic field can be well overestimated. Here, we specifically address the identification technique of the radio emission mechanism.  相似文献   

14.
Brynildsen  N.  Maltby  P.  Brekke  P.  Haugan  S.V.H.  Kjeldseth-Moe  O. 《Solar physics》1999,186(1-2):141-191
We present results from a study of the spatial distributions of line emission and relative line-of-sight velocity in the atmosphere above 17 sunspot regions, from the chromosphere, through the transition region and into the corona, based on simultaneous observations of ten EUV emission lines with the Coronal Diagnostic Spectrometer – CDS on SOHO. We find that the spatial distributions are nonuniform over the sunspot region and introduce the notation 'sunspot loop' to describe an enhanced transition region emission feature that looks like a magnetic loop, extending from inside the sunspot to the surrounding regions. We find little evidence for the siphon flow. Attention is given to the time variations since we observe both a rapid variation with a characteristic time of a few to several minutes and a slow variation with a time constant of several hours to 1 day. The most prominent features in the transition region intensity maps are the sunspot plumes. We introduce an updated criterion for the presence of plumes and find that 15 out of 17 sunspots contain a plume in the temperature range logT5.2–5.6. The relative line-of-sight velocity in sunspot plumes is high and directed into the Sun in the transition region. Almost all the sunspot regions contain one or a few prominent, strongly redshifted velocity channels, several of the channels extend from the sunspot plume to considerable distances from the sunspot. The flow appears to be maintained by plasmas at transition region temperatures, moving from regions located at a greater height outside the sunspots and towards the sunspot. The spatial correlation is high to moderate between emission lines formed in the transition region lines, but low between the transition region lines and the coronal lines. From detailed comparisons of intensity and velocity maps we find transition region emission features without any sign of coronal emission in the vicinity. A possible explanation is that the emission originates in magnetic flux tubes that are too cold to emit coronal emission. The comparisons suggest that gas at transition region temperature occur in loops different from loops with coronal temperature. However, we cannot exclude the presence of transition region temperatures close to the footpoints of flux tubes emitting at coronal temperatures. Regions with enhanced transition region line emission tend to be redshifted, but the correlation between line emission and relative line-of-sight velocity is weak. We extend our conditional probability studies and confirm that there is a tendency for line profiles with large intensities and red shifts (blue shifts) above the average to constitute an increasing (decreasing) fraction of the profiles as the wavelength shift increases.  相似文献   

15.
We present high-resolution optical echelle spectroscopy for a large fraction of the Li-rich late-type stars recently discovered in the vicinity of the Lupus dark clouds. Our results confirm the high Li  i   λ 6708 equivalent widths previously estimated from medium-resolution spectra, thus adding strength to the conclusion that the large majority of these stars are still in the pre-main-sequence phase of their evolution, contrary to claims from other authors that many of them might be zero-age main-sequence stars. We present a statistical approach to derive a mean distance for the sample, and find that it is consistent with, or slightly lower than, the Hipparcos distance of the Lupus star-forming region. The radial velocities measured for part of these stars are consistent with those observed for the Lupus star-forming region, while stars outside the dark clouds show a mean difference of the order of 3 km s−1. The projected rotational velocities show a lack of slow rotators, which is interpreted as a consequence of the X-ray selection of the sample. The Li-rich stars in Lupus studied in this work yield a fairly 'clean' sample of very young stars, while in other star-forming regions a larger fraction of older zero-age main-sequence stars has been found among ROSAT -discovered Li-rich stars. We argue that this fact reflects the relation of these stars with the Gould Belt.  相似文献   

16.
Heating of coronal loops by linear resonant Alfvén waves, excited by the footpoints motions in the photosphere, has been studied. The analysis of single-layer heating is extended to multilayer heating, in semiempirical treatment. Heating and nonthermal velocities in different layers of loops in X-ray bright points, active regions, and large-scale structures are estimated. The average value of velocity is found to be in agreement with the observations.  相似文献   

17.
The phenomenon of gamma-ray burst (GRB) spectral lags is very common, but a definitive explanation has not yet been given. From a sample of 82 GRB pulses we find that the spectral lags are correlated with the pulse widths, however, there is no correlation be- tween the relative spectral lags and the relative pulse widths. We suspect that the correlations between spectral lags and pulse widths might be caused by the Lorentz factor of the GRBs concerned. Our analysis on the relative quantities suggests that the intrinsic spectral lag might reflect other aspect of pulses than the aspect associated with the dynamical time of shocks or that associated with the time delay due to the curvature effect.  相似文献   

18.
Models of chemical evolution of elliptical galaxies taking into account different escape velocities at different galactocentric radii are presented. As a consequence of this, the chemical evolution develops differently in different galactic regions; in particular, we find that the galactic wind, powered by supernovae (of Type II and I) starts, under suitable conditions, in the outer regions and successively develops in the central ones. The star formation is assumed to stop after the onset of the galactic wind in each region. The main result found in the present work is that this mechanism is able to reproduce metallicity gradients, namely the gradients in the Mg2 index, in good agreement with observational data. We also find that in order to honour the constant [〈Mg/Fe〉] ratio with galactocentric distance, as inferred from metallicity indices, a variable initial mass function as a function of galactocentric distance is required. This is only a suggestion, as trends on abundances inferred purely from metallicity indices are still uncertain.  相似文献   

19.
High resolution spectra of the coronal emission line Fe xiv at 530.3 nm obtained at the 30 May 1965 total solar eclipse are analyzed and interpreted. Deconvolution techniques that preserve the line intensity vs wavelength profile shape are developed to obtain further resolution improvement. The west limb coronal enhancement is determined to have temperatures less than 3 MK and turbulent velocities of ~25 km s-1 decreasing with altitude. Temperature gradients provide evidence for marginal solar wind flow from this enhancement. Above the quiet photosphere in the southwest quadrant the comparison of line and continuum intensities and consideration of line width suggest to us the coronal region is filled with inhomogeneous plasma, dense enough in localized regions to maintain collisional excitation. Solar wind flow from this region obtains when turbulent velocities are assumed to contribute to the line broadening. We identify this region as a coronal hole and suggest that coronal material is heated by the quiet photosphere below.  相似文献   

20.
For the 2.5 year period from January 1, 1977 to June 30, 1979, we have correlated the positions of high latitude coronal holes, obtained from the He 10830 Å synoptic maps, with the velocities of solar wind streams, determined from interplanetary scintillation, that would have originated from these coronal holes. From 24 cases analyzed we find that these high latitude coronal holes are often, but not always, correlated with high speed solar wind streams. The lack of a much stronger correlation may be due to uncertainties in the boundaries of the coronal holes and in the velocities of the solar wind streams. It might also be due to the deflection or attenuation of relatively weak solar wind streams in interplanetary space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号