首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
In the marine environment, stability of the glacier terminus and the location of subglacial streams are the dominant controls on the distribution of grounding-line deposits within morainal banks. A morainal bank complex in Muir Inlet, Glacier Bay, SE Alaska, is used to develop a model of terminus stability and location of subglacial streams along the grounding line of temperate marine glaciers. This model can be used to interpret former grounding-line conditions in other glacimarine settings from the facies architecture within morainal bank deposits.The Muir Inlet morainal bank complex was deposited between 1860 A.D. and 1899 A.D., and historical observations provide a record of terminus positions, glacial retreat rates and sedimentary sources. These data are used to reconstruct the depositional environment and to develop a correlation between sedimentary facies and conditions along the grounding line.Four seismic facies identified on the high-resolution seismic-reflection profiles are used to interpret sedimentary facies within the morainal bank complex. Terminus stability is interpreted from the distribution of sedimentary facies within three distinct submarine geomorphic features, a grounding-line fan, stratified ridges, and a field of push ridges. The grounding-line fan was deposited along a stable terminus and is represented on seismic-reflection profiles by two distinct seismic facies, a proximal and a distal fan facies. The proximal fan facies was deposited at the efflux of subglacial streams and indicates the location of former glacifluvial discharges into the sea. Stratified ridges formed as a result of the influence of a quasi-stable terminus on the distribution of sedimentary facies along the grounding line. A field of push ridges formed along the grounding line of an unstable terminus that completely reworked the grounding-line deposits through glacitectonic deformation.Between 1860 A.D. and 1899 A.D. (39 years),

m3 of sediment were deposited within the Muir Inlet morainal bank complex at an average annual sediment accumulation rate of

m3/a. This rate represents the annual sediment production capacity of the glacier when the Muir Inlet drainage basin is filled with glacial ice.  相似文献   

2.
The origin of acoustically transparent fan deposits overlying glacial till and ice-proximal sediments on the southern margin of the Norwegian Channel has been studied using high-resolution seismic-reflection profiles and multibeam bathymetry. The first deposits overlying glacigenic sediments are a series of stacked, acoustically transparent submarine fans. The lack of glaciomarine sediments below and between individual fans indicates that deposition was rapid and immediately followed the break up of the Late Weichselian ice cover. The fans are overlain by stratified glaciomarine sediments and Holocene mud. Because of the uniformity of this drape, the upper surface of the fan deposits is mimicked at the present seafloor, and the bathymetric images clearly show the spatial relationship of the fans to bedrock ridges and the presence of braided channel-levee systems on the surface of the youngest fans. The acoustically transparent character of the fan deposits indicates that they comprise silt and clay, and their lobate form and lack of internal stratification indicates that they were deposited by debris flows. The channel-levee morphology indicates deposition from more watery hyperconcentrated fluid flows. The fan sediments were either derived from 1) erosion of Mid Weichselian lake deposits in southern Skagerrak or 2) from Late glacial ice-margin lake deposits, ponded against the Norwegian Channel ice stream, which collapsed catastrophically when the lateral support was removed as the ice disintegrated. Fans composed almost exclusively of fine-grained sediment need not, therefore, rule out an origin in a deglacial setting relatively close to the former margins of glaciers and ice sheets.  相似文献   

3.
A deep-sea sediment core (GC98-06) from the southernmost Drake Passage, West Antarctica, shows late Quaternary depositional environments distinctly different from sedimentary drifts commonly found along the southwestern Pacific margin of the Drake Passage. The chronology of the core has been inferred using geochemical tracers of paleoproductivity and diatom biostratigraphy, and represents the paleoceanographic conditions in a continental rise setting during the last 150,000 years. Three dominant sediment types associated with distinct sedimentary processes have been identified using textural/compositional analyses: (1) hemipelagic mud (interglacial sediments) deposited from pelagic settling of bioclasts, meltwater plumes, and ice-rafted detritus; (2) terrigenous mud (glacial sediments) delivered by turbid meltwater plumes; and (3) massive muds marking the boundaries from interglacial to glacial periods. The succession of the sedimentary facies in core GC98-06 is interpreted to reflect temporal changes in environmental conditions prevailing on the continental rise of the southern Drake Passage in the course of successive climatic stages over the last 150 ka: from the bottom upward, these are glacial, interglacial, glaciation, glacial, and interglacial episodes. Variability in sediment flux and diatom abundance seem to have been related to changes in glacial advance, sea-ice extent, and specific sedimentary environments, collectively influenced by mid- to late Quaternary climatic changes.  相似文献   

4.
Twenty-two sediment cores raised from the central and eastern parts of the Barents Sea have been studied to reconstruct the evolution of the facies system since the Late Weichselian glaciation. Multiproxy records reveal four lithostratigraphic units, which reflect major development stages of paleoenvironments. Age control is provided by 23 AMS 14C dates for Holocene sections of four cores. Continental moraine deposits of the last glaciation are overlain by proximal glaciomarine facies of the initial deglaciation phase. During this phase, the Barents Sea ice sheet detached from the ground resulting in seawater penetration into troughs, iceberg calving, deposition of IRD and fine-grained glacier meltwater load in newly formed marine basins. The main deglaciation phase is characterized by pulsed sedimentation from various gravity flows resulting in accumulation of distal glaciomarine facies comprising laminated clay and sand sequences with minor IRD. Redistribution of fine-grained suspended matter by bottom currents and brine-induced nepheloid flows combined with biogenic processes and minor ice rafting caused facies diversity of the Holocene marine sediments. The Holocene facies of shelf depressions reflect rather high, but variable productivity responding to climate changes and variations of Atlantic water inflow into the Barents Sea.  相似文献   

5.
Circulation and water properties within Columbia Bay, Alaska, are dominated by the effects of Columbia Glacier at the head of the Bay. The basin between the glacier terminus and the terminal moraine (sill depth of about 22 m) responds as an ‘upside down’ estuary with the subglacial discharge of freshwater entering at the bottom of the basin. The intense vertical mixing caused by the bouyant plume of freshwater creates a homogeneous water mass that exchanges with the far-field water through either a two- or a three-layer flow. In general, the glacier acts as a large heat sink and creates a water mass which is cooler than that in fjords without tidewater glaciers. The predicted retreat of Columbia Glacier would create a 40 km long fjord that has characteristics in common with other fjords in Prince William Sound.  相似文献   

6.
Glacimarine diamicts are produced by diverse processes, and genetic differentiation is often problematic using macro-sedimentological criteria alone. Micromorphology offers a potentially helpful tool in such investigations. Macroscopically massive diamict samples of known glacimarine origin, from the Polar North Atlantic, Antarctica and north Irish Sea, were prepared for micromorphological analysis to (1) identify microstructures unique to different modes of sedimentation and (2) interpret genetic processes from those structures. The samples comprised examples of debris-flow, iceberg-turbate and suspension settling deposits from late Quaternary glacier-influenced marine environments: tidewater glacier, sub- or pro-ice shelf and continental slopes in front of ice stream termini. Results show two significant features of debris-flow sediments: a bimodal grain fabric of near-horizontal and -vertical grains, and laminated clay and silt coatings on sand and pebble grains. Coatings are best developed in sediments with finer grain-size distributions and in debris-flow sediments which have had relatively long run-out distances on trough-mouth fans, suggesting continuous rotation of grains in a buoyant, turbulent aqueous environment. This is significant because it precludes debris-flow delivery by plug flow. The micromorphology of iceberg turbate has not been described previously. It contains structures similar to those described in tills, so that unambiguous identification of these sediments seems unlikely based on micromorphological criteria alone. Suspension sediments range from fine-grained massive diamicts containing microfossils to more heterogeneous coarser sediments characterised by abrupt textural variations, from ice-distal and ice-proximal glacimarine environments respectively. The ice-proximal sediments contain fine vertical lineations marking the trajectories of dropstones through wet matrix. These dropstone tracks have not been reported in previous studies.  相似文献   

7.
Hundreds of depressions (pockmarks) were found within a 40 square kilometer area of the sea floor near the head of Penobscot Bay, Maine. These roughly circular depressions range in diameter from 10 to 300 meters and extend as much as 30 meters below the surrounding sea floor. The pockmarks have formed in marine mud of Holocene age, which unconformably overlies glaciomarine deposits.The presence of shallow interstitial gas in the mud suggests that the pockmarks are related to the excipe of gas from the sediments, although other factors must be involved.  相似文献   

8.
Surficial sediment distribution within Simpson Bay is a function of antecedent bedrock and recently deposited glacial geology, as well as active physical processes both within Simpson Bay and Prince William Sound (PWS). Simpson Bay is a turbid, outwash fjord located in northeastern PWS, Alaska. Freshwater from heavy precipitation, and the melting of high alpine glaciers enter the bay through bay head rivers and small shoreline creeks. The catchment has a high watershed/basin surface area ratio (∼8:1), and easily erodible bedrock that contribute to high sediment loads. The system can be divided into three discrete basins, each with specific morphologic and circulatory characters. Side scan sonar, swath bathymetry, and seismic profiles reveal that bathymetric highs are areas of outcropping glacial surfaces. High backscatter coupled with surface grab samples reveal these surfaces to be composed of coarse sediment and bedrock outcrops. Bathymetric lows are areas of low backscatter, and grab samples reveal these areas to be ponded deposits of organic-rich estuarine muds. The data provide evidence of terminal morainal bank systems, and glacial grounding line deposits at the mouth of the bay and rocky outcrops were identified as subsurface extensions of aerial rocky promontories. Radioisotope analyses of short cores reveal that the bay has an average accumulation rate of approx. 0.5 cm year−1, but that this varies in function of the watershed/basin surface area ratios of the different basins. The interaction of tidal currents and sediment source drives sediment distribution in Simpson Bay. Hydrographic data reveal high spatial variability in surface and bottom currents throughout the bay. Subsurface currents are tide dominated, but generally weak (5–20 cm s−1), while faster currents are found along shorelines, outcrops, and bathymetric highs. Bathymetric data reveal steep slopes with little to no modern sediment throughout the bay, suggesting lack of deposition due to tidal currents.  相似文献   

9.
The newly discovered Weddell Fan, Antarctica, covers 0.75 million km2. The adjacent continental shelf is characterized by deep, rugged topography; the inner shelf is covered by a grounded polar ice sheet. The upper fan has numerous deep, V-shaped canyons that intersect a slope-base, leveed fan valley. Piston cores from the valley contain disorganized gravel grading upward into graded gravel and sand. Levee cores contain interbedded hemipelagic sediments and fine-grained turbidites. The lower fan is sand-rich. Sediment supply to the fan apparently occurred before development of glacial shelf topography and during a more temperate glacial setting.  相似文献   

10.
A research expedition to the polar region of Murchisonfjorden (Nordaustlandet, Svalbard) on the research vessel Horyzont II took place in August 2009. This paper presents results from an extensive bathymetric measurement campaign of the Isvika Bay, southern part of Murchisonfjorden. The aim of this campaign was to select optimal sites for sediment sampling. A detailed analysis of the bathymetric features is performed with a special emphasis on the slope stability conditions. A simple method for identifying areas of sediment redeposition is proposed. The results confirm that the Isvika Bay has two distinct basins separated by a ridge. Both basins display flat central regions surrounded by steep slopes with gullies. In addition, results of analysed Quaternary geological data have indicated that the area was affected by ice repeated glacial activity in the past and that there is no morphological form typical for glacier erosion and sedimentation.  相似文献   

11.
Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2–1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.  相似文献   

12.
High-resolution seismic survey and sediment core sampling were conducted to investigate acoustic characteristics of gas-bearing sediments in Jinhae Bay, the southeast of Korea. The sediment in Jinhae Bay is mostly homogenous mud deposited after the Holocene transgression. Along with the 410 km of chirp seismic profiling, five piston core samples were collected on the track lines.

Gassy sediments are common and occur widely in the bay. Core samples were analyzed for sediment texture, physical properties (porosity, water content, bulk density, and grain density), acoustic properties (compressional wave velocity and attenuation), and electrical resistivity. X-radiograph image analysis was also performed to observe the shape of degassing cracks. There is no significant downcore variation on physical and sediment textures regardless of existence of gas bubbles. However, compressional wave velocity dramatically decreases from average 1480 to 1380~739 m/s for the cores that penetrate the gas-bearing zones. This is probably due to degassying cracks that developed by escaping gases and free gas bubbles that are still trapped in the cores. Electrical resistivity is the only geotechnical property that increases in the gas-bearing zone where compressional wave velocity abruptly decreases. This indicates the possibility of using both electrical resistivity as an index variable as well as to compressional wave velocity to identify gassy sediment microstructure because there are little changes in texture and composition of sediment.  相似文献   

13.
Offshore drilling and coring together with high-resolution seismic surveys have established that the southern Irish Sea was extensively glaciated during the Devensian stage. Ice flowed southwards from Scotland and overran the western tip of the Lleyn peninsula, before competing with local Welsh ice in Cardigan Bay. It eventually terminated its advance at the southern entrance to St. Georges Channel. To date no glacial sediments have been found on the sea floor to the south of this limit.During deglaciation, the shallower regions of the Irish Sea area underwent a short but intensive period of erosion which produced numerous meltwater channels. These subsequently acted as traps for the deposition of estuarine sediments associated with the early stages of the Flandrian Sea Transgression. The reworking of glacial drifts by marine action occurred primarily during the passage of the Flandrian surf zone and in most areas has now ceased.  相似文献   

14.
Bonanza Canyon is a complex canyon system on the slope from the intermittently glaciated Grand Bank on the south side of Orphan Basin. A 3D seismic reflection volume, 2D high-resolution seismic reflection profiles and ten piston cores were acquired to study the evolution of this canyon system in relation to glacial processes on the continental shelf and the effects of different types of turbidity currents on the development of deep water channels. Mapped reflector surfaces from the 3D seismic volume show that the Bonanza Canyons developed in a depression created by a large submarine slide of middle Pleistocene age, coincident with the onset of glacigenic debris flows entering western Orphan Basin. Two 3–5 km wide, flat-floored channels were cut into the resulting mass-transport deposit and resemble catastrophic glacial meltwater channels elsewhere on the margin. Both channels subsequently aggraded. The eastern channel A became narrower but maintained a sandy channel floor. The western channel, B, heads at a spur on the continental slope and appears to have been rather passively draped by muds and minor sands that have built 1500-m wave length sediment waves.Muddy turbidites recorded by piston cores in the channel and on the inter-channel ridges are restricted to marine isotope stage (MIS) 2 and were deposited from thick, sheet-like, and sluggish turbidity current derived from western Orphan Basin that resulted in aggradation of the channels and inter-channel ridges. Sandy turbidites in channels and on inner levees were deposited throughout MIS 2–3 and were restricted to the channels, locally causing erosion. Some coincide with Heinrich events. Channels with well-developed distributaries on the upper slope more readily trap the sediments on Grand Bank to form sandy turbidity currents. Channel B dominated by muddy turbidity currents has wide and relatively smooth floor whereas channel A dominated by sandy turbidity currents has a sharp geometry.  相似文献   

15.
We present the results of a marine geophysical investigation of the northern Prince Gustav Channel. By comparative analysis of multibeam bathymetric data, single channel seismic reflection profiles, underway chirp sonar data, ADCP current data and sediment coring, we define the main morphological elements of the area. In particular we define the glacial morphogenesis in relation to the excavation of inner shelf basins and troughs along structural discontinuities and lithologic boundaries. We identify streamlined surfaces that testify to the grounding of ice and past ice flow directions. These glacial forms are found only on glacial tills preserved in the deepest part of the basins, while net erosion to bedrock has occurred elsewhere. Since the Last Glacial Maximum (LGM), the relict glacial morphology has been draped by hemipelagic and diatomaceous mud, and bottom currents have played a major role in focusing sedimentation within small depocentres, that we define as contouritic drifts. Based on shallow sediment architecture and supported by direct measurements, we propose that the direction of bottom water flow is from the outer shelf into the Prince Gustav channel as a result of a combination of tidal currents and ice shelf-related thermohaline circulation.  相似文献   

16.
This study describes the sedimentary facies and internal architecture of a modern estuarine tidal bar present in the bay-head delta of a wave- and tide-dominated estuary, the Gironde Estuary, in southwest France. Based on 51 cores (2 to 5 m long), this work demonstrates that such bars are composite sedimentary bodies made up of individual sigmoidal sand units isolated from one another by thick muddy layers. The bar appeared in the study area around 1874. Since then, its evolution has been characterized by phases of rapid downstream bar migration alternating with periods of bar abandonment. During the periods of active bar progradation, which commonly last between 10 and 20 years, the bar progrades up to 7 km seaward and forms a narrow (200–800 m wide) sand ridge up to 6 m thick. During abandonment phases which also last around 10–20 years, the bar is starved of sand and a mud layer (1 to 3 m thick) is deposited. The vertical succession formed by the seaward progradation of the tidal bar records these alternating phases of growth and abandonment. A typical vertical succession in the bar system is 8 m thick and comprises several superimposed, upward-coarsening units of cross-stratified sand, deposited during phases of seaward progradation, separated by a thick layer of thinner-bedded mud and sand laminae deposited during phases of bar abandonment. When a tidal bar builds up to the supratidal zone, marshes accumulate and the bar becomes a permanent island in the estuary. The large-scale architecture of the bar is thus made of an alternation of potential sandy reservoir units and muddy internal seals. The reservoir units are characterized by a sigmoidal shape. The muddy layer, which is deposited between the two sigmoidal units, is a thick, continuous potential internal seal. This complex internal architecture is due to the fact that there is a considerable amount of mud present in the bay-head delta of the Gironde Estuary. It is thought to be representative of the architecture of tidal bars in the inner part of wave- and tide-dominated estuaries.  相似文献   

17.
We report a conspicuous benthic diatom bloom on an Antarctic fjord shallow seafloor, which has not been reported elsewhere in Antarctica. A thick and massive growth of benthic diatoms was covering or being entangled with a variety of common benthic megafauna such as stalked ascidians, sponges, tubedwelling polychaetes, gastropods, bryozoans, and others. This finding is an outcome of recent investigations on benthic communities in Marian Cove, King George Island, where glacier retreat has been proceeding quickly for the past several decades. Dominance of benthic diatoms during the austral summer has been frequently reported in shallow Antarctic nearshore waters, which in turn indicates their potential as a primary food item for secondary producers living in this harsh environment. However, previous blooming records of the benthic diatoms were primarily based on data from water column samples. We are the first to report observational evidence of shallow seafloor substrates, including the massive blooming of benthic diatoms and their associations with common benthic megafauna in an Antarctic fjord.  相似文献   

18.
Mass loss caused by glacier calving is one of the direct contributors to global sea level rise. Reliable calving laws are required for accurate modelling of ice sheet mass balance. Both continuous and discontinuous methods have been used for glacial calving simulations. In this study, the discrete element method(DEM) based on dilated polyhedral elements is introduced to simulate the calving process of a tidewater glacier. Dilated polyhedrons can be obtained from the Minkowski sum of a sphere and a core polyhedron. These elements can be utilized to generate a continuum ice material, where the interaction force between adjacent elements is modeled by constructing bonds at the joints of the common faces. A hybrid fracture model considering fracture energy is introduced. The viscous creep behavior of glaciers on long-term scales is not considered. By applying buoyancy and gravity to the modelled glacier, DEM results show that the calving process is caused by cracks which are initialized at the top of the glacier and spread to the bottom. The results demonstrate the feasibility of using the dilated polyhedral DEM method in glacier simulations, additionally allowing the fragment size of the breaking fragments to be counted. The relationship between crack propagation and internal stress in the glacier is analyzed during calving process. Through the analysis of the Mises stress and the normal stress between the elements, it is found that geometric changes caused by the glacier calving lead to the redistribution of the stress. The tensile stress between the elements is the main influencing factor of glacier ice failure. In addition, the element shape,glacier base friction and buoyancy are studied, the results show that the glacier model based on the dilated polyhedral DEM is sensitive to the above conditions.  相似文献   

19.
Stable oxygen isotopic composition of sea water and stable carbon isotopes of dissolved inorganic carbon (DIC) on the continental shelf in the southern Weddell Sea are presented. Using the stations sampled during the summer 1995 two sections can be constructed, one closely parallel to the ice shelf edge and the other perpendicular to the upper continental slope. Generally, δ18O values clearly separate between different shelf water masses depending on the content of meteoric meltwater added during melting of glacial ice. Extrapolation of the mixing line between the cores of High Salinity Shelf Water (HSSW) and supercooled Ice Shelf Water (ISW) reveals δ18O values of the glacial ice of −27‰, whereas extrapolation of the mixing line between the δ18O values of the most-saline HSSW and lowest temperature ISW results in δ18O values of −34‰ for glacial ice. These values point to an origin of meltwater from below the ice shelf, where ice is less depleted in 18O, since deep beneath the ice shelf close to the grounding line, values may reach −40‰. If values between −34 and −27‰ are used as δ18O end member values for glacial ice, the amount of meltwater from the ice shelf that adds to the formation of ISW off the Filchner–Ronne Ice Shelf ranges from 0.2 to 0.8%, in agreement with previous studies based on δ18O and 4He. Carbon isotopic fractionation due to gas exchange between the atmosphere and the ocean at cold temperatures results in Δδ13CDIC values of 0.20±0.17‰ for Weddell Sea Deep Water, the water mass that ventilates the global abyssal ocean, typically defined as Antarctic Bottom Water (AABW). This confirms the low end of the range estimated previously (0.2–0.4‰), and thus corroborates the dominance of biology in shaping the deep and bottom water δ13C signal. It has been hypothesized that different modes of glacial/interglacial Antarctic bottom water formation may be separated by different stable isotopic compositions of deep-sea foraminiferal calcite. Here I show that differences between Δδ13C and δ18O values of HSSW and ISW, both of which contribute to bottom water formation today, are too small to be resolved in deep and bottom water masses. Therefore, glacial/interglacial changes in relative proportions of these water masses in Antarctic deep and bottom water cannot be separated by stable isotopes of fossil benthic foraminiferal calcite.  相似文献   

20.
Very high concentrations of Zn, Pb, Cu and Cd occur in the muddy bottom sediments of Lake Macquarie, a saline coastal lagoon in southeastern Australia. The trace metals emanate from industrial sources, especially a lead-zinc smelter, at the northern end of the lake. Individual metal concentrations decrease progressively away from the source area but at differing rates; Zn is most mobile and Cd appears to be deposited first. They approach natural background levels in the southern part of the lake. Mn shows a reverse trend but Ni, Co, Ag and Fe rarely rise above background levels.Shallow cores in the lake bed penetrated a metal enriched surface zone 15–35 cm thick underlain by uncontaminated sediments with natural (background) metal concentrations. Sedimentation rates determined from radiocarbon ages on shells in the cores mainly range between 0·15 and 0·5 mm yr?1. Over the 85 years since industrialization commenced, less than 5 cm of mud has accumulated on the lake bed. Bioturbation is invoked to account for the depth to which the sediment has been enriched in heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号