首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In this article, the interannual variability of certain dynamic and thermodynamic characteristics of various sectors in the Asian summer monsoon domain was examined during the onset phase over the south Indian peninsula (Kerala Coast). Daily average (0000 and 1200 UTC) reanalysis data sets of the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) for the period 1948–1999 were used. Based on 52 years onset date of the Indian summer monsoon, we categorized the pre-onset, onset, and post-onset periods (each an average of 5 days) to investigate the interannual variability of significant budget terms over the Arabian Sea, Bay of Bengal, and the Indian peninsula. A higher difference was noticed in low-level kinetic energy (850 hPa) and the vertically integrated generation of kinetic energy over the Arabian Sea from the pre-onset, onset, and post-onset periods. Also, significant changes were noticed in the net tropospheric moisture and diabatic heating over the Arabian Sea and Indian peninsula from the pre-onset to the post-onset period. It appears that attaining the magnitude of 40 m2 s−2 and then a sharp rise in kinetic energy at 850 hPa is an appropriate time to declare the onset of the summer monsoon over India. In addition to a sufficient level of net tropospheric moisture (40 mm), a minimum strength of low-level flow is needed to trigger convective activity over the Arabian Sea and the Bay of Bengal. An attempt was also made to develop a location-specific prediction of onset dates of the summer monsoon over India based on energetics and basic meteorological parameters using multivariate statistical techniques. The regression technique was developed with the data of May and June for 42 years (1948–1989) and validated with 10 years NCEP reanalysis from 1990 to 1999. It was found that the predicted onset dates from the regression model are fairly in agreement with the observed onset dates obtained from the Indian Meteorology Department.  相似文献   

2.
This paper describes the variability in the diurnal range of SST in the north Indian Ocean using in situ measurements and tests the suitability of simple regression models in estimating the diurnal range. SST measurements obtained from 1556 drifting and 25 moored buoys were used to determine the diurnal range of SSTs. The magnitude of diurnal range of SST was highest in spring and lowest in summer monsoon. Except in spring, nearly 75–80% of the observations reported diurnal range below 0.5°C. The distributions of the magnitudes of diurnal warming across the three basins of north Indian Ocean (Arabian Sea, Bay of Bengal and Equatorial Indian Ocean) were similar except for the differences between the Arabian Sea and the other two basins during November–February (winter monsoon) and May. The magnitude of diurnal warming that depended on the location of temperature sensor below the water level varied with seasons. In spring, the magnitude of diurnal warming diminished drastically with the increase in the depth of temperature sensor. The diurnal range estimated using the drifting buoy data was higher than the diurnal range estimated using moored buoys fitted with temperature sensors at greater depths. A simple regression model based on the peak solar radiation and average wind speed was good enough to estimate the diurnal range of SST at ∼1.0 m in the north Indian Ocean during most of the seasons except under low wind-high solar radiation conditions that occur mostly during spring. The additional information on the rate of precipitation is found to be redundant for the estimation of the magnitude of diurnal warming at those depths.  相似文献   

3.
Fluxes of momentum, latent heat and sensible heat at fixed stations in the east-central Arabian sea during MONEX were studied. Observations at the same locations at different periods as well as simultaneous observation at different locations were compared. During the advance of monsoon, momentum flux showed remarkable increase. Latent heat loss from sea also increased while sensible heat flux, in general, changed direction to become a gain by the sea. SST decreased by about 1.5°C and air temperature decreased by about 1°C during the advance phase. A north-south difference in SST in the study region seemed to be favourable for the genesis of onset vortex of monsoon. The possible differential effect of this storm at two different locations, depending upon the SST before the storm, is also discussed.  相似文献   

4.
Using the satellite derived sea surface temperature (SST) data for 1979 (bad monsoon) and 1983 (good monsoon), the SST variability for two contrasting monsoon seasons is studied. The study indicates that large negative anomalies off the Somali and Arabian coasts are associated with good monsoon rainfall over India. The strong monsoonal cooling in these regions can be attributed to strong low level winds and intense upwelling. The reappearance of 27°C isotherm off Somali coast in May/June coincides with the onset of southwest monsoon over India. Further, the influence of zonal anomaly of SST off Somalia Coast (SCZASST) and Central Indian Ocean Zonal Anomaly of SST (CIOZASST) with monsoon rainfall over India is brought out. The former is negatively related to the monsoon rainfall over western and central parts of India, whilst CIOZASST is positively related.  相似文献   

5.
The time evolution of atmospheric parameters on intraseasonal time scale in the eastern Arabian Sea (EAS) is studied during the summer monsoon seasons of 1998–2003 using Tropical Rainfall Measuring Mission Microwave Imager (TMI) data. This is done using the spectral and wavelet analysis. Analysis shows that over EAS, total precipitable water vapour (TWV) and sea surface wind speed (SWS) have a periodicity of 8–15 days, 15–30 days and 30–60 days during the monsoon season. Significant power is seen in the 8–15-day time scale in TWV during onset and retreat of the summer monsoon. Analysis indicates that the timings of the intensification of 8–15, 15–30, and 30–60 days oscillations have a profound effect on the evolution of the daily rainfall over west coast of India. The positive and negative phases of these oscillations are directly related to the active and dry spells of rainfall along the west coast of India. The spectral analysis shows interannual variation of TWV and SWS. Heavy rainfall events generally occur over the west coast of India when positive phases of both 30–60 days and 15–30 days modes of TWV and SWS are simultaneously present.  相似文献   

6.
In this study, the possible linkage between summer monsoon rainfall over India and surface meteorological fields (basic fields and heat budget components) over monsoon region (30‡E-120‡E, 30‡S30‡N) during the pre-monsoon month of May and summer monsoon season (June to September) are examined. For this purpose, monthly surface meteorological fields anomaly are analyzed for 42 years (1958-1999) using reanalysis data of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research). The statistical significance of the anomaly (difference) between the surplus and deficient monsoon years in the surface meteorological fields are also examined by Student’s t-test at 95% confidence level. Significant negative anomalies of mean sea level pressure are observed over India, Arabian Sea and Arabian Peninsular in the pre-monsoon month of May and monsoon season. Significant positive anomalies in the zonal and meridional wind (at 2 m) in the month of May are observed in the west Arabian Sea off Somali coast and for monsoon season it is in the central Arabian Sea that extends up to Somalia. Significant positive anomalies of the surface temperature and air temperature (at 2 m) in the month of May are observed over north India and adjoining Pakistan and Afghanistan region. During monsoon season this region is replaced by significant negative anomalies. In the month of May, significant positive anomalies of cloud amount are observed over Somali coast, north Bay of Bengal and adjoining West Bengal and Bangladesh. During monsoon season, cloud amount shows positive anomalies over NW India and north Arabian Sea. There is overall reduction in the incoming shortwave radiation flux during surplus monsoon years. A higher magnitude of latent heat flux is also found in surplus monsoon years for the month of May as well as the monsoon season. The significant positive anomaly of latent heat flux in May, observed over southwest Arabian Sea, may be considered as an advance indicator of the possible behavior of the subsequent monsoon season. The distribution of net heat flux is predominantly negative over eastern Arabian Sea, Bay of Bengal and Indian Ocean. Anomaly between the two extreme monsoon years in post 1980 (i.e., 1988 and 1987) shows that shortwave flux, latent heat flux and net heat flux indicate reversal in sign, particularly in south Indian Ocean. Variations of the heat budget components over four smaller sectors of Indian seas, namely Arabian Sea, Bay of Bengal and west Indian Ocean and east Indian Ocean show that a small sector of Arabian Sea is most dominant during May and other sectors showing reversal in sign of latent heat flux during monsoon season.  相似文献   

7.
The predictability of Indian summer monsoon rainfall from pre-season circulation indices is explored from observations during 1939–91. The predictand is the all-India average of June–September precipitation NIR, and the precursors examined are the latitude position of the 500 mb ridge along 75°E in April (L), the pressure tendency April minus January at Darwin (DPT), March-April-May temperature at six stations in west central India (T6), the sea surface temperature (SST) anomaly in the northeastern Arabian Sea in May (ASM), SST anomaly in the Arabian Sea in January (ANJ), northern hemisphere temperature anomaly in January–February (NHT), and Eurasian snow cover in January (SNOW). Monsoon rainfall tends to be enhanced with a more northerly ridge position, small Darwin pressure tendency, warmer pre-season conditions, and reduced winter snow cover. However, relationships have varied considerably over the past half-century, with the strongest associations during 1950–80, and a drastic weakening in the 1980s. Four prediction models were constructed based on stepwise multiple regression, using as predictors combinations of L, DPT, T6, ASM, and NHT, with 1939–68 as “dependent” dataset, or training period, and 1969–91 as “independent” dataset or verification period. For the 1969–80 portion of the verification period calculated and observed NIR values agreed closely, with the models explaining 74–79% of the variance. By contrast, after 1980 predictions deteriorated drastically, with the explained variance for the 1969–89 time span dropping to 25–31%. The monsoon rainfall of 1990 and 1991 turned out to be again highly predictable from models based on stepwise multiple regression and linear discriminant analysis and using as input L + DPT or L + DPT + NHT, and with this encouragement an experimental real-time forecast was issued of the 1992 monsoon rainfall. These results underline the need for investigations into decadal-scale changes in the general circulation setting and raise concern for the continued success of seasonal forecasting.  相似文献   

8.
We analyze the dynamical features and responsible factors of the low-frequency intraseasonal time scales which influenced the nature of onset, intensity and duration of active/break phases and withdrawal of the monsoon during the anomalous Indian summer monsoon of 2002 — the most severe drought recorded in recent times. During that season, persistent warm sea surface temperature anomalies over the equatorial Indian Ocean played a significant role in modulating the strength of the monsoon Hadley circulation. This in turn affected the onset and intense break spells especially the long break during the peak monsoon month of July. Strong low-frequency intraseasonal modulations with significant impact on the onset and active/break phases occurred in 2002 which were manifested as a good association between low-frequency intraseasonal oscillations and the onset and active/break spells. Further, SST anomalies over the equatorial Indo-Pacific region on low-frequency intraseasonal time scales were found to affect the equatorial eastward and thereby off-equatorial northward propagations of enhanced convection over the Indian region. These propagations in turn modulated the active/break cycle deciding the consequent severity of the 2002 drought.  相似文献   

9.
隋伟辉  赵平 《第四纪研究》2005,25(5):645-654
文章利用Zhao等的模拟结果,进一步研究了在末次盛冰期(LGM)情景下汪品先和CLIMAP两种重建海洋表面温度(SST)资料差异对亚洲夏季风的影响。模拟结果表明:在LGM情景下西太平洋海域SST资料的不同对模拟的亚洲夏季风有着十分重要的作用。夏季,与CLGM方案相比,在WLGM方案中,当热带西太平洋SST较暖时,印度地区的大气热量出现显著增加,大气热量的这种变化,使得南非高压、南印度洋经向Hadley环流加强,伴随着索马里越赤道气流加强,也导致了印度季风区纬向季风环流的加强,从而造成了印度夏季风增强、降水增多;与较暖的热带西太平洋相对应,澳大利亚高压和120°E附近越赤道气流减弱,东亚季风区20°N以南经向季风环流加强、20°N以北经向季风环流减弱,指示着一个强的南海夏季风和较弱东亚副热带大陆夏季风。  相似文献   

10.
南海海-气通量交换研究进展   总被引:3,自引:0,他引:3  
1998年的"南海季风试验(SCSMEX)"已经过去10年了,SCSMEX启动的南海海-气通量试验研究也有10个年头.在SCSMEX和国家自然科学基金面上项目"南海季风爆发期近海面层通量观测和湍流结构的观测研究"支持下,10年来在西沙实施了3次(1998年、2000年、2002年)海-气通量观测试验,开展了试验资料分析研究,重点是西南季风爆发前后海-气通量交换过程研究,辐射通量、感热通量、潜热通量、动量通量随天气条件的变化研究,海-气通量日变化,通量交换系数以及通量变化对低层大气、上层海洋的影响研究.对10年来南海通量研究作一回顾,对未来的通量观测研究计划特别是2008"亚洲季风年"西沙通量观测提出一些建议.  相似文献   

11.
An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5–12.5 μm thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50–1.02 K) and to ship datasets (1.41–1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.  相似文献   

12.
Detailed analysis of the surface winds over the Indian Ocean derived from ERS-1 scatterometer data during the years 1993 and 1994 has been used to understand and unambiguously identify the onset phase of south-west monsoon. Five day (pentad) averaged wind vectors for the period April to June during both years have been examined to study the exact reversal of wind direction as well as the increase in wind speed over the Arabian Sea in relation to the onset of monsoon over the Indian west coast (Kerala). The related upper level humidity available from other satellites has also been analysed. The results of our analysis clearly show a consistent dramatic reversal in wind direction over the western Arabian Sea three weeks in advance of the onset of monsoon. The wind speed shows a large increase coinciding with the onset of monsoon. These findings together show the dominant role of sea surface winds in establishing the monsoon circulation. The study confirms that the cross equatorial current phenomenon becomes more important after the onset of monsoon.  相似文献   

13.
Data on ocean color chlorophylla (Chl a) obtained using Sea-viewing Wide Field of view Sensor (SeaWiFS), sea surface temperature (SST) by Advanced Very High Resolution Radiometer (AVHRR), and sea surface height (SSH) by TOPEX/POSEIDON were analyzed to examine the influence of Indian Ocean Dipole (IOD) on the physical and biogeochemical processes with special reference to phytoplankton primary production and air-sea fluxes of carbon dioxide in the Arabian Sea. Positive SST anomalies (SSTA) were found in the Arabian Sea (0.4 to 1.8°C) with higher values in the southwestern Arabian Sea that decreased towards north. The SSH anomalies (SSHA) and turbulent kinetic energy anomalies (TKEA) suggest decreased mixing during the IOD compared to the normal period. Chlorophylla displayed significant negative correlations with SSTA and SSHA in the Arabian Sea. Consistently, Chla showed negative anomalies (low Chl a) during the IOD period which could be due to reduced inputs of nutrients. The photic zone integrated primary production decreased by 30% during the IOD period compared to the normal whereas pCO2 levels were higher (by 10–20μatm). However, sea to air fluxes were lower by 10% during the IOD period due to prevailing weaker winds. Primary production seems to be the key process controlling the surface pCO2 levels in the Arabian Sea. In future, the influence of IOD on ecosystem structure, export production and bacterial respiration rates are to be probed throughin situ time-series observations.  相似文献   

14.
Arabian Sea sediments record changes in the upwelling system off Arabia, which is driven by the monsoon circulation system over the NW Indian Ocean. In accordance with climate models, and differing from other large upwelling areas of the tropical ocean, a 500,000-yr record of productivity at ODP Site 723 shows consistently stronger upwelling during interglaciations than during glaciations. Sea-surface temperatures (SSTs) reconstructed from the alkenone unsaturation index (UK′37) are high (up to 27°C) during interglaciations and low (22-24°C) during glaciations, indicating a glacial-interglacial temperature change of >3°C in spite of the dampening effect of enhanced or weakened upwelling. The increased productivity is attributed to stronger monsoon winds during interglacial times relative to glacial times, whereas the difference in SSTs must be unrelated to upwelling and to the summer monsoon intensity. The winter (NE) monsoon was more effective in cooling the Arabian Sea during glaciations then it is now.  相似文献   

15.
An analysis of the meteorological data collected by the research vessel ORV Sagarkanya for the mean latent and sensible heat fluxes over the Arabian Sea has indicated appreciable changes between active and weak phases of the southwest monsoon of 1986. We suggest that: (a) the presence of a core of low level winds associated with the Somali jet and its southward shift during the season, along with (b) a ridge in surface pressure over the central Arabian Sea could be responsible for the deficit in monsoon rainfall along the west coast of India in 1986.  相似文献   

16.
We investigate Pacific Decadal Oscillation (PDO) signals recorded by two bimonthly resolved coral δ18O series from La Réunion and Ifaty (West Madagascar), Indian Ocean from 1882 to 1993. To isolate the main PDO frequencies, we apply a band pass filter to the time series passing only periodicities from 16 to 28 years. We investigate the covariance patterns of the coral time series with sea surface temperature (SST) and sea level pressure (SLP) of the Indian and Pacific Oceans. In addition, the empirical orthogonal functions of the filtered SST and SLP fields (single and coupled) are related to the filtered coral times series. The covariance maps show the typical PDO pattern for SST and SLP, confirming the coupling between the Indian and Pacific Oceans. Both corals show the strongest signal in boreal summer. The La Réunion (Ifaty) coral better records SST (SLP) than SLP (SST) pattern variability. We suggest that the filtered La Réunion coral δ18O represents δ18O of seawater that varies with the South Equatorial Current, which, in turn, is linked with the SST PDO. The filtered Ifaty coral δ18O represents SST and is remotely linked with the SLP PDO variability. A combined coral record of the Ifaty and La Réunion boreal summer δ18O series explains about 64% of the variance of the coupled SST/SLP PDO time series. AGU OS06 special issue “Ocean’s role in climate change—a paleo perspective”.  相似文献   

17.
The warm pool in the Indian Ocean   总被引:2,自引:0,他引:2  
The structure of the warm pool (region with temperature greater than 28°C) in the equatorial Indian Ocean is examined and compared with its counterpart in the Pacific Ocean using the climatology of Levitus. Though the Pacific warm pool is larger and warmer, a peculiarity of the pool in the Indian Ocean is its seasonal variation. The surface area of the pool changes from 24 × 106 km2 in April to 8 × 106 km2 in September due to interaction with the southwest monsoon. The annual cycles of sea surface temperature at locations covered by the pool during at least a part of the year show the following modes: (i) a cycle with no significant variation (observed in the western equatorial Pacific and central and eastern equatorial Indian Ocean), (ii) a single maximum/minimum (northern and southern part of the Pacific warm pool and the south Indian Ocean), (iii) two maxima/minima (Arabian Sea, western equatorial Indian Ocean and southern Bay of Bengal), and (iv) a rapid rise, a steady phase and a rapid fall (northern Bay of Bengal).  相似文献   

18.
The variability in the long-term temperature and sea level over the north Indian Ocean during the period 1958–2000 has been investigated using an Ocean General Circulation Model, Modular Ocean Model version 4. The model simulated fields are compared with the sea level observations from tide-gauges, Topex/Poseidon (T/P) satellite, in situ temperature profile observations from WHOI moored buoy and sea surface temperature (SST) observations from DS1, DS3 and DS4 moored buoys. It is seen that the long (6–8 years) warming episodes in the SST over the north Indian Ocean are followed by short episodes (2–3 years) of cooling. The model temperature and sea level anomaly over the north Indian Ocean show an increasing trend in the study period. The model thermocline heat content per unit area shows a linear increasing trend (from 1958–2000) at the rate of 0.0018 × 1011 J/m2 per year for north Indian Ocean. North Indian Ocean sea level anomaly (thermosteric component) also shows a linear increasing trend of 0.31 mm/year during 1958–2000.  相似文献   

19.
The sea surface temperature (SST) variations play a veryimportant role in the genesis and maintenance of meteorological and oceanographic processessuch as monsoon depressions and subsequent floods, large-scale sea level fluctuationsand genesis of tropical cyclones. Many low lying coastal regions of South Asia are adjacentto river deltas and have large population. The dense population, poor economy and severalother socio-economic factors make these areas most vulnerable to the impact of climate change.Variability of sea surface temperature (SST) is importantas the duration and intensity of SST provide the basis for studies related to climatic changescenario. In this study an attempt has been made to estimate the recent SST trends in the coastalwaters of some cities, which lie on the Arabian Sea and Bay of Bengal. The annual andinterannual variability has also been studied. The SST variations have then been linkedwith the El Nino and La Nina events.The NOAA-NASA Pathfinder Advanced Very High Resolution Radiometer (AVHRR) SST fields from 1985-1998, created in the Jet Propulsion Laboratory(JPL), USA are used in this study. Here the quality of data is an important factor toobtain reliable estimates of Sea Surface Temperature (SST) trends and other related parameters.However, this is not possible with the conventional type data, due to low quality as wellas sparse data in the region. Though the satellite based SST climatologies have shorterobservation lengths, they can provide reliable estimates of recent SST variability overa large oceanic areas with sparse or no data.Increasing trend of SST is observed throughout all theseasons in the northern Arabian Sea extending from Oman to Karachi and Mumbai and furthersouth to Salalah and Colombo. However, in coastal islands stations further south ofIndia such as at Colombo the increment is not significant. Though the increasing trend in SSTduring winter is not significant, nevertheless it shows the increasing influence of coldspells on this Island. An interesting situation has been observed in the Bay of Bengal. On anaverage, increasing trends in the annual SST were observed in Visakhaputnam. But at thestations located in the northeastern part of Bay of Bengal, namely Hiron Point and Cox'sBazar reverse conditions are observed. In the Southern Bay of Bengal variations in SST isnot significant which reflects in the SST analysis of Chennai and Port Blair stations. Locationof these stations at lower latitudes (near by equator) probably is the reason for this insignificantchange. It has been found that the interannual mode of SST variations dominate the linear SSTtrends which is characterized by the El Nino Southern Oscillations (ENSO) scale cycle.  相似文献   

20.
The variability in partial pressure of carbon dioxide (pCO2) and its control by biological and physical processes in the mixed layer (ML) of the central and eastern Arabian Sea during inter-monsoon, northeast monsoon, and southwest monsoon seasons were studied. The ML varied from 80–120 m during NE monsoon, 60–80 m and 20–30 m during SW- and inter-monsoon seasons, respectively, and the variability resulted from different physical processes. Significant seasonal variability was found in pCO2 levels. During SW monsoon, coastal waters contain two contrasting regimes; (a) pCO2 levels of 520–685 μatm were observed in the SW coast of India, the highest found so far from this region, driven by intense upwelling and (b) low levels of pCO2 (266 μatm) were found associated with monsoonal fresh water influx. It varied in ranges of 416–527 μatm and 375–446 μatm during inter- and NE monsoon, respectively, in coastal waters with higher values occurring in the north. The central Arabian Sea pCO2 levels were 351–433, 379–475 and 385–432 μatm during NE-inter and SW monsoon seasons, respectively. The mixed layer pCO2 relations with temperature, oxygen, chlorophylla and primary production revealed that the former is largely regulated by physical processes during SW- and NE monsoon whereas both physical and biological processes are important in inter-monsoon. Application of Louanchiet al (1996) model revealed that the mixing effect is the dominant during monsoons, however, the biological effect is equally significant during SW monsoon whereas thermodynamics and fluxes influence during inter-monsoons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号