首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Due to its unique geological location, the Bering Sea is an ideal place to investigate the water exchange and ecosystem connectivity of the Pacific Ocean–Arctic Ocean and subarctic–Arctic region. Based on a number of summer surveys(July to September, 2010, 2012 and 2014), macrobenthic communities and their spatial-temporal patterns are exhibited for the majority of the Bering Sea(53°59′–64°36′N). The results show that the macrobenthic communities were dominated by northern cold-water species and immigrant eurythermic species, and the communities assumed a dispersed and patchy distribution pattern. Polychaetes(Scoloplos armiger), crustaceans(Ceradocus capensis) and sea urchins(Echinarachnius parma) were the main dominant groups in the shallow shelves; the sea star(Ctenodiscus crispatus) and the brittle star(Ophiura sarsii) were the main dominant groups in the continental slope; whereas small polychaetes(Prionospio malmgreni) dominated the basin area. Sediment type, water depth, and currents were the major factors affecting the structure and spatial distribution of the macrobenthic communities. Compared with other seas, the shallow areas of the Bering Sea showed an extremely high-standing biomass. In particular, the northern shelf area(north of St. Lawrence Islands and west of 170°W),which is primarily controlled by Anadyr Water, is an undersea oasis. In contrast, a deficiency in the downward transport of particulate organic carbon has resulted in a desert-like seabed in the basin area. By comparing our results to previous studies, we found that macrobenthic communities of the Bering Sea have undergone significant structural changes in recent decades, resulting in a decrease in abundance and an increase in biomass.In addition, populations of amphipods and bivalves in the northern shelves have decreased significantly and have been gradually replaced by other species. These changes might be associated with advanced seasonal ice melting,changes in organic carbon input, and global warming, indicating that large-scale ecosystem changes have been occurring in the Bering Sea.  相似文献   

2.
Two field observations were conducted around the Lembeh Strait in September 2015 and 2016, respectively.Evidences indicate that seawater around the Lembeh Strait is consisted of North Pacific Tropical Water(NPTW),North Pacific Intermediate Water(NPIW), North Pacific Tropical Intermediate Water(NPTIW) and Antarctic Intermediate Water(AAIW). Around the Lembeh Strait, there exist some north-south differences in terms of water mass properties. NPTIW is only found in the southern Lembeh Strait. Water mass with the salinity of 34.6 is only detected at 200–240 m between NPTW and NPTIW in the southern Lembeh Strait, and results from the process of mixing between the saltier water transported from the South Pacific Ocean and the lighter water from the North Pacific Ocean and Sulawesi Sea. According to the analysis on mixing layer depth, it is indicated that there exists an onshore surface current in the northern Lembeh Strait and the surface current in the Lembeh Strait is southward.These dramatic differences of water masses demonstrate that the less water exchange has been occurred between the north and south of Lembeh Strait. In 2015, the positive wind stress curl covering the northern Lembeh Strait induces the shoaling of thermocline and deepening of NPIW, which show that the north-south difference of airsea system is possible of inducing north-south differences of seawater properties.  相似文献   

3.
A review on the South China Sea western boundary current   总被引:7,自引:2,他引:5  
The advances in understanding the South China Sea (SCS) western boundary current (SCSwbc) have been reviewed since the works of Dale (1956) and Wyrtki (1961) in the middle of the 20th century. The features of the pattern of SCSwbc and the oceanic phenomena associated with it are focused on. The current is driven mainly by monsoon over the SCS and partially by winds over the tropical Pacific governed by the island rule. The SCSwbc exhibits strong seasonal variation in its direction and patterns. In winter, the current is strong and flows southwestward along the South China shelf and slope from the east of Dongsha Islands to the northern central Vietnamese coast, then turns to the south along the central and southern Vietnamese coast, and finally partially exits the SCS through the Karimata Strait. In summer and early fall, the SCSwbc can be divided into three segments based on their characteristics. The southern segment is stable, flowing northward from the Karimata Strait up to about 11 N, where it separates from the coast forming an eastward offshore current. The separation of the current from Vietnamese coast induces some striking features, such as upwelling and cold sea-surface temperature. The middle segment off the central Vietnamese coast may have a bimodal behavior: northward coastal current and meandering current in early summer (June-July), and cyclonic gyre in later summer and early fall (August-September). The northern segment is featured by the summer SCS Warm Current on the South China shelf and a southwestward subsurface current along the continental slope.  相似文献   

4.
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of t  相似文献   

5.
The 3rd Chinese National Arctic Research Expedition(CHINARE–Arctic III) was carried out from July to September in 2008. The partial pressure of CO2(pCO2) in the atmosphere and in surface seawater were determined in the Bering Sea during July 11–27, 2008, and a large number of seawater samples were taken for total alkalinity(TA) and total dissolved inorganic carbon(DIC) analysis. The distributions of CO2 parameters in the Bering Sea and their controlling factors were discussed. The pCO2 values in surface seawater presented a drastic variation from 148 to 563 μatm(1 μatm = 1.013 25×10-1 Pa). The lowest pCO2 values were observed near the Bering Sea shelf break while the highest pCO2 existed at the western Bering Strait. The Bering Sea generally acts as a net sink for atmospheric CO2 in summer. The air-sea CO2 fluxes in the Bering Sea shelf, slope, and basin were estimated at-9.4,-16.3, and-5.1 mmol/(m2·d), respectively. The annual uptake of CO2 was about 34 Tg C in the Bering Sea.  相似文献   

6.
The Atlantic inflow in the Fram Strait(78°50′N) has synoptic scale variability based on an array of moorings over the period of 1998–2010. The synoptic scale variability of Atlantic inflow, whose significant cycle is 3–16 d, occurs mainly in winter and spring(from January to April) and is related with polar lows in the Barents Sea. On the synoptic scale, the enhancement(weakening) of Atlantic inflow in the Fram Strait is accompanied by less(more)polar lows in the Barents Sea. Wind stress curl induced by polar lows in the Barents Sea causes Ekman-transport,leads to decrease of sea surface height in the Barents Sea, due to geostrophic adjustment, further induces a cyclonic circulation anomaly around the Barents Sea, and causes the weakening of the Atlantic inflow in the Fram Strait. Our results highlight the importance of polar lows in forcing the Atlantic inflow in the Fram Strait and can help us to further understand the effect of Atlantic warm water on the change of the Arctic Ocean.  相似文献   

7.
The distribution of chlorophyll a(Chl a) and its relationships with physical and chemical parameters in different regions of the Bering Sea were discussed in July 2010. The results showed the seawater column Chl a concentrations were 13.41–553.89 mg/m2 and the average value was 118.15 mg/m2 in the study areas. The horizontal distribution of Chl a varied remarkably from basin to shelf in the Bering Sea. The regional order of Chl a concentrations from low to high was basin, slope, outer shelf, inner shelf, and middle shelf. The vertical distribution of Chl a was grouped mainly from single-peak type in basin, slope, outer shelf, and middle shelf, where the deep Chl a maxima(DCM) layer was observed at 25–50 m, 30–35 m, 36–44 m, and 37–47 m, respectively. The vertical distribution of Chl a mainly had three basic patterns: standard single-peak type, surface maximum type, and bottom maximum type in the inner shelf. The analysis also showed that the transportation of ocean currents may control the distribution of Chl a, and the effects were not simple in the basin of the Bering Sea. There was a positive correlation between Chl a and temperature, but no significant correlation between Chl a and nutrients. The Bering Sea slope was an area deeply influenced by slope current. Silicate was the factor that controlled the distribution of Chl a within parts of the water in the slope. Light intensity was an important environmental factor in controlling seawater column Chl a in the shelf, where Chl a was limited by nitrate rather than phosphate within the upper water. Meanwhile, there was a positive relationship between Chl a and salinity. Algal blooms broke out at Sta. B6 of the southwestern St. Lawrence Island and Stas F6 and F11 in the middle of the Bering Strait.  相似文献   

8.
Stable carbon and nitrogen isotopic composition of particulate organic matter(POM) were measured for samples collected from the Bering Sea in 2010 summer. Particulate organic carbon(POC) and particulate nitrogen(PN) showed high concentrations in the shelf and slope regions and decreased with depth in the slope and basin, indicating that biological processes play an important role on POM distribution. The low C/N ratio and heavy isotopic composition of POM, compared to those from the Alaska River, suggested a predominant contribution of marine biogenic organic matter in the Bering Sea. The fact that δ13C and δ15N generally increased with depth in the Bering Sea basin demonstrated that organic components with light carbon or nitrogen were decomposed preferentially during their transport to deep water. However, the high δ13C and δ15N observed in shelf bottom water were mostly resulted from sediment resuspension.  相似文献   

9.
东海西部陆架海域水团的季节特征分析   总被引:3,自引:1,他引:2  
On the basis of the CTD data and the modeling results in the winter and summer of 2009, the seasonal characteristics of the water masses in the western East China Sea shelf area were analyzed using a cluster analysis method. The results show that the distributions and temperature-salinity characteristics of the water masses in the study area are of distinct seasonal difference. In the western East China Sea shelf area, there are three water masses during winter, i.e., continental coastal water(CCW), Taiwan Warm Current surface water(TWCSW) and Yellow Sea mixing water(YSMW), but four ones during summer, i.e., the CCW, the TWCSW, Taiwan Warm Current deep water(TWCDW) and the YSMW. Of all, the CCW, the TWCSW and the TWCDW are all dominant water masses. The CCW, primarily characterized by a low salinity, has lower temperature, higher salinity and smaller spatial extent in winter than in summer. The TWCSW is warmer, fresher and smaller in summer than in winter, and it originates mostly from the Kuroshio surface water(KSW) northeast of Taiwan, China and less from the Taiwan Strait water during winter, but it consists of the strait water and the KSW during summer. The TWCDW is characterized by a low temperature and a high salinity, and originates completely in the Kuroshio subsurface water northeast of Taiwan.  相似文献   

10.
Based on the observational current meter data from two mooring systems located between Chilung and the Pengjiayu Island from July 1980 to July 1981, and other oceanographic observational data in the south of the East China Sea, some problems on the flow of seawater in this area in summer are analysed in this paper. It is considered that a possible passage where the subsurface water of the Kuroshio flows into continental shelf area of the East China Sea is the lower layer of the region between Chilung and the point of 122°30′ E, 25°40′N. After passing through this passage, it flows roughly towards northeast along about 100 m isobath. The "Taiwan Warm Current" coming from the Taiwan Strait only passes through the upper layer of this area. The influence of the Taiwan Island on the flow and the eddies in this area are also discussed.  相似文献   

11.
1 IntroductionTheBeringStrait, with them aximum depth lessthan 60 m , isthe uniquepassagebetween the ArcticOcean and the North Pacific Ocean, and links twoshelfseas:theBeringSeainthesouthandtheChukchiSea in the north. The background flow field oftheBering…  相似文献   

12.
Abstract

Based on hydrological data obtained during the 7th to 9th Chinese National Arctic Research Expeditions in the summers of 2016–2018, the main water structure on the shelf of the northern Bering Sea and the volume and heat fluxes of the Bering Strait throughflow were analyzed. Distinct variability was identified in the three Pacific water masses feeding the strait - Anadyr Water (AW), Bering Shelf Water (BSW) and Alaskan coastal water (ACW). Overall, the temperature and salinity of the entire section increased each year, with 2018 showing significant anomalies, i.e., a temperature anomaly of up to 1?°C and a maximum salinity anomaly of 2. From 2016 to 2018, the extent of the ACW gradually narrowed in the eastern part of this section, while the AW expanded eastward each year. The net volume transport through each of the three sections increased poleward from 1.65?Sv to 2.76?Sv, with the AW increasing from 0?Sv to 1.03?Sv, the BSW varying between 0.52–1.65?Sv, and the ACW gradually decreasing from 1.04?Sv to disappearing completely. The net heat fluxes were also poleward, varying between 25.77 TW and 61.50 TW, and showing a significant increase. Significant variations in magnitude and extent were observed in each water mass of the Bering Strait throughflow, which could produce widespread effects in the Arctic Ocean and the global ocean beyond.  相似文献   

13.
北白令海夏季冷水团的分布及其年际变化研究   总被引:7,自引:3,他引:4       下载免费PDF全文
利用1982-2008年间的高分辨率CTD数据,对夏季位于北白令海陆架底层的冷水团性质及其多年变化进行了研究.结果表明,依据该区域水体在温盐性质上的差异可以分为4类:陆架冷水团(BSW_C),白令海陆坡流水(BSCW),混合变性水(MW),陆架表层暖水(BSW_S).以-1℃,2℃和4℃温度等值线指示水团边界,清楚地将...  相似文献   

14.
对中国第四次北极科学考察期间在白令海北部获取的海水样品进行悬浮体含量及其颗粒组分特征的分析。结果表明,白令海陆架海区悬浮体含量大体呈现出表层浓度低而底层浓度高的特点。表层海水悬浮体含量在白令海峡西侧和陆架东侧靠近阿拉斯加沿岸含量较高,而底层海水中悬浮体含量则在白令海峡西侧,以及白令海陆架西南部的圣马修岛西北侧较高。陆架流系对底床物质的再悬浮作用致使白令海悬浮颗粒物浓度的高值区多位于近底层海水中。受白令陆坡流沿陆架坡折带输运作用,研究区西南部悬浮体浓度较高。白令海陆架水以及阿纳德尔流携带悬浮颗粒向北输运,使得底层悬浮体浓度呈现出自南向北逐渐减弱的模式。圣劳仑斯岛以北靠近楚科奇半岛一侧海域,受高营养盐的阿纳德尔流的影响,悬浮颗粒物以藻类为主;东侧阿拉斯加沿岸流区悬浮颗粒则以陆源的碎屑矿物为主。  相似文献   

15.
2003-2012年间白令海峡断面淡水构成的时空变化   总被引:3,自引:1,他引:2  
潘红  陈敏  童金炉  邱雨生  郑敏芳 《海洋学报》2015,37(11):135-146
通过对2003-2012年间白令海峡64.3°N断面海水氧同位素组成的分析,应用海水δ18 O值和盐度的质量平衡关系区分出淡水中河水和海冰融化水组分的贡献,探讨白令海峡淡水组成的分布特征及其年际变化。研究表明,断面东侧阿拉斯加沿岸水影响区呈现低δ18 O值、低盐、高温、高河水组分的特征,西侧阿拉德尔水具有高δ18 O值、高盐、低海冰融化水的特征,中部白令陆架水的δ18 O值、盐度和淡水组成则居于上述二者之间。阿拉斯加沿岸水影响区河水组分的份额约为阿拉德尔水和白令陆架水的2倍,并呈现出2010年2012年2003年2008年的时间变化规律,受控于育空河入海径流量的时间变化。白令陆架水和阿拉斯加沿岸水影响区的海冰融化水份额较为接近,均比阿拉德尔水影响区的海冰融化水份额高约45%。海冰融化水的年际变化表现出2003年2008年≈2012年2010年的规律,受控于白令海海冰的年际变动。从断面淡水构成看,通过白令海峡的淡水平均由46%的河水和54%的海冰融化水构成,且阿拉德尔水、白令陆架水和阿拉斯加沿岸水影响区河水组分与海冰融化水组分的比值自2003年至2012年间呈增加趋势,证明太平洋入流中淡水构成的变化对北冰洋海冰的融化也起着一定的作用。  相似文献   

16.
The hydrographic and bio-optical properties of the Bering Sea shelf were analyzed based on in-situ measurements obtained during four cruises from 2007 to 2009. According to the temperature and salinity of the seawater, the spring water masses on the Bering Sea shelf were classified as the Alaskan Coast Water, Bering Sea Shelf Water, Anadyr Water, Spring Mixed Layer Water, Remnant Winter Water, and Winter Water, each of which had varying chlorophyll a concentrations. Among them, the highest chlorophyll a concentration occurred in the nutrient-rich Anadyr Water ((7.57±6.16) mg/m3 in spring). The spectrum-dependent diffuse attenuation coefficient (Kd(λ)) of the water column for downwelling irradiance was also calculated, exhibiting a decrease at 412–555 nm and then an increase within the range of 0.17–0.48 m–1 in spring. Furthermore, a strong correlation between the chlorophyll a concentration and the attenuation coefficient was found at visible wavelengths on the Bering Sea shelf. Spatially, the chlorophyll a concentration was higher on the northern shelf ((5.18±3.78) mg/m3) than on the southern shelf ((3.64±2.51) mg/m3), which was consistent with the distribution of the attenuation coefficient. Seasonally, the consumption of nutrients by blooms resulted in minimum chlorophyll a concentration ((0.78±0.51) mg/m3) and attenuation coefficient values in summer. In terms of the vertical structure, both the attenuation coefficient and the chlorophyll a concentration tended to reach maximum values at the same depth, and the depth of the maximum values increased as the surface temperature increased in summer. Moreover, an empirical model was fitted with a power function based on the correlation between the chlorophyll a concentration and the attenuation coefficient at 412–555 nm. In addition, a spectral model was constructed according to the relationship between the attenuation coefficients at 490 nm and at other wavelengths, which provides a method for estimating the bio-optical properties of the Bering Sea shelf.  相似文献   

17.
1Introduction Besidestheprecipitationandriverdischarges,the watersinthePacificOceanandtheAtlanticOceanare thesourcesoftheArcticOceanwater.TheAtlantic waterenterstheArcticOceanviatheFramStraitand theBarentsSea.Foritsdenserfeatureduetohigh salinity,mostofitsinkstothenorthofSvaldbardand circulatesinallthedeepbasinsintheArcticOcean, formingthedeepandbottomwatersoftheArcticO- cean(Aagaardetal.,1985;Rudelsetal.,1999).The BeringStraitistheonlychannelforthePacificwater toflowintotheArcticOce…  相似文献   

18.
北冰洋西部表层沉积物粘土矿物分布及环境指示意义   总被引:7,自引:1,他引:6  
楚科奇海及邻近的北冰洋深水区表层沉积物中粘土矿物的分布受源区母岩和海区环流结构所制约。来自加拿大马更些河的物质富含高岭石和伊利石,对研究区东北部和北部沉积物的影响较大;来自阿拉斯加西北部的河流和海岸带物质富含绿泥石,高岭石含量变化较大,对阿拉斯加西北部近海沉积物的影响明显;来自西伯利亚的物质富含绿泥石,对研究区西部沉积物的影响较为明显。自白令海峡进入的太平洋水携带富含蒙皂石的育空河物质横穿楚科奇海陆架向北扩散,导致楚科奇海中部沉积物中的蒙皂石含量高;同时,粘土矿物自身的粒度分异在某种程度上也促使蒙脱石在离岸距离较远的中部海区富集。  相似文献   

19.
北冰洋西部表层沉积物中生源组分及其古海洋学意义   总被引:4,自引:0,他引:4  
通过对中国首次和第二次北极科学考察在北冰洋西部所采取的66个表层沉积物中生源组分的分析,探讨了该海区表层生产力变化与水团的相互关系。楚科奇海西南部呈现出高的有机碳和生源蛋白石含量,而中部和东部哈罗德浅滩至阿拉斯加沿岸,以及楚科奇海台、北风脊和加拿大海盆表现出低的有机碳和生源蛋白石含量。楚科奇海陆架区表层沉积物以底栖有孔虫为主,丰度低;而楚科奇海台、北风脊和加拿大海盆则以浮游有孔虫占绝对优势,丰度较高。生源组分的分布特征显然与通过白令海峡进入楚科奇海的三股太平洋水和大西洋次表层水相关。楚科奇海西侧沿富营养的阿纳德尔流方向的区域呈现出高的表层生产力。而东侧受寡营养的阿拉斯加沿岸流及阿拉斯加西北沿岸陆源物质输入的影响,呈现出低的表层生产力。北纬75°以北及加拿大海盆受海冰覆盖影响,也表现出最低的表层生产力。而受北大西洋次表层水的影响,楚科奇海陆架外侧高纬海域表现出较高的钙质生物生产力。表层沉积物中Corg/N比值及其分布反映楚科奇海表层沉积物中的有机碳以海洋自身来源为主,且主要受生物泵过程控制。有机碳和生源蛋白石含量呈现高的正相关关系,说明硅藻等浮游植物的初级生产力可能控制着生物泵对碳的吸收和释放。  相似文献   

20.
白令海峡夏季流量的年际变化及其成因   总被引:1,自引:1,他引:0  
张洋  苏洁 《海洋学报》2012,34(5):1-10
白令海峡是连接太平洋和北冰洋的唯一通道,穿过海峡的海水体积通量在年际尺度上的变化主要取决于海峡南北两侧的海面高度差,白令海峡的入流对北冰洋海洋过程有重要的意义。利用SODA资料计算夏季白令海峡海水体积通量,对其年际变化及成因进行分析。结果表明夏季白令海峡的体积通量主要是正压地转的;当体积通量为正距平时,楚科奇海、东西伯利亚海、拉普捷夫海以及波弗特海南部海面高度为负距平,同时,白令海陆架海面高度为正距平;对这些海域的Ekman运动、上层海洋温度、盐度和垂直流速进行分析,发现海面高度异常与海峡体积通量的这种关系主要是与海面气压异常分布所产生的Ekman运动有关。当白令海峡的体积通量为正距平时,北冰洋中央海面气压为正距平,白令海海盆海面气压为负距平。这种气压的异常分布在一定程度上解释了上层海洋运动、海水温盐结构与白令海峡入流的关系,从而把夏季大尺度大气环流和白令海峡体积通量的年际变化联系了起来。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号