首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
微区原位普通铅同位素分析技术及其地质应用进展   总被引:1,自引:0,他引:1  
应用激光剥蚀-多接收器电感耦合等离子体质谱(LA-MC-ICP-MS)和二次离子质谱(SIMS)等分析技术进行微区原位普通Pb同位素分析是微区地球化学研究的重要内容之一.综述了矿物、熔体包裹体和沉积结核的微区原位普通Pb同位素分析技术及其地质应用的新进展.这些研究资料表明该分析技术在岩浆岩成因、沉积物物源示踪、地幔地球化学、古海洋学以及矿床学等的研究中提供了常规的全岩Pb同位素分析方法难以获得的重要信息,充分展示了该分析技术在地球科学研究中的应用前景.  相似文献   

2.
作者在昆士兰大学利用多接收等离子质谱仪MicromassIsoprobe测定了7种USGS岩石参考标准AGV-1、AGV-2、BHVO-1、BHVO-2、BCR-2、BIR-1/1和W-2的Pb同位素组成,同时测定了标准物质NBS981的Pb同位素组成。采用~(203)Tl-~(205)Tl同位素作为内部标准进行同位素分馏校正。所获得达到NBS981和USGS岩石标准AGV-1、BHVO-1的同位素比值的精度可与热电离质谱双稀释剂法或三稀释剂法数据相媲美,甚至具有更高精度。而BHVO-2、AGV-2和BCR-2  相似文献   

3.
无机地球化学研究的进展通常依赖于新的技术开发。电感耦合等离子体质谱(ICP—MS)技术可以进行高精度的同位素比值分析,使以前很难测定的元素的分析成为可能。牛津大学地球科学系已经越来越多地开展多接收器电感耦合等离子体质谱分析,着重于解决从宇宙至环境化学领域的诸多问题。目前主要研究Cr同位素,确定Cr对Jurassic—Triassic边界可能产生的影响事件,以及采用铀系列同位素进行海洋学研究。  相似文献   

4.
同位素质谱分析测试技术进展   总被引:1,自引:0,他引:1  
同位素质谱分析测试技术是同位素研究的基础。本文评述了同位素质谱分析测试技术中常用的多接收器等离子体质谱法、激光探针质谱、离子探针、热电离质谱法和高精度质谱计分析同位素的原理、应用范围、存在问题和研究进展,建议选择分析同住素方法时,需考虑每种方法各自的特点和优势、仪器的性能等。  相似文献   

5.
王林森  张利 《矿物岩石》2003,23(2):44-48
随着超净化实验室条件的完善以及多接收同位素质谱技术的成熟,铅同位素双稀释法倍受关注。用双稀释法测定铅同位素比值的方法原理,以及^204Pb—^207Pb双稀释剂的配制和标定方法。通过对标准物质NBS981和地质样品的分析测定,表明用双稀释法测定铅同位素比值,可以有效校正由质谱分析造成的同位素分馏效应,从而提高分析结果的精度和准确度。  相似文献   

6.
质谱Pb同位素标准物质严格按照国家一级标准物质技术规范要求进行研究,其均匀性好,定值准确可靠。它包括SPb1、SPb2、SPb3、SPb4等4个标准,其覆盖面较NBS981、NBS982、NBS983更大。它可用于同位素地质年代学、同位素地质、环境、食品、医疗卫生等领域。  相似文献   

7.
近年来,随着多接收器电感耦合等离子体质谱(MC-ICP-MS)技术的引入,使锌同位素的精确测定得以实现,因此锌同位素在地球化学过程中的研究也正在被越来越多的人所关注.  相似文献   

8.
同位素技术在成矿作用研究中具有重要意义,近代成矿理论的许多重大进展都得益于同位素技术的应用.随着多接收器等离子体质谱同位素测试技术的发展,非传统稳定同位素(Fe、Cu、Zn等)技术被快速地应用于天体、环境、生物以及地质领域.  相似文献   

9.
近年来,随着多接收器电感耦合等离子体质谱(MC-ICP-MS)技术的引入,Fe同位素在地球科学领域中的应用得到迅速发展.由于大多数天然样品具有复杂的化学成分,进行Fe同位素分析时它们可能会产生Fe同位素信号的谱峰干扰,或导致测试过程中仪器质量歧视的变化,即所谓的基质效应~([1,2]).  相似文献   

10.
Mo在自然界中有7个稳定同位素,分别是~(92)Mo、~(94)Mo、~(95)Mo、~(96)Mo、~(97)Mo、~(98)Mo和~(100Mo).多接收器等离子体质谱(MC-ICP-MS)的诞生带来了同位素分析技术的革命性进展.  相似文献   

11.
The authors measured Pb isotope compositions of seven USGS rock reference standards, i.e. AGV-1, AGV-2, BHVO-1, BHVO-2, BCR-2, BER-1/1 and W-2, together with NBS 981 using a micromass isoprobe multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) at the University of Queensland. 203Tl-205Tl isotopes were used as an internal standard to correct for mass-dependant isotopic fractionation. The results for both NBS 981 and USGS rock standards AGV-1 and BHVO-1 are comparable to or better than double- and triple-spike TIMS (thermal ionization mass spectrometry) data in precision. The data for BHVO-2 and, to a lesser extent, AGV-2 and BCR-2 are reproducibly higher for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb than double-spike TIMS data in the literature. The authors also obtained the Pb isotope data for BIR-1/1 and W-2, which may be used as reference values in future studies. It is found that linear correction for Pb isotopic fractionation is adequate with the results identical to those corre  相似文献   

12.
The development of the MC-ICP-MS method, which was launched about one decade ago and was largely stimulated by the need to solve geological problems, has opened a new avenue in isotope mass spectrometry. One of the advantages of this method is the possibility of applying a newly developed approach to the correction of analytical results for the effect of mass discrimination by normalizing the measured isotope ratios of an element to a reference (standard) isotope ratio of another element. This makes it possible to overcome the main disadvantage of conventional thermal ionization mass spectrometry (TIMS), in which the effect of mass discrimination cannot be fully taken into account during isotope analysis, and thus to implement a highly accurate method for the analysis of Pb-isotope composition. In application to the capability of the NEPTUNE MC-ICP mass spectrometer, we optimized and calibrated a method for high-accuracy Pb isotope analysis in solutions spiked with Tl, with all currently measured Pb-isotope ratios normalized to the standard 205Tl/203Tl ratio (TLN-MC-ICP-MS). The factors affecting the random and systematic analytical errors were examined, and the optimal operating regime and analytical conditions were determined. Much attention was paid to the correlation of the measurement results and the mass discrimination effect determined from the 205Tl/203Tl ratio. The value of the 205Tl/203Tl normalizing ratio was analytically determined through isotope analyses of the NIST SRM 981, and SRM 982 standard samples of Pb-isotope composition. The data obtained for two mixtures Tl + Pb (SRM 982) and Tl + Pb (SRM 981) in ten replicate analyses were 2.38898 ± 12 and 2.38883 ± 20, respectively. These results are in good mutual agreement, and their general mean 205Tl/203Tl = 2.3889 ± 1 coincides (within the error) with the recently published values of 2.3887 ± 7 [Collerson et al., 2002] and 2.3889 ± 1 [Thirlwall, 2002]. The precision of the method (±2SD), which was assayed by the long-term reproducibility of the results of replicate analyses of SRM 981 and seven galena samples (90 analyses) was 0.016–0.018% for the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios and 0.005 and 0.009% for the 207Pb/206Pb and 208Pb/206Pb ratios, respectively. The precision of the isotope analysis of common Pb was significantly improved (by factors of 6–10 for various isotope ratios) compared with the precision of TIMS techniques acceptable in isotope studies during three decades. The described method was applied to examine the Pb-isotope composition of approximately 250 samples of galena, scheelite, and pyrite from a number of well known (including large) gold, sulfied, and base-metal deposits. The precision of the method (0.01–0.02%) makes it possible to study small inter-and intra-phase differences in Pb-isotope ratios in hydrothermal and magmatic rocks, to assay the scale of regional and variations in the isotope composition of ore Pb, and to correlate the Pb-isotope composition of rocks and ores and reveal its evolutionary trends.  相似文献   

13.
若尔盖高原牧场处于中国偏远洁净高海拔地区,大气沉降是污染物主要来源途径之一。由于季风的影响,污染源的辨析较为困难。本文通过多点大气气溶胶不同季节同时采样方式,利用热电离固体同位素质谱仪可有效校正质谱分析中同位素分馏效应的优点,对若尔盖地区土壤和大气气溶胶的铅同位素比值进行精确分析,并结合季风特征对该地区污染物的来源进行解析。结果表明:土壤的208Pb/204Pb比值变化范围为38.79059±0.00194~38.94461±0.00135,206Pb/207Pb为1.18551±0.00002~1.19362±0.00002;大气气溶胶的208Pb/204Pb比值变化范围为37.49571±0.00117~38.48980±0.00105,206Pb/207Pb为1.12894±0.00001~1.16734±0.00001。该地区土壤铅同位素的特征是放射成因铅高,来自于自身天然存在的岩石矿物,与大气污染关系不大;大气气溶胶的铅同位素组成与土壤差异较大,显示为多元混合模式,受到了天然物质和人类活动来源的混合影响,机动车尾气及来自北部(兰州)和西北部(青海、新疆、哈萨克斯坦、俄罗斯)的大气远程运移是若尔盖大气气溶胶及污染物质的主要来源。  相似文献   

14.
Lead isotopes are a powerful and versatile tool to elucidate fundamental geological problems related to the formation and evolution of continental crust. K-feldspar is a popular target for Pb isotope measurement as it is prevalent in many rock types and tends to capture the initial Pb isotope composition of its parental magma. We present data for a new Pb isotope reference material: Albany K-feldspar; as well as updated data for Shap K-feldspar. Results of Pb double-spike TIMS for Albany K-feldspar are 206Pb/204Pb = 16.7872 ± 0.0062, 207Pb/204Pb = 15.5640 ± 0.0056, and 208Pb/204Pb = 36.6600 ± 0.0168 (2s). TIMS measurement results for Shap K-feldspar indicate two isotopically distinct Pb populations. LA-MC-ICP-MS, with a spatial resolution as high as 15 μm, indicates a homogeneous Pb isotopic composition in Albany K-feldspar. In accord with previous studies, our results show that scatter in the measured Pb isotope ratios, related to the low natural isotopic abundance of 204Pb, along with the effect of isobaric 204Hg-204Pb interference, increases at lower count rates. However, the mean Pb isotope ratios measured via LA-MC-ICP-MS using a range of spot sizes are in excellent agreement with TIMS results thus highlighting the feasibility of Pb isotope determination via LA-MC-ICP-MS to access geological information preserved in small crystals, including mineral inclusions.  相似文献   

15.
大别山北缘中生代火山-侵入岩的14个夺铅同位素组成表现为高的非放射性成因^204Pb,较低的^206Pb/^204Pb比值和低且相对一致的^207Pb/^204Pb比值,属于明显的低U/Pb体系,并暗示它们由具低μ值的源岩衍生的。  相似文献   

16.
The isotopic composition of Pb in pyrite of the Mindyak orogenic gold deposit located in the Main Ural Fault Zone, the Southern Urals, has been studied by the high-precision MC-ICP-MS method. Orebodies at the deposit are composed of early pyrite and late polysulfide–carbonate–quartz mineral assemblages. The orebodies are localized in olistostrome with carbonaceous clayey-cherty cement. Pyrites from early and late mineral assemblages are close in Pb isotope ratios. For early pyrite 206Pb/204Pb = 18.250–18.336, 207Pb/204Pb = 15.645–15.653, 208Pb/204Pb = 38.179–38.461; while for late pyrite 206Pb/204Pb = 18.102–18.378, 207Pb/204Pb = 15.635–15.646, 208Pb/204Pb = 38.149–38.320. The model parameters μ2 (238U/204Pb = 9.91 ± 2), ω2 (232Th/204Pb = 38.5 ± 4), and 232Th/238U = 3.88 ± 3 indicate that an upper crustal Pb source played a leading role in ore formation. Carbonaceous shale as an olistostrome cement and syngenetic sulfide mineralization are considered to be the main Pb sources of both early and late mineral assemblages. An additional recept in apparently magmatic lead is suggested for the late veinlet mineralization. The involvement of lead from several sources in ore formation is consistent with the genetic model, which assumes a two-stage formation of orebodies at the Mindyak deposit.  相似文献   

17.
Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic belt are firstly reported in this paper. The results show that the tip metamorphic rocks in different parts of this orogenic belt have similar Pb isotopic compositions. The twomica albite gneisses have ^206 pb/^204 Pb=17. 657 -18. 168, ^207pb/^204 Pb=15. 318-15. 573,^ 208Pb/^204ob=38.315-38. 990, and the eclogites have ^206Pb/^204 Pb=17. 599 -18. 310, ^207Pb/^204 Pb=15. 465 -15. 615,^208Pb/^204Pb=37. 968-39. 143. The HP metamorphic rocks are characterized by upper crustal Pb isotopic composition. Although the Pb isotopic composition of the HP metamorphic rocks partly overlaps that of the ultrahigh-pressure (UHP) metamorphic rocks, as a whole, the former is higher than the latter. The high radiogenic Pb isotopic composition for the HP metamorphic rocks confirms that the subducted Yangtze continental crust in the Tongbai-Dabie orogenic belt has the chemical structure of increasing radiogenic Pb isotopic composition from lower crust to upper crust. The foliated granites, intruded in the HP metamorphic rocks post the HP/UHP metamorphism, have ^206Pb/^204 Pb=17. 128- 17. 434,^207Pb/^204pb=15. 313-15. 422 and ^208Pb/^204Pb=37. 631-38. 122, which are obviously different from the Pb isotopic compositions of the HP metamorphic rocks but similar to those of the UHP metamorphic rocks and the foliated garnet-bearing granites in the UHP unit. This shows that the foliated granites from the HP and UHP units have common magma source. Combined with the foliated granites having the geochemical characteristics of A-type granites, it is suggested that the magma for the foliated granites in the UHP and HP unit would be derived from the partial melting of the retrometamorphosed UHP metamorphic rocks exhumed into middle to lower crust, and partial magmas were intruded into the HP unit.  相似文献   

18.
Lead isotope ratios of galena from the carbonate-hosted massive sulphide deposits of Kabwe (Pb-Zn) and Tsumeb (Pb-Zn-Cu) in Zambia and Namibia, respectively, have been measured and found to be homogeneous and characteristic of upper crustal source rocks. Kabwe galena has average isotope ratios of 206/204Pb = 17.997 ± 0.007, 207/204Pb = 15.713 ± 0.010 and 208/204Pb = 38.410 ± 0.033. Tsumeb galena has slightly higher 206/204Pb (18.112 ± 0.035) and slightly lower 207/204Pb (15.674 ± 0.016) and 208/204Pb (38.276 ± 0.073) ratios than Kabwe galena. The isotopic differences are attributed to local differences in the age and composition of the respective source rocks for Kabwe and Tsumeb. The homogeneity of the ore lead in the two epigenetic deposits suggests lead sources of uniform isotopic composition or, alternatively, thorough mixing of lead derived from sources with relatively similar isotopic compositions. Both deposits have relatively high 238U/204Pb ratios of 10.31 and 10.09 for Kabwe and Tsumeb galenas, respectively. These isotope ratios are considered to be typical of the upper continental crust in the Damaran-Lufilian orogenic belt, as also indicated by basement rocks and Cu-Co sulphides in stratiform Katangan metasediments which have a mean μ-value of 10.25 ± 0.12 in the Copperbelt region of Zambia and the Democratic Republic of Congo (formerly Zaire). The 232Th/204Pb isotope ratios of 43.08 and 40.42 for Kabwe and Tsumeb suggest Th-enriched source regions with 232Th/235U (κ-values) of 4.18 and 4.01, respectively. Model isotopic ages determined for the Kabwe (680 Ma) and Tsumeb (530 Ma) deposits indicate that the timing of the mineralisation was probably related to phases of orogenic activity associated with the Pan-African Lufilian and Damaran orogenies, respectively. Galena from the carbonate-hosted Kipushi Cu-Pb-Zn massive sulphide deposit in the Congo also has homogeneous lead isotope ratios, but its isotopic composition is comparable to that of the average global lead evolution curve for conformable massive sulphide deposits. The μ (9.84) and κ (3.69) values indicate a significant mantle component, and the isotopic age of the Kipushi deposit (456 Ma) suggests that the emplacement of the mineralisation was related to a post-tectonic phase of igneous activity in the Lufilian belt. The isotope ratios (206/204Pb, 207/204Pb, 208/204Pb) of the three deposits are markedly different from the heterogeneous lead ratios of the Katangan Cu-Co stratiform mineralisation of the Copperbelt as well as those of the volcanogenic Nampundwe massive pyrite deposit in the Zambezi belt which typically define radiogenic linear trends on lead-lead plots. The host-rock dolomite of the Kabwe deposit also has homogeneous lead isotope ratios identical to the ore galena. This observation indicates contamination of the Kabwe Dolomite Formation with ore lead during mineralisation. Received: 8 September 1997 / Accepted: 21 August 1998  相似文献   

19.
利用新型阴离子交换树脂分离沉积物中的重金属Pb,采用表面热电离质谱法(TIMS)测定了沉积物样品中的Pb同位素组成。新型树脂为大孔径阴离子树脂AG-MP-1M,淋洗液采用低浓度的盐酸,避免了使用难以纯化的氢溴酸,可有效地降低试剂空白。通过对铅同位素标准物质NIST NBS-981的重复测试,方法的精密度(<0.5%,2s)和准确度均达到了应用研究的要求。对5个实际沉积物样品中的铅同位素组成进行测定,获得了理想的分析效果。  相似文献   

20.
《Gondwana Research》2006,9(4):529-538
Sr, Nd and Pb isotopic compositions of the Cenozoic basalts were analyzed from Baengnyeongdo Island, Jeongok, Ganseong, and Jejudo Island of Korea. They reveal relatively enriched Sr and Nd isotopic compositions (87Sr/86Sr = 0.70330∼0.70555, 143Nd/144Nd = 0.51298∼0.51256) compared with MORB.207Pb/204Pb and 208Pb/204Pb values of all the analyzed Korean basalts lie above the Northern Hemisphere Reference Line (NHRL) defined by Hart (1984). Pb isotopic compositions of basalts from Jejudo Islands (206Pb/204Pb = 18.61∼19.12, 207Pb/204Pb = 15.54∼15.69, 208Pb/204Pb = 38.98∼39.72) are significantly more radiogenic than the rest (206Pb/204Pb = 17.72∼18.03, 207Pb/204Pb = 15.44∼15.58, 208Pb/204Pb = 37.77∼38.64). The Cenozoic Korean basalts thus can be divided into two groups based on their Sr, Nd and Pb isotopic compositions. The north group reveals mixing between DMM and EM1 while the south group displays DMM-EM2 mixing. Such a distribution is the same as Chinese Cenozoic basalts and it can be interpreted that the subcontinental lithospheric mantle under Korea represents simple lateral continuation of the South and North China Blocks. We suggest that Korean continental collision zone cross the Korean Peninsula through the region between the north and south basalt groups of Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号